Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(10): 8782-8790, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828509

RESUMO

The objective of this work was to determine the effect of milk bactofugation on the counts and microbial diversity of mesophilic (MT), psychrotrophic (PT), and thermophilic (TT) thermoduric bacteria and its potential as a technological method to remove spoilage microorganisms resistant to pasteurization. Different batches of raw milk from 69 dairy farms divided into sets in 3 bulk tanks (A, B, C) were evaluated at different times during the technological process. As the raw milk was preheated (∼55°C) immediately before bactofugation (10,000 × g), the effect of bactofugation was estimated by comparing the counts in raw, preheated, and bactofuged milk. This centrifugation was sufficient to reduce the isolation of 88% of the MT in preheated milk. For PT, it was possible to verify a reduction of 72.5% in batch C. The TT were not recovered at higher detection limits (<5 cfu/mL). For diversity, 310 isolates were identified using a molecular approach; 15 species of contaminating thermoduric bacteria were identified from raw and preheated milk, and only 6 species were recovered in bactofuged milk. Only MT were recovered from the bactofuged milk, mainly the species Lysinibacillus fusiformis (61.7%) and Bacillus licheniformis (12.3%). Both species are known to be endospore-forming psychrotrophs and have proteolytic or lipolytic activity. The bactofugation of raw milk reduced the number of isolates of B. licheniformis, Bacillus toyonensis, Micrococcus aloeverae, and Aestuariimicrobium kwangyangense by 33, 43, 86, and 92%, respectively, and reduced the isolates of Macrococcus caseolyticus, Lysinibacillus varians, Carnobacterium divergens, Microbacterium hominis, Kocuria indica, Micrococcus yunnanensis, Gordonia paraffinivorans, Bacillus invictae, and Kocuria kristinae to undetectable levels. The results of this study indicate that bactofugation can be applied by the dairy industry to reduce pasteurization-resistant microorganisms in combination with prophylactic measures to prevent the contamination of raw milk by spores and vegetative forms of bacteria.


Assuntos
Bactérias Termodúricas/isolamento & purificação , Centrifugação/métodos , Leite/microbiologia , Actinobacteria/isolamento & purificação , Animais , Bacillaceae/isolamento & purificação , Bacillus/isolamento & purificação , Bactérias Termodúricas/classificação , Carnobacterium/isolamento & purificação , Micrococcaceae/isolamento & purificação , Micrococcus/isolamento & purificação , Propionibacteriaceae/isolamento & purificação , Staphylococcaceae/isolamento & purificação
2.
Crit Rev Biotechnol ; 39(3): 337-350, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30700157

RESUMO

Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.


Assuntos
Bactérias Termodúricas/enzimologia , Biotecnologia/tendências , Glicosídeo Hidrolases/química , Amido/química , Sequência de Aminoácidos/genética , Bacillus/enzimologia , Bacillus/genética , Bactérias Termodúricas/química , Catálise , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Humanos , Hidrólise
3.
J Basic Microbiol ; 58(11): 928-937, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30160784

RESUMO

The Buda Thermal Karst System (BTKS) is an extensive active hypogenic cave system located beneath the residential area of the Hungarian capital. At the river Danube, several thermal springs discharge forming spring caves. To reveal and compare the morphological structure and prokaryotic diversity of reddish-brown biofilms developed on the carbonate rock surfaces of the springs, scanning electron microscopy (SEM), and molecular cloning were applied. Microbial networks formed by filamentous bacteria and other cells with mineral crystals embedded in extracellular polymeric substances were observed in the SEM images. Biofilms were dominated by prokaryotes belonging to phyla Proteobacteria, Chloroflexi and Nitrospirae (Bacteria) and Thaumarchaeota (Archaea) but their abundance showed differences according to the type of the host rock, geographic distance, and different water exchange. In addition, representatives of phyla Acidobacteria, Actinobacteria, Caldithrix, Cyanobacteria, Firmicutes Gemmatimonadetes, and several candidate divisions of Bacteria as well as Crenarchaeota and Euryarchaeota were detected in sample-dependent higher abundance. The results indicate that thermophilic, anaerobic sulfur-, sulfate-, nitrate-, and iron(III)-reducing chemoorganotrophic as well as sulfur-, ammonia-, and nitrite-oxidizing chemolithotrophic prokaryotes can interact in the studied biofilms adapted to the unique and extreme circumstances (e.g., aphotic and nearly anoxic conditions, oligotrophy, and radionuclide accumulation) in the thermal karst springs.


Assuntos
Archaea/fisiologia , Bactérias Termodúricas/fisiologia , Biofilmes , Fontes Termais/microbiologia , Archaea/classificação , Archaea/genética , Archaea/ultraestrutura , Bactérias Termodúricas/classificação , Bactérias Termodúricas/genética , Bactérias Termodúricas/ultraestrutura , Biodiversidade , Crescimento Quimioautotrófico , DNA Arqueal/genética , DNA Bacteriano/genética , Fontes Termais/química , Hungria , Consórcios Microbianos/genética , Microscopia Eletrônica de Varredura , RNA Ribossômico 16S/genética
4.
FEBS J ; 284(15): 2527-2544, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28627020

RESUMO

Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE: Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.


Assuntos
Bactérias Termodúricas/enzimologia , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...