Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.354
Filtrar
1.
J Parasitol ; 110(2): 159-169, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629270

RESUMO

Dicyemids (phylum Dicyemida) are the most common and most characteristic endosymbionts in the renal sacs of benthic cephalopod molluscs: octopuses and cuttlefishes. Typically, 2 or 3 dicyemid species are found in a single specimen of the host, and most dicyemids have high host specificity. Host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment; therefore, phylogenies of interacting groups are often congruent due to repeated co-speciation. Most frequently, however, host and parasite phylogenies are not congruent, which can be explained by processes such as host switching and other macro-evolutionary events. Here, the history of dicyemids and their host cephalopod associations were studied by comparing their phylogenies. Dicyemid species were collected from 8 decapodiform species and 12 octopodiform species in Japanese waters. Using whole mitochondrial cytochrome c oxidase subunit 1 (COI) sequences, a phylogeny of 37 dicyemid species, including 4 genera representing the family Dicyemidae, was reconstructed. Phylogenetic trees derived from analyses of COI genes consistently suggested that dicyemid species should be separated into 3 major clades and that the most common genera, Dicyema and Dicyemennea, are not monophyletic. Thus, morphological classification does not reflect the phylogenetic relationships of these 2 genera. Divergence (speciation) of dicyemid species seems to have occurred within a single host species. Possible host-switching events may have occurred between the Octopodiformes and Decapodiformes or within the Octopodiformes or the Decapodiformes. Therefore, the mechanism of dicyemid speciation may be a mixture of host switching and intra-host speciation. This is the first study in which the process of dicyemid diversification involving cephalopod hosts has been evaluated with a large number of dicyemid species and genera.


Assuntos
Octopodiformes , Parasitos , Animais , Filogenia , Invertebrados/anatomia & histologia , Invertebrados/genética , Decapodiformes/parasitologia
2.
Glob Chang Biol ; 30(4): e17254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556898

RESUMO

Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Teorema de Bayes , Biodiversidade , Poluição Ambiental , Invertebrados , Rios
3.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594479

RESUMO

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Assuntos
Artrópodes , Oligoquetos , Animais , Invertebrados , Lagos , Qualidade da Água , Moluscos , Monitoramento Ambiental , Ecossistema
4.
Nat Commun ; 15(1): 2885, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570485

RESUMO

Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.


Assuntos
Ecossistema , Água do Mar , Animais , Água do Mar/química , Invertebrados/fisiologia , Mudança Climática , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Aquecimento Global
5.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597930

RESUMO

Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.


Assuntos
Biomineralização , Fosfatos , Animais , Invertebrados , Fosfatos de Cálcio
6.
Immunity ; 57(4): 613-631, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599162

RESUMO

While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.


Assuntos
Imunidade Inata , Memória Imunológica , Animais , Invertebrados , Imunidade Adaptativa , Vertebrados
7.
J Environ Manage ; 357: 120716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565030

RESUMO

Small watercourses are essential contributors to catchment water quality, but they continue to suffer degradation across Europe. A results-based agri-environment scheme, aimed at improving watercourse quality in Ireland, developed a rapid drainage assessment to identify point source risks. The assessment uses a scoring system based on visual indicators of nutrient and sediment risk, linking the outcomes to farmer payments. To understand how this novel drainage risk assessment relates to instream watercourse quality, we used three macroinvertebrate-based biotic indices (Q-value, Small Stream Impact Score and Proportion of Sediment Sensitive Invertebrates). Macroinvertebrate kick-sampling and physiochemical analysis were completed in May and July 2021 for 12 'At Risk' and 12 'Not at Risk' small watercourses as identified by the results-based scheme. Results show that the scheme's drainage risk assessment can identify point source risks but we found it does not directly reflect local instream quality as assessed by the biotic indices. Unexpectedly, the biotic indices showed watercourse degradation in 58% of the upstream (control) sampling points, indicating impacts not captured by the drainage risk assessment. Small watercourses displayed high heterogeneity, with significant species turnover between the sampling months. The Small Stream Impact Score was less influenced by temporal change than the Q-value index. There was a significant relationship between instream watercourse quality and sedimentation, as quantified by the Proportion of Sediment Sensitive Invertebrates. Including a measurement of instream sedimentation in the drainage assessments would improve the identification of risks and management. These results show that by linking farmer payments to the drainage risk assessments results-based payment schemes could positively contribute to improving catchment scale watercourse quality, but further work is required to capture wider sources of freshwater impacts.


