Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.001
Filtrar
1.
Curr Biol ; 34(7): R269-R270, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593767

RESUMO

High-resolution object vision - the ability to separate, classify, and interact with specific objects in the environment against the visual background - has only been conclusively shown to have evolved in three of the thirty-five animal phyla: chordates, arthropods, and mollusks (cephalopods)1. However, alciopid polychaetes (Phyllodocidae, Alciopini), which possess a pair of bulbous camera-type eyes, have also been hypothesized to achieve high acuity. In this study, we examined three species of night-active pelagic alciopids from the Mediterranean Sea. Our optical, morphological, and electrophysiological investigations show that their eyes have high spatial acuity and temporal resolution, supporting the notion that they are capable of active, high-resolution object vision. These results encourage interesting hypotheses about the visual ecology of these enigmatic polychaetes.


Assuntos
Artrópodes , Visão Ocular , Animais , Olho/anatomia & histologia , Moluscos , Ecologia
2.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594479

RESUMO

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Assuntos
Artrópodes , Oligoquetos , Animais , Invertebrados , Lagos , Qualidade da Água , Moluscos , Monitoramento Ambiental , Ecossistema
3.
PLoS One ; 19(4): e0298668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625919

RESUMO

Limax maximus, or great gray slug, is a common agriculture pest. The pest infests crops during their growth phase, creating holes in vegetable leaves, particularly in seedlings and tender leaves. A study was conducted to assess the insecticidal activity of Ageratina adenophora extract against these slugs. Factors such as fecundity, growth, hatching rate, offspring survival rate, protective enzyme activity, and detoxifying enzyme activity were examined in slugs exposed to the extract's sublethal concentration (LC50) for two different durations (24 and 48 h). The phytochemical variability of the extracts was also studied. The LC50 value of the A. adenophora extract against L. maximus was 35.9 mg/mL. This extract significantly reduced the hatching rate of eggs and the survival rate of offspring hatched from exposed eggs compared with the control. The lowest rates were observed in those exposed for 48 h. The survival, growth, protective enzyme, and detoxification activity of newly hatched and 40-day-old slugs decreased. The A. adenophora extract contained tannins, flavonoids, and saponins, possibly contributing to their biological effects. These results suggest that the extract could be used as an alternative treatment for slug extermination, effectively controlling this species.


Assuntos
Ageratina , Asteraceae , Gastrópodes , Inseticidas , Animais , Inseticidas/farmacologia , Moluscos , Extratos Vegetais/farmacologia
4.
PLoS Comput Biol ; 20(3): e1011835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427695

RESUMO

From mathematical models of growth to computer simulations of pigmentation, the study of shell formation has given rise to an abundant number of models, working at various scales. Yet, attempts to combine those models have remained sparse, due to the challenge of combining categorically different approaches. In this paper, we propose a framework to streamline the process of combining the molecular and tissue scales of shell formation. We choose these levels as a proxy to link the genotype level, which is better described by molecular models, and the phenotype level, which is better described by tissue-level mechanics. We also show how to connect observations on shell populations to the approach, resulting in collections of molecular parameters that may be associated with different populations of real shell specimens. The approach is as follows: we use a Quality-Diversity algorithm, a type of black-box optimization algorithm, to explore the range of concentration profiles emerging as solutions of a molecular model, and that define growth patterns for the mechanical model. At the same time, the mechanical model is simulated over a wide range of growth patterns, resulting in a variety of spine shapes. While time-consuming, these steps only need to be performed once and then function as look-up tables. Actual pictures of shell spines can then be matched against the list of existing spine shapes, yielding a potential growth pattern which, in turn, gives us matching molecular parameters. The framework is modular, such that models can be easily swapped without changing the overall working of the method. As a demonstration of the approach, we solve specific molecular and mechanical models, adapted from available theoretical studies on molluscan shells, and apply the multiscale framework to evaluate the characteristics of spines from three distinct populations of Turbo sazae.


