Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
PLoS One ; 19(3): e0299251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442103

RESUMO

Environmental variations have been observed to influence bacterial community composition, thereby impacting biological activities in the soil. Together, the information on bacterial functional groups in Phatthalung sago palm-growing soils remains limited. In this work, the core soil bacterial community in the Phatthalung sago palm-growing areas during both the summer and rainy seasons was examined using V3-V4 amplicon sequencing. Our findings demonstrated that the seasons had no significant effects on the alpha diversity, but the beta diversity of the community was influenced by seasonal variations. The bacteria in the phyla Acidobacteriota, Actinobacteriota, Chloroflexi, Methylomirabilota, Planctomycetota, and Proteobacteria were predominantly identified across the soil samples. Among these, 26 genera were classified as a core microbiome, mostly belonging to uncultured bacteria. Gene functions related to photorespiration and methanogenesis were enriched in both seasons. Genes related to aerobic chemoheterotrophy metabolisms and nitrogen fixation were more abundant in the rainy season soils, while, human pathogen pneumonia-related genes were overrepresented in the summer season. The investigation not only provides into the bacterial composition inherent to the sago palm-cultivated soil but also the gene functions during the shift in seasons.


Assuntos
Arecaceae , Chloroflexi , Microbiota , Humanos , Bactérias/genética , Proteobactérias/genética , Microbiota/genética , Solo
2.
Microbiome ; 12(1): 54, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491554

RESUMO

BACKGROUND: Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS: Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS: Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.


Assuntos
Chloroflexi , Poluentes Ambientais , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análise , Esgotos , Chloroflexi/genética , Prevalência , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Poluentes Ambientais/análise , Sedimentos Geológicos/microbiologia
3.
Photosynth Res ; 160(1): 45-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530505

RESUMO

In the metabolic pathway of chlorophylls (Chls), an enzyme called STAY-GREEN or SGR catalyzes the removal of the central magnesium ion of Chls and their derivatives to their corresponding free bases, including pheophytins. The substrate specificity of SGR has been investigated through in vitro reactions using Chl-related molecules. However, information about the biochemical properties and reaction mechanisms of SGR and its substrate specificity remains elusive. In this study, we synthesized various Chl derivatives and investigated their in vitro dechelations using an SGR enzyme. Chl-a derivatives with the C3-vinyl group on the A-ring, which is commonly found as a substituent in natural substrates, and their analogs with ethyl, hydroxymethyl, formyl, and styryl groups at the C3-position were prepared as substrates. In vitro dechelatase reactions of these substrates were performed using an SGR enzyme derived from an Anaerolineae bacterium, allowing us to investigate their specificity. Reactivity was reduced for substrates with an electron-withdrawing formyl or sterically demanding styryl group at the C3-position. Furthermore, the Chl derivative with the C8-styryl group on the B-ring was less reactive for SGR dechelation than the C3-styryl substrate. These results indicate that the SGR enzyme recognizes substituents on the B-ring of substrates more than those on the A-ring.


Assuntos
Chloroflexi , Clorofila , Enzimas , Clorofila/metabolismo , Magnésio/química , Chloroflexi/metabolismo , Feofitinas
4.
Huan Jing Ke Xue ; 45(2): 1080-1089, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471945

