Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
1.
Carbohydr Polym ; 335: 122101, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616079

RESUMO

In this study, we purified a partially acetylated heteropolysaccharide (Ts1-1A) from the fruit bodies of Trametes sanguinea Lloyd through cold water extraction and serial chromatographic separation. The purified polysaccharide Ts1-1A (12.8 kDa) was characterized as a branched mannogalactofucan with a backbone of alternately connected 1,3-linked α-Fucp and 1,6-linked α-Galp, which was partially substituted by non-reducing end units of ß-Manp at O-2 and O-3 positions of 1,6-linked α-Galp. Ts1-1A showed pronounced anti-human cytomegalovirus activity at the concentration of 200 and 500 µg/mL in systematical assessments including morphological changes, western blotting, qPCR, indirect immunofluorescence and tissue culture infective dose assays. Moreover, Ts1-1A exerted its antiviral activity at two distinct stages of viral proliferation manifesting as significantly inhibiting viral protein (IE1/2 and p52) expression and reducing viral gene (UL123, UL44 and UL32) replication in the HCMV-infected WI-38 cells. At viral attachment stage, Ts1-1A interacted with HCMV and prevented HCMV from attaching to its host cells. While at early phase of viral replication stage, Ts1-1A suppressed HCMV replication by downregulating NQO1 and HO-1 proteins related to oxidative stress as an antioxidant. To sum up, Ts1-1A is a promising anti-HCMV agent which could be developed for HCMV infection prevention and therapy.


Assuntos
Citomegalovirus , Polyporaceae , Humanos , Trametes , Antivirais/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38591772

RESUMO

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Assuntos
Agaricales , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Agaricales/genética , Trametes/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica
3.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540743

RESUMO

Laccase from Trametes versicolor was applied to produce phenolic polymeric compounds with enhanced properties, using a wine lees extract as the phenolic source. The influence of the incubation time on the progress of the enzymatic oxidation and the yield of the formed polymers was examined. The polymerization process and the properties of the polymeric products were evaluated with a variety of techniques, such as high-pressure liquid chromatography (HPLC) and gel permeation chromatography (GPC), Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The enzymatic polymerization reaction resulted in an 82% reduction in the free phenolic compounds of the extract. The polymeric product recovery (up to 25.7%) and the molecular weight of the polymer depended on the incubation time of the reaction. The produced phenolic polymers exhibited high antioxidant activity, depending on the enzymatic oxidation reaction time, with the phenolic polymer formed after one hour of enzymatic reaction exhibiting the highest antioxidant activity (133.75 and 164.77 µg TE mg-1 polymer) towards the ABTS and DPPH free radicals, respectively. The higher thermal stability of the polymeric products compared to the wine lees phenolic extract was confirmed with TGA and DSC analyses. Finally, the formed phenolic polymeric products were incorporated into chitosan films, providing them with increased antioxidant activity without affecting the films' cohesion.


Assuntos
Antioxidantes , Vinho , Antioxidantes/química , Lacase/química , Vinho/análise , Polímeros/química , Trametes , Embalagem de Alimentos , Fenóis/química , Extratos Vegetais/análise
4.
J Agric Food Chem ; 72(10): 5247-5257, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38425052

RESUMO

Bioactivity screening revealed that the antifungal activities of EtOAc extracts from coculture broths of Trametes versicolor SY630 with either Vanderbylia robiniophila SY341 or Ganoderma gibbosum SY1001 were significantly improved compared to that of monocultures. Activity-guided isolation led to the discovery of five aromatic compounds (1-5) from the coculture broth of T. versicolor SY630 and V. robiniophila SY341 and two sphingolipids (6 and 7) from the coculture broth of T. versicolor SY630 and G. gibbosum SY1001. Tramevandins A-C (1-3) and 17-ene-1-deoxyPS (6) are new compounds, while 1-deoxyPS (7) is a new natural product. Notably, compound 2 represents a novel scaffold, wherein the highly modified p-terphenyl bears a benzyl substituent. The absolute configurations of those new compounds were elucidated by X-ray diffraction, ECD calculations, and analysis of physicochemical constants. Compounds 1, 2, and 5-7 exhibited different degrees of antimicrobial activity, and the antifungal activities of compounds 6 and 7 against Candida albicans and Cryptococcus neoformans are comparable to those of fluconazole, nystatin, and sphingosine, respectively. Transcriptome analysis, propidium iodide staining, ergosterol quantification, and feeding assays showed that the isolated sphingolipids can extensively downregulate the late biosynthetic pathway of ergosterol in C. albicans, representing a promising mechanism to combat antibiotic-resistant fungi.