Assuntos
Monitoramento Ambiental , Invertebrados , Animais , Monitoramento Ambiental/métodos , Qualidade da Água , Rios , Europa (Continente)
8.
Mar Environ Res ; 197: 106475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569399

RESUMO

Research cruises were conducted to sample the invertebrate community along the shelf off the central coast of Oregon from 2010 to 2018. A large marine heatwave (MHW) hit the northeast Pacific in fall 2014 and persisted locally through 2015. Here, we assessed the caloric content changes of Crangon alaskensis (a common sandy shrimp) before, during, and after the 2014-2015 MHW. We found significant reductions in the caloric density of shelf populations of C. alaskensis during summer 2015. Oceanographic indices like the Biologically Effective Upwelling Transport Index (BEUTI) and the Pacific Decadal Oscillation (PDO) had greater predictive power for caloric density and biomass than in situ conditions, although bottom temperature and dissolved oxygen were also significantly correlated with caloric density. Caloric density of C. alaskensis was highest in 2018, indicating favorable conditions after the intense MHW of 2014-2015 allowed the caloric density to rebound.


Assuntos
Crangonidae , Animais , Oceano Pacífico , Estações do Ano , Invertebrados , Temperatura
9.
Mar Environ Res ; 197: 106488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593646

RESUMO

Studies focusing on patterns of spatial variation in marine soft-bottom assemblages suggest that variability is mainly concentrated at small spatial scale (from tens of centimeters to few meters), but there is still a lack of knowledge about the consistency of this spatial pattern across habitats and seasons. To address this issue, we quantified the variability in the structure of macrozoobenthic assemblages and in the abundance of dominant macroinvertebrate species in the Mellah Lagoon (Algeria) at three spatial scales, i.e., Plot (meters apart), Station (10's m apart) and Site (kms apart) scale, in Ruppia maritima (Ruppia) beds and unvegetated sediments (Unvegetated), and in two dates in winter and two dates in summer 2016. Spatial variability of the most dominant bivalve Mytilaster marioni varied significantly between habitats, but consistent across the two seasons, with a more heterogeneous distribution in Ruppia than in Unvegetated at the Station scale. Furthermore, a second-order interaction among the hierarchical nature of spatial variability, season and habitat emerged for the assemblage structure. Spatial variability between habitats varied significantly in winter, with the largest variation at the Plot scale in Unvegetated and more heterogenous assemblages at the Plot and Site scales than at the Station scale in Ruppia, but did not vary in summer when most of the variance was at the Site scale. We demonstrate that the scales of influence of the processes operating in the Mellah Lagoon are contingent on the specific habitat and/or period of the year at which the study was conducted, highlighting the importance of examining all these sources of variation simultaneously to increase the accuracy of explanatory models derived from the observed patterns in sedimentary environments.


Assuntos
Alismatales , Biodiversidade , Animais , Estações do Ano , Invertebrados , Ecossistema
10.
Artigo em Inglês | MEDLINE | ID: mdl-38639759

RESUMO

During investigations of invertebrate-associated fungi in Yunnan Province of China, a new species, Sporodiniella sinensis sp. nov., was collected. Morphologically, S. sinensis is similar to Sporodiniella umbellata; however, it is distinguished from S. umbellata by its greater number of sporangiophore branches, longer sporangiophores, larger sporangiospores, and columellae. The novel species exhibits similarities of 91.62 % for internal transcribed spacer (ITS), 98.66-99.10 % for ribosomal small subunit (nrSSU), and 96.36-98.22 % for ribosomal large subunit (nrLSU) sequences, respectively, compared to S. umbellata. Furthermore, phylogenetic analyses based on combined sequences of ITS, nrLSU and nrSSU show that it forms a separate clade in Sporodiniella, and clusters closely with S. umbellata with high statistical support. The phylogenetic and morphological evidence support S. sinensis as a distinct species. Here, it is formally described and illustrated, and compared with other relatives.