RESUMO

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are typical volatile halogenated organic compounds in groundwater that pose serious threats to the ecological environment and human health. To obtain an anaerobic microbial consortium capable of efficiently dechlorinating PCE and TCE to a non-toxic end product and to explore its potential in treating contaminated groundwater, an anaerobic microbial consortium W-1 that completely dechlorinated PCE and TCE to ethylene was obtained by repeatedly feeding PCE or TCE into the contaminated groundwater collected from an industrial site. The dechlorination rates of PCE and TCE were (120.1 ±4.9) µmol·ï¼ˆL·d)-1 and (172.4 ±21.8) µmol·ï¼ˆL·d)-1 in W-1, respectively. 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) showed that the relative abundance of Dehalobacter increased from 1.9% to 57.1%, with the gene copy number increasing by 1.7×107 copies per 1 µmol Cl- released when 98.3 µmol of PCE was dechlorinated to cis-1,2-dichloroethylene (cis-1,2-DCE). The relative abundance of Dehalococcoides increased from 1.1% to 53.8% when cis-1,2-DCE was reductively dechlorinated to ethylene. The growth yield of Dehalococcoides gene copy number increased by 1.7×108 copies per 1 µmol Cl- released for the complete reductive dechlorination of PCE to ethylene. The results indicated that Dehalobacter and Dehalococcoides cooperated to completely detoxify PCE. When TCE was used as the only electron acceptor, the relative abundance of Dehalococcoides increased from (29.1 ±2.4)% to (7.7 ±0.2)%, and gene copy number increased by (1.9 ±0.4)×108 copies per 1 µmol Cl- released, after dechlorinating 222.8 µmol of TCE to ethylene. The 16S rRNA gene sequence of Dehalococcoides LWT1, the main functional dehalogenating bacterium in enrichment culture W-1, was obtained using PCR and Sanger sequencing, and it showed 100% similarity with the 16S rRNA gene sequence of D. mccartyi strain 195. The anaerobic microbial consortium W-1 was also bioaugmented into the groundwater contaminated by TCE at a concentration of 418.7 µmol·L-1. The results showed that (69.2 ±9.8)% of TCE could be completely detoxified to ethylene within 28 days with a dechlorination rate of (10.3 ±1.5) µmol·ï¼ˆL·d)-1. This study can provide the microbial resource and theoretical guidance for the anaerobic microbial remediation in PCE or TCE-contaminated groundwater.


Assuntos
Chloroflexi , Dicloretos de Etileno , Tetracloroetileno , Tricloroetileno , Humanos , Anaerobiose , RNA Ribossômico 16S/genética , Etilenos , Dicloroetilenos , Biodegradação Ambiental , Chloroflexi/genética
5.
J Phys Chem Lett ; 15(12): 3470-3477, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38512331

RESUMO

The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.


Assuntos
Chloroflexi , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Bacterioclorofilas/metabolismo , Proteínas de Bactérias/química
6.
J Hazard Mater ; 469: 134034, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521036

RESUMO

Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.


Assuntos
Chloroflexi , Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Bactérias/genética , Etilenos , Água Subterrânea/microbiologia
7.
Sci Total Environ ; 920: 170885, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342459

RESUMO

Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 µmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 µmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 µmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.


Assuntos
Chloroflexi , Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Bactérias
8.
J Hazard Mater ; 468: 133775, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367444

RESUMO

Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls (PCBs) is largely affected by the indigenous sediment geochemical properties. In this study, the effects of nitrate on PCB dechlorination and microbial community structures were first investigated in Taihu Lake sediment microcosms. And biostimulation study was attempted supplementing acetate/lactate. PCB dechlorination was apparently inhibited under nitrate-reducing conditions. Lower PCB dechlorination rate and less PCB dechlorination extent were observed in nitrate amended sediment microcosms (T-N) than those in non-nitrate amended microcosms (T-1) during 66 weeks of incubation. The total PCB mass reduction in T-N was 17.6% lower than that in T-1. The flanked-para dechlorination was completely inhibited, while the ortho-flanked meta dechlorination was only partially inhibited in T-N. The 7.5 mM of acetate/lactate supplementation recovered PCB dechlorination by resuming ortho-flanked meta dechlorination. Repeated additions of lactate showed more effective biostimulation than acetate. Phylum Chloroflexi, containing most known PCB dechlorinators, was found to play a vital role on stability of the network structures. In T-N, putative dechlorinating Chloroflexi, Dehalococcoides and RDase genes rdh12, pcbA4, pcbA5 all declined. With acetate/lactate supplementation, Dehalococcoides grew by 1-2 orders of magnitude and rdh12, pcbA4, pcbA5 increased by 1-3 orders of magnitude. At Week 66, parent PCBs declined by 86.4% and 80.9% respectively in T-N-LA and T-N-AC compared to 69.9% in T-N. These findings provide insights into acetate/lactate biostimulation as a cost-effective approach for treating PCB contaminated sediments undergoing nitrate inhibition.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Nitratos/metabolismo , Biodegradação Ambiental , Ácido Láctico/metabolismo , Sedimentos Geológicos/química , Chloroflexi/metabolismo
9.
mBio ; 15(4): e0000424, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417116