Assuntos
Agaricales , Antifúngicos , Antifúngicos/química , Trametes , Técnicas de Cocultura , Candida albicans , Ergosterol , Esfingolipídeos/metabolismo , Testes de Sensibilidade Microbiana
5.
Sci Rep ; 14(1): 5932, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467766

RESUMO

Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.


Assuntos
Oxirredutases do Álcool , Furaldeído/análogos & derivados , Peróxido de Hidrogênio , Polyporaceae , Trametes , Trametes/genética , Trametes/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredução , Glioxal
6.
J Agric Food Chem ; 72(12): 6544-6553, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484109

RESUMO

Cheese is one of the most common dairy products and is characterized by its complex aroma. However, in times of climate change and resource scarcity, the possibility to mimic the characteristic cheese-like aroma from plant-based sources is in demand to offer alternatives to cheese. Accordingly, the production of a natural cheese-like aroma via fermentation of four plant-based proteins and coconut oil with basidiomycetes has been addressed. Mixtures of soy and sunflower protein with coconut oil (15 g/L) have shown the formation of a cheese-like aroma after 72 and 56 h after fermentation with Cyclocybe aegerita and Trametes versicolor, respectively. Isovaleric acid, butanoic acid, ethyl butanoate, 1-octen-3-ol, and various ketones were identified as the key odorants. Similarities to typical cheeses were observed by the principal component analysis. Overall, the finding offered an approach to a sustainable production of a natural cheese-like aroma from a plant source, thus contributing to the development of cheese alternatives.


Assuntos
Agaricales , Queijo , Odorantes , Polyporaceae , Óleo de Coco , Trametes , Queijo/análise , Fermentação , Proteínas de Plantas
7.
Int J Med Mushrooms ; 26(4): 63-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523450

RESUMO

In the present study, wide diversity in the set and activity of lignin-modifying enzymes (LME) was revealed during submerged fermentation of mandarin peel with 15 strains of white rot Basidiomycetes. Among them, Trametes pubescens BCC153 was distinguished by the simultaneous production of laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP). Supplementation of CuSO4 at a concentration of 1 mM in the media for the cultivation of four Trametes species manifold increased the production of laccase. The diverse effects of chemically different lignocellulosic growth substrates and nitrogen sources on the production of individual LME have been established. The maximum laccase activity of T. pubescens was observed when the fungus was cultivated on media containing mandarin peel and wheat bran, whereas the highest MnP and LiP activities were detected in the submerged fermentation of tobacco residue. Peptone and casein hydrolysate appeared to be the best sources of nitrogen to produce laccase and both peroxidases by T. pubescens BCC153 whereas KNO3 was the worst nitrogen-containing compound for the production of all enzymes.


Assuntos
Agaricales , Agaricales/metabolismo , Lacase/metabolismo , Fermentação , Trametes , Lignina/metabolismo , Nitrogênio
8.
Bioprocess Biosyst Eng ; 47(4): 475-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480583

RESUMO

Use of white-rot fungi for enzyme-based bioremediation of wastewater is of high interest. These fungi produce considerable amounts of extracellular ligninolytic enzymes during solid-state fermentation on lignocellulosic materials such as straw and sawdust. We used pure sawdust colonized by Pleurotus ostreatus, Trametes versicolor, and Ganoderma lucidum for extraction of ligninolytic enzymes in aqueous suspension. Crude enzyme suspensions of the three fungi, with laccase activity range 12-43 U/L and manganese peroxidase activity range 5-55 U/L, were evaluated for degradation of 11 selected pharmaceuticals spiked at environmentally relevant concentrations. Sulfamethoxazole was removed significantly in all treatments. The crude enzyme suspension from P. ostreatus achieved degradation of wider range of pharmaceuticals when the enzyme activity was increased. Brief homogenization of the colonized sawdust was also observed to be favorable, resulting in significant reductions after a short exposure of 5 min. The highest reduction was observed for sulfamethoxazole which was reduced by 84% compared to an autoclaved control without enzyme activity and for trimethoprim which was reduced by 60%. The compounds metoprolol, lidocaine, and venlafaxine were reduced by approximately 30% compared to the control. Overall, this study confirmed the potential of low-cost lignocellulosic material as a substrate for production of enzymes from white-rot fungi. However, monitoring over time in bioreactors revealed a rapid decrease in enzymatic ligninolytic activity.