Assuntos
Ácidos Graxos , Mucorales , Animais , Filogenia , China , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Invertebrados
11.
PLoS One ; 19(4): e0295001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626237

RESUMO

Aquatic invertebrates provide important ecosystem services, including decomposition and nutrient cycling, and provide nutrition for birds, fish, amphibians, and bats. Thus, the effects of agricultural land management practices on aquatic invertebrates are relevant to farmers, wildlife biologists, and policymakers. Here, we used data on aquatic invertebrates (159 taxa, 73 to species, 75 to genus/family) collected in 40 wetlands in the Canadian prairies to test for direct and indirect relationships among land management types (perennial cover, organic, minimum tillage, conventional), landscape structure (cropland and wetland cover within the surrounding landscape), and water quality (total nutrient levels, turbidity) on species richness of invertebrates using structural equation modelling. Additionally, we assessed variation in community composition within and among wetlands in different land use management types using a direct gradient analysis and variance partitioning. The direct effects of land management type were not supported but we found strong supportive evidence that effects of land management on richness were significantly mediated through cropland cover, nutrient levels, and turbidity. After controlling for these indirect effects, aquatic invertebrate richness decreased along a gradient from the lowest to the highest farming intensity, i.e., richness decreased from perennial cover sites to organic to minimum tillage to conventional sites. Support was also found for negative effects of nutrient levels and turbidity on richness. We did not find significant support for differences in gamma diversity or a simple test (homogeneity of multivariate dispersions) of differences in turnover among land management types; however, land management had a significant effect in distance-based redundancy analysis. Taken together, these results suggest that focusing conservation efforts on reducing cropland erosion and nutrient inputs to wetlands and creating more permanent cover may be effective strategies for conserving richness of aquatic invertebrates in agricultural landscapes in this region.


Assuntos
Ecossistema , Pradaria , Animais , Conservação dos Recursos Naturais/métodos , Canadá , Invertebrados , Nutrientes , Biodiversidade
12.
Sci Rep ; 14(1): 8735, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627432

RESUMO

In urban areas, diverse and complex habitats for biodiversity are often lacking. This lack of diversity not only compromises essential ecological processes, such as pollination and nutrient cycling, but also diminishes the resilience of urban ecosystems to pests and diseases. To enhance urban biodiversity, a possible solution is to integrate shrubs alongside trees, thereby increasing the overall amount of vegetation, structural complexity and the associated resource diversity. Here, using a common garden experiment involving a variety of trees and shrubs planted alone and in combination, we evaluate how canopy-associated invertebrate assemblages are influenced by vegetation type. In particular, we test whether the presence of shrubs, alone or with trees, results in increased abundance and taxonomic richness of invertebrates, compared to trees on their own. We found that the overall abundance of invertebrates, and that of specific functional groups (e.g., herbivores, pollinators, detritivores), was higher on shrubs, compared to trees, and when trees and shrubs were planted in combination (relative to trees on their own). Our results suggest that planting shrub and tree species with wide and dense crowns can increase the associated abundance and taxonomic and functional group richness of invertebrate communities. Overall, our findings indicate that urban planning would benefit from incorporating shrubs alongside urban trees to maximise invertebrate abundance, diversity and function in urban landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Árvores , Plantas , Invertebrados
13.
Ecol Lett ; 27(4): e14423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584578