RESUMO

Chloroflexota bacteria are abundant and globally distributed in various deep-sea ecosystems. It has been reported based on metagenomics data that two deep-sea Chloroflexota lineages (the SAR202 group and Dehalococcoidia class) have the potential to drive sulfur cycling. However, the absence of cultured Chloroflexota representatives is a significant bottleneck toward understanding their contribution to the deep-sea sulfur cycling. In this study, we find that Phototrophicus methaneseepsis ZRK33 isolated from deep-sea sediment has a heterotrophic lifestyle and can assimilate sulfate and thiosulfate. Using combined physiological, genomic, proteomic, and in situ transcriptomic methods, we find that strain ZRK33 can perform assimilatory sulfate reduction in both laboratory and deep-sea conditions. Metabolism of sulfate or thiosulfate by strain ZRK33 significantly promotes the transport and degradation of various macromolecules and thereby stimulates the energy production. In addition, metagenomic results show that genes associated with assimilatory and dissimilatory sulfate reduction are ubiquitously distributed in the metagenome-assembled genomes of Chloroflexota members derived from deep-sea sediments. Metatranscriptomic results also show that the expression levels of related genes are upregulated, strongly suggesting that Chloroflexota bacteria may play undocumented roles in deep-sea sulfur cycling. IMPORTANCE: The cycling of sulfur is one of Earth's major biogeochemical processes and is closely related to the energy metabolism of microorganisms living in the deep-sea cold seep and hydrothermal vents. To date, some of the members of Chloroflexota are proposed to play a previously unrecognized role in sulfur cycling. However, the sulfur metabolic characteristics of deep-sea Chloroflexota bacteria have never been reported, and remain to be verified in cultured deep-sea representatives. Here, we show that the deep-sea Chloroflexota bacterium ZRK33 can perform sulfate assimilation in both laboratory and deep-sea conditions, which expands our knowledge of the sulfur metabolic potential of deep-sea Chloroflexota bacteria. We also show that the genes associated with assimilatory and dissimilatory sulfate reduction ubiquitously distribute in the deep-sea Chloroflexota members, providing hints to the roles of Chloroflexota bacteria in deep-sea sulfur biogeochemical cycling.


Assuntos
Chloroflexi , Microbiota , Proteômica , Multiômica , Tiossulfatos/metabolismo , Oxirredução , Bactérias/genética , Chloroflexi/genética , Enxofre/metabolismo , Filogenia
10.
Environ Pollut ; 346: 123650, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402932

RESUMO

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Biodegradação Ambiental , Cloro/metabolismo , Anaerobiose , Biotransformação , Carbono/metabolismo , Isótopos/metabolismo , Dehalococcoides
11.
Environ Int ; 185: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377723

RESUMO

Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 µm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.