Assuntos
Pleurotus , Trametes , Lacase/química , Lignina/metabolismo , Fermentação , Sulfametoxazol/metabolismo , Preparações Farmacêuticas/metabolismo , Biodegradação Ambiental
9.
Bioresour Technol ; 399: 130591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490463

RESUMO

Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.


Assuntos
Lacase , Polyporaceae , Corantes de Rosanilina , Trametes , Compostos de Tritil , Lacase/genética , Lacase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corantes/metabolismo , Biodegradação Ambiental
10.
Toxins (Basel) ; 16(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535809

RESUMO

Aegerolysins are a family of proteins that recognize and bind to specific membrane lipids or lipid domains; hence they can be used as membrane lipid sensors. Although aegerolysins are distributed throughout the tree of life, the most studied are those produced by the fungal genus Pleurotus. Most of the aegerolysin-producing mushrooms code also for proteins containing the membrane attack complex/perforin (MACPF)-domain. The combinations of lipid-sensing aegerolysins and MACPF protein partners are lytic for cells harboring the aegerolysin membrane lipid receptor and can be used as ecologically friendly bioinsecticides. In this work, we have recombinantly expressed four novel aegerolysin/MACPF protein pairs from the mushrooms Heterobasidion irregulare, Trametes versicolor, Mucidula mucida, and Lepista nuda, and compared these proteins with the already studied aegerolysin/MACPF protein pair ostreolysin A6-pleurotolysin B from P. ostreatus. We show here that most of these new mushroom proteins can form active aegerolysin/MACPF cytolytic complexes upon aegerolysin binding to membrane sphingolipids. We further disclose that these mushroom aegerolysins bind also to selected glycerophospholipids, in particular to phosphatidic acid and cardiolipin; however, these interactions with glycerophospholipids do not lead to pore formation. Our results indicate that selected mushroom aegerolysins show potential as new molecular biosensors for labelling phosphatidic acid.


Assuntos
Agaricales , Proteínas Fúngicas , Proteínas Hemolisinas , Lipídeos de Membrana , Trametes , Perforina , Glicerofosfolipídeos , Ácidos Fosfatídicos
11.
Food Chem ; 446: 138898, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447386

RESUMO

Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.


Assuntos
Hordeum , Hordeum/metabolismo , Trametes/metabolismo , Oxirredução , Fenóis , Estresse Oxidativo , Lacase/metabolismo
12.
J Biotechnol ; 385: 30-41, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38403132

RESUMO

The laccase-catalyzed oxidation of hydroxytyrosol (HT) towards the formation of its bioactive oligomer derivatives was investigated. The biocatalytic oligomerization was catalyzed by laccase from Trametes versicolor in aqueous or various water-miscible organic solvents and deep eutectic solvent (DES)-based media. Mass Spectroscopy and Nuclear Magnetic Resonance were used for the characterization of the products. The solvent system used significantly affects the degree of HT oligomerization. The use of 50 % v/v methanol favored the production of the HT dimer, while other organic solvents as well as DESs led to the formation of hydroxytyrosol trimer and other oligomers. In vitro studies showed that the HT dimer exhibits 3- to 4-fold enhanced antibacterial activity against Gram-positive and Gram-negative bacteria compared to the parent compound. Moreover, the ability of HT dimer to inhibit the activity of soybean lipoxygenase and Candida rugosa lipase was 1.5-fold higher than HT, while molecular docking supported these results. Furthermore, HT dimer showed reduced cytotoxicity against HEK293 cells and exhibited a strong ability to inhibit ROS formation. The enhanced bioactivity of HT dimer indicates that this compound could be considered for use in cosmetics, skin-care products, and nutraceuticals.