Assuntos
Modelos Teóricos , Moluscos , Animais , Simulação por Computador , Algoritmos
5.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546725

RESUMO

Patella caerulea (Linnaeus, 1758) is a mollusc limpet species of the class Gastropoda. Endemic to the Mediterranean Sea, it is considered a keystone species due to its primary role in structuring and regulating the ecological balance of tidal and subtidal habitats. It is currently being used as a bioindicator to assess the environmental quality of coastal marine waters and as a model species to understand adaptation to ocean acidification. Here, we provide a high-quality reference genome assembly and annotation for P. caerulea. We generated ∼30 Gb of Pacific Biosciences high-fidelity data from a single individual and provide a final 749.8 Mb assembly containing 62 contigs, including the mitochondrial genome (14,938 bp). With an N50 of 48.8 Mb and 98% of the assembly contained in the 18 largest contigs, this assembly is near chromosome-scale. Benchmarking Universal Single-Copy Orthologs scores were high (Mollusca, 87.8% complete; Metazoa, 97.2% complete) and similar to metrics observed for other chromosome-level Patella genomes, highlighting a possible bias in the Mollusca database for Patellids. We generated transcriptomic Illumina data from a second individual collected at the same locality and used it together with protein evidence to annotate the genome. A total of 23,938 protein-coding gene models were found. By comparing this annotation with other published Patella annotations, we found that the distribution and median values of exon and gene lengths was comparable with other Patella species despite different annotation approaches. The present high-quality P. caerulea reference genome, available on GenBank (BioProject: PRJNA1045377; assembly: GCA_036850965.1), is an important resource for future ecological and evolutionary studies.


Assuntos
Gastrópodes , Patela , Animais , Concentração de Íons de Hidrogênio , Anotação de Sequência Molecular , Água do Mar , Moluscos/genética , Cromossomos , Gastrópodes/genética
6.
Zootaxa ; 5405(4): 526-544, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38480172

RESUMO

The neogastropod family Vasidae comprises a small group of Late Eocene to Recent neogastropods with large, often ornate shells. A new, shell-based morphological classification of the family is proposed, in which ten genera are recognized: Altivasum Hedley, 1914, Aristovasum gen. nov. (type species: Turbinella cassiforme Kiener, 1840), Florivasum gen. nov. (type species: Turbinella tubifera Anton, 1838), Globivasum Abbott, 1950 (type species: Turbinella nuttingi Henderson, 1919, but expanded here), Hystrivasum Olsson & Petit, 1964 (type species: Vasum horridum Heilprin, 1887), Rhinovasum gen. nov. (type species: Voluta rhinoceros Gmelin, 1791), Siphovasum Rehder & Abbott, 1951, Tudivasum Rosenberg & Petit, 1987, Vasum Rding, 1798 (here restricted to a reef-associated group of three species typified by Murex turbinellus Linnaeus, 1758), and Volutella Perry, 1810 (here resurrected from synonymy with Vasum, type species Voluta muricata Born, 1778). Biogeographically the Vasidae exhibit a deep divergence between the Atlantic-East Pacific and Indo-West Pacific realms dating to the Early Miocene.


Assuntos
Gastrópodes , Moluscos , Animais , Filogenia
7.
Sci Rep ; 14(1): 5974, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472267

RESUMO

Schistosomiasis is a major Neglected Tropical Disease, caused by the infection with blood flukes in the genus Schistosoma. To complete the life cycle, the parasite undergoes asexual and sexual reproduction within an intermediate snail host and a definitive mammalian host, respectively. The intra-molluscan phase provides a critical amplification step that ensures a successful transmission. However, the cellular and molecular mechanisms underlying the development of the intra-molluscan stages remain poorly understood. Here, single cell suspensions from S. mansoni mother sporocysts were produced and sequenced using the droplet-based 10X Genomics Chromium platform. Six cell clusters comprising two tegument, muscle, neuron, parenchyma and stem/germinal cell clusters were identified and validated by in situ hybridisation. Gene Ontology term analysis predicted key biological processes for each of the clusters, including three stem/germinal sub-clusters. Furthermore, putative transcription factors predicted for stem/germinal and tegument clusters may play key roles during parasite development and interaction with the intermediate host.