Assuntos
Chloroflexi , Microbiota , Microplásticos , Plásticos , Solo/química , Microbiologia do Solo , Poliésteres , Bactérias , Polietileno
12.
Appl Environ Microbiol ; 90(3): e0226423, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38372512

RESUMO

The ice-free McMurdo Dry Valleys of Antarctica are dominated by nutrient-poor mineral soil and rocky outcrops. The principal habitat for microorganisms is within rocks (endolithic). In this environment, microorganisms are provided with protection against sub-zero temperatures, rapid thermal fluctuations, extreme dryness, and ultraviolet and solar radiation. Endolithic communities include lichen, algae, fungi, and a diverse array of bacteria. Chloroflexota is among the most abundant bacterial phyla present in these communities. Among the Chloroflexota are four novel classes of bacteria, here named Candidatus Spiritibacteria class. nov. (=UBA5177), Candidatus Martimicrobia class. nov. (=UBA4733), Candidatus Tarhunnaeia class. nov. (=UBA6077), and Candidatus Uliximicrobia class. nov. (=UBA2235). We retrieved 17 high-quality metagenome-assembled genomes (MAGs) that represent these four classes. Based on genome predictions, all these bacteria are inferred to be aerobic heterotrophs that encode enzymes for the catabolism of diverse sugars. These and other organic substrates are likely derived from lichen, algae, and fungi, as metabolites (including photosynthate), cell wall components, and extracellular matrix components. The majority of MAGs encode the capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy and metabolic water required for survival and persistence. Furthermore, some MAGs encode the capacity to couple the energy generated from H2 and CO oxidation to support carbon fixation (atmospheric chemosynthesis). All encode mechanisms for the detoxification and efflux of heavy metals. Certain MAGs encode features that indicate possible interactions with other organisms, such as Tc-type toxin complexes, hemolysins, and macroglobulins.IMPORTANCEThe ice-free McMurdo Dry Valleys of Antarctica are the coldest and most hyperarid desert on Earth. It is, therefore, the closest analog to the surface of the planet Mars. Bacteria and other microorganisms survive by inhabiting airspaces within rocks (endolithic). We identify four novel classes of phylum Chloroflexota, and, based on interrogation of 17 metagenome-assembled genomes, we predict specific metabolic and physiological adaptations that facilitate the survival of these bacteria in this harsh environment-including oxidation of trace gases and the utilization of nutrients (including sugars) derived from lichen, algae, and fungi. We propose that such adaptations allow these endolithic bacteria to eke out an existence in this cold and extremely dry habitat.


Assuntos
Bactérias , Chloroflexi , Regiões Antárticas , Bactérias/genética , Fungos/genética , Temperatura Baixa , Açúcares
13.
Environ Sci Technol ; 58(9): 4214-4225, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373236

RESUMO

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.


Assuntos
Chloroflexi , Poluentes Ambientais , Ecossistema , Bactérias/genética , Respiração , Família Multigênica , Biodegradação Ambiental
14.
PeerJ ; 12: e16907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344295

RESUMO

Intercropping is an efficient land use and sustainable agricultural practice widely adopted worldwide. However, how intercropping influences the structure and function of soil bacterial communities is not fully understood. Here, the effects of five cropping systems (sole sorghum, sole millet, sole peanut, sorghum/peanut intercropping, and millet/peanut intercropping) on soil bacterial community structure and function were investigated using Illumina MiSeq sequencing. The results showed that integrating peanut into intercropping systems increased soil available nitrogen (AN) and total nitrogen (TN) content. The alpha diversity index, including Shannon and Chao1 indices, did not differ between the five cropping systems. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) illustrated a distinct separation in soil microbial communities among five cropping systems. Bacterial phyla, including Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, were dominant across all cropping systems. Sorghum/peanut intercropping enhanced the relative abundance of phyla Actinobacteriota and Chloroflexi compared to the corresponding monocultures. Millet/peanut intercropping increased the relative abundance of Proteobacteria, Acidobacteriota, and Nitrospirota. The redundancy analysis (RDA) indicated that bacterial community structures were primarily shaped by soil organic carbon (SOC). The land equivalent ratio (LER) values for the two intercropping systems were all greater than one. Partial least squares path modeling analysis (PLS-PM) showed that soil bacterial community had a direct effect on yield and indirectly affected yield by altering soil properties. Our findings demonstrated that different intercropping systems formed different bacterial community structures despite sharing the same climate, reflecting changes in soil ecosystems caused by interspecific interactions. These results will provide a theoretical basis for understanding the microbial communities of peanut-based intercropping and guide agricultural practice.