Assuntos
Lacase , Álcool Feniletílico/análogos & derivados , Polyporaceae , Trametes , Humanos , Lacase/química , Antibacterianos , Simulação de Acoplamento Molecular , Células HEK293 , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Solventes
13.
Environ Sci Pollut Res Int ; 31(13): 19071-19084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372925

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants in the environment that are responsible for many adverse health effects. Bioremediation appears to be a healthy and cost-effective alternative for remediating PCB-contaminated environments. While some microbial species have been observed to be capable of transforming PCBs, only two different microbial pathways (rdh and bph pathways) have been described to be involved in PCB transformations. Ligninolytic enzymes have been observed or are under suspicion in some microbial PCB transformations. However, the role of these promising PCB-transforming enzymes, which are produced by fungi and some aerobic bacteria, is still unclear. The present review describes their role by identifying microbial PCB-transforming species and their reported ligninolytic enzymes whether proven or suspected to be involved in PCB transformations. There are several lines of evidence that ligninolytic enzymes are responsible for PCB transformations such as (1) the ability of purified laccases from Myceliophthora thermophila, Pycnoporus cinnabarinus, Trametes versicolor, Cladosporium sp, and Coprinus cumatus to transform hydroxy-PCBs; (2) the increased production of laccases and peroxidases by many fungi in the presence of PCBs; and (3) the enhanced PCB transformation by Pseudomonas stutzeri and Sinorhizobium meliloti NM after the addition of ligninolytic enzyme enhancers. However, if the involvement of ligninolytic enzymes in PCB transformation is clearly demonstrated in some fungal species, it does not seem to be implicated in all microbial species suggesting other still unknown metabolic pathways involved in PCB transformation and different from the bph and rdh pathways. Therefore, PCB transformation may involve several metabolic pathways, some involving ligninolytic enzymes, bph or rdh genes, and some still unknown, depending on the microbial species. In addition, current knowledge does not fully clarify the role of ligninolytic enzymes in PCB oxidation and dechlorination. Therefore, further studies focusing on purified ligninolytic enzymes are needed to clearly elucidate their role in PCB transformation.


Assuntos
Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Trametes/metabolismo , Biodegradação Ambiental , Redes e Vias Metabólicas
14.
Biosens Bioelectron ; 252: 116092, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401283

RESUMO

This work presents the development of an enzyme fuel cell, termed "BioBattery", that utilizes multicopper oxidases as the anodic enzyme in a non-diffusion limited system. We evaluated various enzyme variants as the anode, including multicopper oxidase from Pyrobaculum aerophilum, laccase from Trametes versicolor, and bilirubin oxidase from Myrothecium verrucaria. Several combinations of cathodes were also examined, focusing on the reduction of oxygen as the primary electron acceptor. The optimal pairing used multicopper oxidase from Pyrobaculum aerophilum as the anode and amine reactive phenazine ethosulfate modified bovine serum albumin as the cathode. BioBattery was integrated with our previously developed BioCapacitor, proving capable of consistently powering a 470 µF capacitor, positioning it as a modular power source for wearable and implantable systems. This research work addresses and overcomes some of the fundamental limitations seen in enzyme fuel cells, where power and current are often limited by substrate accessibility to the active electrode surface. (152 words).


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Trametes , Lacase , Eletrodos
15.
Anticancer Res ; 44(3): 1201-1208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423672