Assuntos
Parasitos , Esquistossomose mansoni , Esquistossomose , Animais , Perfilação da Expressão Gênica , Mamíferos/genética , Moluscos/genética , Parasitos/genética , Schistosoma mansoni/genética , Esquistossomose/parasitologia , Esquistossomose mansoni/parasitologia
8.
Sci Data ; 11(1): 314, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538659

RESUMO

Climate change is swiftly reshaping marine ecosystems, affecting different biological levels. Changes in thermal conditions profoundly influence ectotherms' growth, behaviour, and functions, making knowledge of species' thermal preferences (TP) crucial for understanding their responses to ongoing warming. However, obtaining this data is challenging due to limited studies, especially for deep-sea demersal and bottom-dwelling species. Here, we present the MedFaunaTP dataset, a collection of survey-based TPs for 939 Mediterranean species of fish, crustaceans, molluscs, echinoderms, cnidarians, and tunicates calculated using species abundance data obtained from the international bottom-trawl survey in the Mediterranean (MEDITS) and bottom temperature data derived from the Copernicus Monitoring Environment Marine Service. MEDITS estimates are based on species biomass indices from 27587 sampling stations, collected from 1994 to 2020, covering the northern Mediterranean Sea and spanning depths from 10 to 800 m. The MedFaunaTP dataset may serves as a valuable resource for understanding and addressing marine ecosystem ecological, conservation, and management challenges in the context of climate change and associated global warming.


Assuntos
Organismos Aquáticos , Ecossistema , Temperatura , Animais , Biomassa , Mudança Climática , Peixes/fisiologia , Mar Mediterrâneo , Moluscos
9.
Proc Natl Acad Sci U S A ; 121(14): e2311597121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527199

RESUMO

Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.


Assuntos
Ecossistema , Moluscos , Humanos , Animais , Guiana Francesa , Plantas , Pólen , Fósseis
10.
Glycobiology ; 34(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38366999

RESUMO

The glycoprotein-N-acetylgalactosamine ß1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 ß1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.


Assuntos
Ecossistema , Galactosiltransferases , Animais , Humanos , Bovinos , Sequência de Aminoácidos , Galactosiltransferases/metabolismo , Clonagem Molecular , Moluscos/metabolismo , Antígenos Virais de Tumores
11.
Int J Biol Macromol ; 262(Pt 1): 130008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331073

RESUMO

Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.


Assuntos
Quitosana , Animais , Quitosana/química , Quitina/química , Crustáceos/química , Moluscos , Indústria Alimentícia
12.
Mol Phylogenet Evol ; 194: 108029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341006

RESUMO

Body size is a fundamental characteristic of animals that impacts every aspect of their biology from anatomical complexity to ecology. In Mollusca, Solenogastres has been considered important to understanding the group's early evolution as most morphology-based phylogenetic reconstructions placed it as an early branching molluscan lineage. Under this scenario, molluscs were thought to have evolved from a small, turbellarian-like ancestor and small (i.e., macrofaunal) body size was inferred to be plesiomorphic for Solenogastres. More recently, phylogenomic studies have shown that aplacophorans (Solenogastres + Caudofoveata) form a clade with chitons (Polyplacophora), which is sister to all other molluscs, suggesting a relatively large-bodied (i.e., megafaunal) ancestor for Mollusca. Meanwhile, recent investigations into aplacophoran phylogeny have called the assumption that the last common ancestor of Solenogastres was small-bodied into question, but sampling of meiofaunal species was limited, biasing these studies towards large-bodied taxa and leaving fundamental questions about solenogaster body size evolution unanswered. Here, we supplemented available data with transcriptomes from eight diverse meiofaunal species of Solenogastres and conducted phylogenomic analyses on datasets of up to 949 genes. Maximum likelihood analyses support the meiofaunal family Meiomeniidae as the sister group to all other solenogasters, congruent with earlier ideas of a small-bodied ancestor of Solenogastres. In contrast, Bayesian Inference analyses support the large-bodied family Amphimeniidae as the sister group to all other solenogasters. Investigation of phylogenetic signal by comparing site-wise likelihood scores for the two competing hypotheses support the Meiomeniidae-first topology. In light of these results, we performed ancestral character state reconstruction to explore the implications of both hypotheses on understanding of Solenogaster evolution and review previous hypotheses about body size evolution and its potential consequences for solenogaster biology. Both hypotheses imply that body size evolution has been highly dynamic over the course of solenogaster evolution and that their relatively static body plan has successfully allowed for evolutionary transitions between meio-, macro- and megafaunal size ranges.