Assuntos
Chloroflexi , Microbiota , Solo/química , Arachis/microbiologia , Carbono , Microbiologia do Solo , Bactérias/genética , Acidobacteria , Proteobactérias , Nitrogênio
15.
Environ Sci Technol ; 58(5): 2384-2392, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266236

RESUMO

Polychlorinated biphenyls (PCBs) are dioxin-like pollutants that cause persistent harm to life. Organohalide-respiring bacteria (OHRB) can detoxify PCBs via reductive dechlorination, but individual OHRB are potent in dechlorinating only specific PCB congeners, restricting the extent of PCB dechlorination. Moreover, the low biomass of OHRB frequently leads to the slow natural attenuation of PCBs at contaminated sites. Here we constructed defined microbial consortia comprising various combinations of PCB-dechlorinating Dehalococcoides strains (CG1, CG4, and CG5) to successfully enhance PCB dechlorination. Specifically, the defined consortia consisting of strains CG1 and CG4 removed 0.28-0.44 and 0.23-0.25 more chlorine per PCB from Aroclor1260 and Aroclor1254, respectively, compared to individual strains, which was attributed to the emergence of new PCB dechlorination pathways in defined consortia. Notably, different Dehalococcoides populations exhibited similar growth when cocultivated, but temporal differences in the expression of PCB reductive dehalogenase genes indicated their metabolic synergy. Bioaugmentation with individual strains (CG1, CG4, and CG5) or defined consortia led to greater PCB dechlorination in wetland sediments, and augmentation with the consortium comprising strains CG1 and CG4 resulted in the greatest PCB dechlorination. These findings collectively suggest that simultaneous application of multiple Dehalococcoides strains, which catalyze complementary dechlorination pathways, is an effective strategy to accelerate PCB dechlorination.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Dehalococcoides/metabolismo , Chloroflexi/genética , Chloroflexi/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia
16.
Environ Pollut ; 344: 123370, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244902

RESUMO

Wastewater treatment plants (WWTPs) usually contain microplastics (MPs) due to daily influents of domestic and municipal wastewater. Thus, the WWTPs act as a point source of MPs distribution in the environment due to their incapability to remove MPs completely. In this study, MPs occurrence and distribution in anaerobic sludge from WWTPs in different regions (Kaifeng "KHP", Jinan "JSP", and Lanzhou "LGP") were studied. Followed by MPs identification by microscopy and Fourier transform infrared (FTIR) spectrum. The microbial communities associated with anaerobic sludge and MPs were also explored. The results showed that MPs concentrations were 16.5, 38.5, and 17.2 particles/g of total solids (TS) and transparent MPs accounted for 49.1%, 58.5%, and 48.3% in KHP, JSP, and LGP samples, respectively. Fibers represented the most common shape of MPs in KHP (49.1%), JSP (56.0%), and LGP (69.0%). The FTIR spectroscopy indicated the predominance of polyethylene polymer in 1-5 mm MPs. The Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes were the abundant phyla in all anaerobic sludge. The bacterial genera in KHP and LGP were similar, in which Caldilinea (>23%), Terrimonas (>10%), and Ferruginibacter (>7%) formed the core bacterial genera. While Rhodococcus (15.3%) and Rhodoplanes (10.9%) were dominating in JSP. The archaeal genera Methanosaeta (>69%) and Methanobrevibacter (>10%) were abundant in KHP and LGP sludge. While Methanomethylovorans accounted for 90% of JSP. Acetyltransferase and hydratase were the major bacterial enzymes, while reductase was the key archaeal enzyme in all anaerobic sludge. This study provided the baseline for MPs distribution, characterization, and MPs associated microbes in WWTPs.