RESUMO

BACKGROUND/AIM: Enzyme-mediated grafting of poly (gallic acid) (PGAL) and L-arginine and a-L-lysine onto PGAL produces reactive oxygen species (ROS)-suppressor multiradical molecules with low cytotoxicity, high thermostability and water solubility with cancer treatment potential. This study examined the anticancer effects of these molecules in hepatic (HepG2, ATCC HB-8065), breast (MCF7, ATCC HTB-22), and prostate (PC-3, ATCC CRL-1435 and DU 145, ATCC HTB-81) cancer cell lines, as well as in fibroblasts from healthy human skin as control cells. MATERIALS AND METHODS: PGAL was synthesized by the oxidative polymerization of the naturally abundant GA using laccase from Trametes versicolor. Insertions of amino acids L-arginine and α-L-lysine on the PGAL chain were carried out by microwave. The cells of dermal fibroblast (Fb) were obtained from primary skin cultures and isolated from skin biopsies. The cancer cells lines of hepatic (HepG2), breast (MCF7), and prostate (PC-3, DU 145) were obtained from ATCC. The viability of the cancer cells and the primary culture was obtained by the MTT assay. Proliferation was demonstrated by crystal violet assay. Cell migration was determined by Wound healing assay. Finally, cell cycle analysis was carried out with cells. RESULTS: The results show that 200 µg/ml of PGAL cultured in vitro with prostate cancer cells decreased viability, proliferation, and migration, as well as arrested cells in the G1 and S phases of the cell cycle. In contrast, the dermal fibroblasts and the hepatic line remained unaffected. The random grafting of L-Arg and a-L-Lys onto the PGAL chain also decreased the viability of prostate cancer cells. CONCLUSION: PGAL and PGAL-grafted amino acids are potential adjuvants for prostate cancer treatment, with improved physicochemical characteristics compared to GA.


Assuntos
Ácido Gálico , Neoplasias da Próstata , Salicilatos , Masculino , Humanos , Ácido Gálico/farmacologia , Lisina , Trametes , Neoplasias da Próstata/patologia , Células MCF-7 , Arginina/farmacologia , Proliferação de Células
16.
Sci Rep ; 14(1): 3796, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360911

RESUMO

Regarding different medical benefits of fungi, using the medical mushroom extracts as wound-healing agents is gaining popularity. This study, evaluated the wound healing characteristics of Trametes versicolor. Anti-oxidant activity addressed by employing the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay resulting 53.7% inhibitory effect. Besides, for anti-microbial ability determination, the MIC (Minimum Inhibitory Concentration) of extract measured which Escherichia coli growth was inhibited at 1.1 mg/ml, and Staphylococcus aureus did not grow at 4.38 mg/ml of extract. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method indicated dose dependence of the extract with 63 ± 3% and 28 ± 3% viability at 1250 µg/ml and 156.25 µg/ml of extract, which higher concentration caused higher cell viability. The outcome of gene expression analysis determined that overall expression of FGF2 (Fibroblast Growth Factor 2), IL-1ß (Interleukin-1ß), and TGF-ß1 (Transforming Growth Factor-ß1) was 4 times higher at 48 h than at 24 h in treated cells, suggesting a stimulating effect on cell growth. An in-vivo animal model suggested enhanced wound healing process after treatment with 0.01 g of extract. Furthermore, the number of fibroblasts, epidermal thickness, and collagen fiber was respectively 2, 3, and threefold higher in treated mice when compared to untreated mice. The treated wounds of mice showed 100% and 60% of untreated mice of healing within 14 days. The results of this research show promise for the fungus-based wound healing treatments, which may help with tissue regeneration and the healing of cutaneous wounds.


Assuntos
Polyporaceae , Trametes , Cicatrização , Camundongos , Animais , Pele/metabolismo , Polissacarídeos/metabolismo
17.
Appl Microbiol Biotechnol ; 108(1): 103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229299

RESUMO

A novel peptidyl-lys metalloendopeptidase (Tc-LysN) from Tramates coccinea was recombinantly expressed in Komagataella phaffii using the native pro-protein sequence. The peptidase was secreted into the culture broth as zymogen (~38 kDa) and mature enzyme (~19.8 kDa) simultaneously. The mature Tc-LysN was purified to homogeneity with a single step anion-exchange chromatography at pH 7.2. N-terminal sequencing using TMTpro Zero and mass spectrometry of the mature Tc-LysN indicated that the pro-peptide was cleaved between the amino acid positions 184 and 185 at the Kex2 cleavage site present in the native pro-protein sequence. The pH optimum of Tc-LysN was determined to be 5.0 while it maintained ≥60% activity between pH values 4.5-7.5 and ≥30% activity between pH values 8.5-10.0, indicating its broad applicability. The temperature maximum of Tc-LysN was determined to be 60 °C. After 18 h of incubation at 80 °C, Tc-LysN still retained ~20% activity. Organic solvents such as methanol and acetonitrile, at concentrations as high as 40% (v/v), were found to enhance Tc-LysN's activity up to ~100% and ~50%, respectively. Tc-LysN's thermostability, ability to withstand up to 8 M urea, tolerance to high concentrations of organic solvents, and an acidic pH optimum make it a viable candidate to be employed in proteomics workflows in which alkaline conditions might pose a challenge. The nano-LC-MS/MS analysis revealed bovine serum albumin (BSA)'s sequence coverage of 84% using Tc-LysN which was comparable to the sequence coverage of 90% by trypsin peptides. KEY POINTS: •A novel LysN from Trametes coccinea (Tc-LysN) was expressed in Komagataella phaffii and purified to homogeneity •Tc-LysN is thermostable, applicable over a broad pH range, and tolerates high concentrations of denaturants •Tc-LysN was successfully applied for protein digestion and mass spectrometry fingerprinting.