RESUMO

Forest litter decomposition is an essential component of global carbon and nutrient turnover. Invertebrates play important roles in litter decomposition, but the regional pattern of their effects is poorly understood. We examined 476 case studies across 93 sites and performed a meta-analysis to estimate regional effects of invertebrates on forest litter decomposition. We then assessed how invertebrate diversity, climate and soil pH drive regional variations in invertebrate-mediated decomposition. We found that (1) invertebrate contributions to litter decomposition are 1.4 times higher in tropical and subtropical forests than in forests elsewhere, with an overall contribution of 31% to global forest litter decomposition; and (2) termite diversity, together with warm, humid and acidic environments in the tropics and subtropics are positively associated with forest litter decomposition by invertebrates. Our results demonstrate the significant difference in invertebrate effects on mediating forest litter decomposition among regions. We demonstrate, also, the significance of termites in driving litter mass loss in the tropics and subtropics. These results are particularly pertinent in the tropics and subtropics where climate change and human disturbance threaten invertebrate biodiversity and the ecosystem services it provides.


Assuntos
Ecossistema , Florestas , Animais , Biodiversidade , Invertebrados , Folhas de Planta , Solo/química
14.
Sci Rep ; 14(1): 8378, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600133

RESUMO

The almost complete absence of regulations to protect invertebrates is a common condition in legal systems, including the European one, especially when it comes to invertebrates intended for human consumption. Thus, in the vast majority of cases, edible invertebrates do not receive even the most basic protection at slaughter. Despite recent research indicating that invertebrates are capable of feeling pain and stress, the humane step of stunning is not used on them. This is also the case for land snails, which are gastropod invertebrates whose consumption has now reached significant levels, already involving tonnes and that is expected to increase significantly as edible snail farming becomes more popular as a relatively low-cost, easy-to-perform, and sustainable alternative animal husbandry, thereby making land snails an increasingly economically important species. This paper presents and investigates a proposed stunning method based on the immersion of mollusks in CO2-supplemented and refrigerated water that could be used in the snail meat production chain to reduce the slaughter suffering of millions of these invertebrates. To this end, body condition descriptors (hemolymph parameters) in snails were determined before and after CO2 treatment in cold water, while generating useful data for defining a preliminary set of reference intervals for basal values.


Assuntos
Bem-Estar do Animal , Dióxido de Carbono , Animais , Humanos , Projetos Piloto , Matadouros , Invertebrados , Caramujos , Confusão , Água
15.
PLoS One ; 19(4): e0300962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573919

RESUMO

While extensive research on traditional model species has significantly advanced the biological sciences, the ongoing search for new model organisms is essential to tackle contemporary challenges such as human diseases or climate change, and fundamental phenomena including adaptation or speciation. Recent methodological advances such as next-generation sequencing, gene editing, and imaging are widely applicable and have simplified the selection of species with specific traits from the wild. However, a critical milestone in this endeavor remains the successful cultivation of selected species. A historically overlooked but increasingly recognized group of non-model organisms are cave dwellers. These unique animals offer invaluable insights into the genetic basis of human diseases like eye degeneration, metabolic and neurological disorders, and basic evolutionary principles and the origin of adaptive phenotypes. However, to take advantage of the beneficial traits of cave-dwelling animals, laboratory cultures must be established-a practice that remains extremely rare except for the cavefish Astyanax mexicanus. For most cave-dwelling organisms, there are no published culturing protocols. In this study, we present the results of our multi-year effort to establish laboratory cultures for a variety of invertebrate groups. We have developed comprehensive protocols for housing, feeding, and husbandry of cave dwellers and their surface relatives. Our recommendations are versatile and can be applied to a wide range of species. Hopefully our efforts will facilitate the establishment of new laboratory animal facilities for cave-dwelling organisms and encourage their greater use in experimental biology.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Invertebrados/genética , Evolução Biológica , Fenótipo , Edição de Genes , Cavernas
16.
PeerJ ; 12: e17125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577414

RESUMO

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.


Assuntos
Artrópodes , Solo , Animais , Solo/química , Floresta Úmida , Estações do Ano , Invertebrados , Água
17.
Ecol Lett ; 27(3): e14401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468439

RESUMO

Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single "meta-ecosystem." Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream-riparian meta-ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as "allochthony." These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.