Assuntos
Moluscos , Poliplacóforos , Animais , Filogenia , Teorema de Bayes , Moluscos/genética , Poliplacóforos/genética , Transcriptoma
13.
Mol Cell Endocrinol ; 586: 112192, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408601

RESUMO

Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.


Assuntos
Neuropeptídeos , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/genética , Invertebrados/genética , Vertebrados , Neuropeptídeos/genética , Moluscos/genética , Ligantes , Evolução Molecular , Filogenia
14.
BMC Biol ; 22(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233809

RESUMO

BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.


Assuntos
Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Evolução Molecular , Moluscos/genética , Cromossomos , Fenótipo , Expressão Gênica
15.
Biosci Biotechnol Biochem ; 88(4): 399-404, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271606

RESUMO

Kahalalides, originally isolated from the sacoglossan mollusk Elysia rufescens, have been found in various Elysia and Bryopsis species, with over 20 variants identified to date. These compounds are biosynthesized by Candidatus Endobryopsis kahalalidefaciens within Bryopsis species. In this study, we report the isolation and structural determination of a new cyclic depsipeptide, mebamamide C (1), from Bryopsis sp. The planar structure was determined by spectroscopic data analyses, and the absolute configurations were determined using Marfey's method and modified Mosher's method. Additionally, our study explores the chemical relationship between Bryopsis algae and Elysia mollusks. The individual chemical profiles of these marine organisms highlight a fascinating aspect of marine chemical ecology. The distinct, species-specific chemical profiles observed in Elysia species imply the possibility of a symbiotic relationship with the kahalalide-producing bacteria.


Assuntos
Clorófitas , Depsipeptídeos , Animais , Moluscos/química , Depsipeptídeos/química , Biologia Marinha
16.
Mol Biol Rep ; 51(1): 182, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261113

RESUMO

The rapid advancement of molecular research on macromolecules has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on the surface of glycans and regulates various cellular activities thereby stimulating immunological functions. Considering the wide variety of sources and immunological significance, research has led to the discovery of lectins in invertebrate molluscs. Such lectins in molluscs mediate active immune response as they lack adaptive immunity. Phylum Mollusca is identified with different types of lectins such as C-lectin, Galectin, P-lectin, I-lectin, and H-lectin, along with other immunologically significant lectin molecules such as F- lectin, R-lectin, ficolins, chitinase like lectin etc., all of these with specific ligand binding and structural diversity. Molluscan C-type lectins are the most functional ones that increase the activity of phagocytic cells through specific carbohydrate binding of antigenic ligands and haemocyte adhesion thereby enhancing the immune response. Helix pomatia agglutinin and Helix aspersa agglutinin are the two H-lectins that were identified within molluscs that could even target cancer-progressing cells through specific binding. Also, these lectins identified in molluscs are proven to be efficient in antibacterial and immunomodulatory functions. These insights attract researchers to identify novel lectins in molluscs and their characterization that play a key role in protection against diseases. This review discusses the structural features of mollusc lectins, their specific binding, molecular interactions and their immunological applications.


Assuntos
Gastrópodes , Moluscos , Animais , 60609 , Galectinas , Imunidade Adaptativa
17.
Sci Data ; 11(1): 133, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272948

RESUMO

The worm-shaped, shell-less Caudofoveata is one of the least known groups of molluscs. As early-branching molluscs, the lack of high-quality genomes hinders our understanding of their evolution and ecology. Here, we report a high-quality chromosome-scale genome of Chaetoderma sp. combining PacBio, Illumina, and high-resolution chromosome conformation capture sequencing. The final assembly has a size of 2.45 Gb, with a scaffold N50 length of 141.46 Mb, and is anchored to 17 chromosomes. Gene annotations showed a high level of accuracy and completeness, with 23,675 predicted protein-coding genes and 94.44% of the metazoan conserved genes by BUSCO assessment. We further present 16S rRNA gene amplicon sequencing of the gut microbiota in Chaetoderma sp., which was dominated by the chemoautotrophic bacteria (phylum Gammaproteobacteria). This chromosome-level genome assembly presents the first genome for the Caudofoveata, which constitutes an important resource for studies ranging from molluscan evolution, symposium, to deep-sea adaptation.