Assuntos
Polyporaceae , Saccharomycetales , Espectrometria de Massas em Tandem , Trametes , Metaloendopeptidases , Solventes
18.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287338

RESUMO

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Assuntos
Lacase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Proteínas Recombinantes , Processamento de Proteína Pós-Traducional
19.
Mycotoxin Res ; 40(1): 175-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224413

RESUMO

Aflatoxin B1 is a highly carcinogenic and teratogenic substance mainly produced by toxin-producing strains such as Aspergillus flavus and Aspergillus parasitic. The efficient decomposition of aflatoxin is an important means to reduce its harm to humans and livestock. In this study, Trametes versicolor aflatoxin B1-degrading enzyme (TV-AFB1D) was recombinantly expressed in Bacillus subtilis (B. subtilis) 168. MMT-CTAB-AFB1D complex was prepared by the immobilization of TV-AFB1D and montmorillonite (MMT) by cross-linking glutaraldehyde. The results indicated that TV-AFB1D could recombinantly express in engineered B. subtilis 168 with a size of approximately 77 kDa. The immobilization efficiency of MMT-CTAB-AFB1D reached 98.63% when the concentration of glutaraldehyde was 5% (v/v). The relative activity of TV-AFB1D decreased to 72.36% after reusing for 10 times. The content of AFB1 in MMT-CTAB-AFB1D-AFB1 decreased to 1.1 µg/g from the initial 5.6 µg/g after incubation at 50 °C for 6 h. The amount of 80.4% AFB1 in the MMT-CTAB-AFB1D-AFB1 complex was degraded by in situ catalytic degradation. Thus, the strategy of combining adsorption and in situ degradation could effectively reduce the content of AFB1 residue in the MMT-CTAB-AFB1D complex.


Assuntos
Aflatoxina B1 , Polyporaceae , Trametes , Humanos , Aflatoxina B1/metabolismo , Trametes/metabolismo , Bentonita , Cetrimônio , Glutaral
20.
Front Biosci (Landmark Ed) ; 29(1): 15, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38287798

RESUMO

OBJECTIVE: The present study aims to investigate the effect of Huaier on oxaliplatin (OXA) resistance in HCT-8 colorectal cancer (CRC) cells. METHODS: Oxaliplatin-resistant HCT-8/L CRC cells were used. The Cell Counting Kit-8, western blotting, quantitative real-time polymerase chain reaction, protein extraction kit, immunofluorescence and acridine orange staining assays were used in the study. The experiment results proved that Huaier has an influence on the Wnt/ß-catenin signalling pathway, autophagy and drug resistance. The authors of the present study used chloroquine, an autophagy inhibitor and Wnt agonist 1 (a Wnt pathway agonist) to verify the present experiment. RESULTS: The results showed that Huaier can regulate autophagy, inhibit the Wnt/ß-catenin signalling pathway and reverse the drug resistance of OXA-resistant CRC cells. CONCLUSIONS: This study proved that Huaier can regulate autophagy, inhibit the Wnt/ß-catenin signalling pathway and reverse the drug resistance of OXA-resistant CRC cells.


Assuntos
Neoplasias Colorretais , Misturas Complexas , Trametes , Via de Sinalização Wnt , Humanos , Oxaliplatina/farmacologia , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Autofagia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...