Assuntos
Ecossistema , Rios , Animais , Humanos , Cadeia Alimentar , Invertebrados , Peixes
18.
J Morphol ; 285(4): e21686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491849

RESUMO

Brachiopods have the most complex lophophore in comparison with other lophophorates, i.e., phoronids and bryozoans. However, at early ontogenetic stages, brachiopods have a lophophore of simple morphology, which consists of the oral tentacles. Data on the ultrastructure of the oral tentacles is mostly missing. Nonetheless, it has recently been suggested that the structure of oral tentacles is ancestral for all lophophorates in general, and for brachiopods in particular. The fine structure of the oral tentacles in the brachiopod Hemithiris psittacea is studied using light microscopy, transmission and scanning electron microscopy, cytochemistry and confocal laser scanning microscopy. The oral tentacles have a round shape in transverse section, and four ciliary zones, i.e., one frontal, two lateral, and one abfrontal. Latero-frontal sensory cells occur among the frontal epithelium. Four basiepithelial nerves in the ciliary epithelium are colocalized with ciliary zones. Lophophores of simple morphology in phoronids and brachiopods are characterized by non-specified round forms of tentacles. In phoronids and bryozoans, tentacles have additional latero-frontal ciliary zones that function as a sieve during filtration. In most brachiopods, lateral cilia are involved in the capture of food particles, whereas latero-frontal cells are retained in the frontal zone as sensory elements. The oral tentacles of H. psittacea contain a coelomic canal and have distinct frontal and abfrontal longitudinal muscles, which are separated from each other by peritoneal cells. A similar structure of tentacle muscles occurs in all bryozoans, whereas in phoronids, the frontal and abfrontal tentacle muscles are not separated by peritoneal cells. We suggest that the lophophorates' ancestor had tentacles, which were similar to the tentacles of some phoronids with lophophore of simple morphology. We also assume that the structure of the oral tentacles is ancestral for all brachiopods and the specialization of brachiopod tentacles correlates with the appearance of the double row of tentacles.


Assuntos
Briozoários , Tecido Nervoso , Animais , Invertebrados/anatomia & histologia , Briozoários/anatomia & histologia , Músculos , Epitélio
19.
Sci Total Environ ; 926: 171935, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527547

RESUMO

Urban streams are affected by a complex combination of stressors, which modify physical habitat structure, flow regime, water quality, biological community composition, and ecosystem processes and services, thereby altering ecosystem structure and functioning. Rehabilitation projects have been undertaken in several countries to rehabilitate urban streams. However, stream rehabilitation is still rarely reported for neotropical regions. In addition, most studies focus on structural aspects, such as water quality, sediment control, and flood events, without considering ecosystem function indicators. Here, we evaluated the structure and functioning of three 15-y old rehabilitated urban stream sites in comparison with three stream sites in the best available ecological condition (reference), three sites with moderate habitat alteration, and three severely degraded sites. Compared to degraded streams, rehabilitated streams had higher habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores, and lower biochemical oxygen demand, primary production, sediment deposition, and siltation. However, rehabilitated streams had higher primary production than moderate and reference streams, and lower canopy cover, habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores than reference streams. These results indicate that rehabilitated streams have better structural and functional condition than degraded streams, but do not strongly differ from moderately altered streams, nor have they reached reference stream condition. Nonetheless, we conclude that rehabilitation is effective in removing streams from a degraded state by improving ecosystem structure and functioning. Furthermore, the combined use of functional and structural indicators facilitated an integrative assessment of stream ecological condition and distinguished stream conditions beyond those based on water quality indicators.


Assuntos
Ecossistema , Invertebrados , Animais , Qualidade da Água , Biota , Monitoramento Ambiental
20.
Sci Total Environ ; 926: 171849, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537828

RESUMO

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.


Assuntos
Ecossistema , Rios , Animais , Invertebrados/fisiologia , Água Doce , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...