Assuntos
Cromossomos , Genoma , Moluscos , Animais , Cromossomos/genética , Anotação de Sequência Molecular , Moluscos/genética , Filogenia , RNA Ribossômico 16S
18.
Commun Biol ; 7(1): 17, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172227

RESUMO

High-resolution 3D imaging of species with exoskeletons such as shell-bearing mollusks typically involves destructive steps. Nondestructive alternatives are desirable since samples can be rare and valuable, and destructive steps are time-consuming and may distort the tissue. Here, we show for the first time that propagation-based phase-contrast X-ray imaging can significantly increase contrast in mollusks with intact shells. By using the recently upgraded monochromator at the SPring-8 BL20B2 synchrotron beamline, we imaged six species of mollusks, showing that X-ray phase contrast enhances soft-tissue contrast. Features that are almost invisible in conventional attenuation-based micro-computed tomography (micro-CT) are clearly reproduced with phase-contrast imaging under the same scan conditions. Furthermore, this method can reveal features such as growth rings in the shell and differentiate between calcite and aragonite crystal forms. Phase-contrast imaging can thus serve as a compelling alternative when destructive methods are not an option.


Assuntos
Moluscos , Síncrotrons , Animais , Microtomografia por Raio-X/métodos , Raios X
19.
J Mech Behav Biomed Mater ; 152: 106411, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281438

RESUMO

Prismatic structure is mainly located in the outer layer of mollusk shells. However, there is limited studies on their resistance to wear and the underlying mechanisms. The Vicker's hardness and sliding anti-wear properties of prismatic structures in four species of mollusk shells were systematically investigated for comparisons in the present work. The crystalline types, organic matrix content, structural arrangement, and dimension of prisms are varied among different species. The hardness and wear properties of prismatic structures are, in the first place, determined by the crystalline type, i.e., the aragonite prismatic structures are harder and more wear-resisting than the calcite types. The primary failure mechanism in the prismatic structure during wear tests is three-body abrasion. The volume of the crushed prism particles is directly related to the thickness of organic interface and the hardness of prisms. The organic sheaths form organic films during sliding, and thus lubricate the friction interface to some extent, but higher organic content leads to a wider interface, resulting in a higher plough force at the edge of prisms. A higher plough force gives rise to a severe three-body abrasion. Long and straight prisms perpendicular to the shell surface present a higher wear resistance. Too thin prisms cannot bear the plough force. Therefore, the anti-wear properties of prismatic structures are governed by the joint action of crystalline types, organic matrix, structural arrangement and dimension of basic building blocks.


Assuntos
Carbonato de Cálcio , Moluscos , Animais , Moluscos/química
20.
J Environ Manage ; 353: 120140, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290263

RESUMO

Anthropogenic causes are overtaking natural factors to reshape patterns of biodiversity and ecosystem functioning. Mangrove reforestation aimed at reversing losses of mangroves has been conducted worldwide for several decades. However, how reforestation influences the link between ecological processes that shape community diversity and the consequent effects on ecosystem functions such as biomass production is less well known. Here we used data collected before and after mangrove planting to examine the effects of reforestation on molluscan species richness and biomass production by testing the changes in species richness, compositional similarities, distance-decay effects (community similarity decreases with increasing geographical distance) in metacommunity across a regional scale of 480 km (23-27 °N) in southeast Chinese coasts. Additionally, we further detected the impact of landscape configuration caused by different intensities of reforestation on the mollusc community. After the mangrove reforestation, mollusc species richness and biomass increased significantly. The increases in species richness and biomass of mollusc community were mediated by reducing distance-decay effect, indicating an increase in relationship strength between species richness and biomass might be associated with a decrease in distance-decay effect with rising mangrove habitat. We highlight the importance of considering the effects of anthropogenic changes on the relationship between biodiversity and ecosystem functioning. Quantifying the distance-decay effect of these influences enables management decisions about coastal restoration to be based upon ecological mechanisms rather than wishful thinking or superficial appearance.


Assuntos
Biodiversidade , Moluscos , Áreas Alagadas , Animais , Biomassa , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...