Assuntos
Chloroflexi , Microbiota , Esgotos , Anaerobiose , Microplásticos , Plásticos , Archaea , Bacteroidetes
17.
Plant Commun ; 5(2): 100715, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37710959

RESUMO

Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.


Assuntos
Proteínas de Bactérias , Chloroflexi , Grupo dos Citocromos c , Citocromos c , Transporte de Elétrons , Chloroflexi/química , Bactérias
18.
Environ Pollut ; 342: 123053, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042468

RESUMO

Cd and As accumulation in staple crops poses potential risks to food safety and human health. Rhizo-microbial communities are involved in their behaviors from soil to crops. However, the responses of rhizo-microbial communities to different Cd and As co-contaminated soils in wheat‒maize rotation are still unclear. This study explored whether wheat or maize could recruit distinct rhizo-microbial communities to adapt to long-term co-contaminated soils with low or high levels of Cd and As (LS or HS). It was apparent that the average wheat grain-Cd/As concentrations were 17.96-fold/4.81-fold in LS and 5.64-fold/7.70-fold in HS higher than those in maize grains, significantly depending on the mobility of Cd/As in soil-crop system, especially from soil to root and from straw to grain. Meanwhile, wheat or maize roots recruited specific bacteria and fungi in LS and HS, which were substantially associated with Cd/As bioavailability in rhizosphere. Wheat roots recruited specific bacterial genera norank_c__MB-A2-108 (Actinobacteria), norank_f__JG30-KF-CM45 (Chloroflexi), and norank_o__Rokubacteriales (Methylomirabilota) and fungal genera Metarhizium and Olpidium under HS, and their relative abundances were positively correlated with soil Cd/As bioavailability and were resistant to Cd and As co-contamination. However, bacterial genera Arthrobacter, Nocardioides, Devosia, Skermanella, and Pedobacter were sensitive to Cd and As co-contamination and were specifically enriched in wheat rhizospheres under LS. Meanwhile, the bacterial genus norank_c__KD4-96 (Chloroflexi) was resistant to Cd and As co-contamination under HS and was distinctly enriched in maize rhizosphere. Furthermore, the roots of wheat and maize recruited the bacterial genus Marmoricola in LS, which was sensitive to Cd and As co-contamination, and recruited specific fungal genus Fusicolla in HS, which was tolerant to Cd and As co-contamination. These results confirmed that HS and LS shifted the composition and structure of the rhizo-microbial communities in the wheat-maize rotation to promote crops survival in different long-term Cd and As co-contaminated soils.


Assuntos
Chloroflexi , Microbiota , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Triticum/microbiologia , Zea mays/química , Solo , Bactérias , Produtos Agrícolas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Microbiologia do Solo , Rizosfera
19.
Environ Sci Technol ; 58(1): 557-569, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109066

RESUMO

Chlorinated volatile organic compound (cVOC) degradation rate constants are crucial information for site management. Conventional approaches generate rate estimates from the monitoring and modeling of cVOC concentrations. This requires time series data collected along the flow path of the plume. The estimates of rate constants are often plagued by confounding issues, making predictions cumbersome and unreliable. Laboratory data suggest that targeted quantitative analysis of Dehalococcoides mccartyi (Dhc) biomarker genes (qPCR) and proteins (qProt) can be directly correlated with reductive dechlorination activity. To assess the potential of qPCR and qProt measurements to predict rates, we collected data from cVOC-contaminated aquifers. At the benchmark study site, the rate constant for degradation of cis-dichloroethene (cDCE) extracted from monitoring data was 11.0 ± 3.4 yr-1, and the rate constant predicted from the abundance of TceA peptides was 6.9 yr-1. The rate constant for degradation of vinyl chloride (VC) from monitoring data was 8.4 ± 5.7 yr-1, and the rate constant predicted from the abundance of TceA peptides was 5.2 yr-1. At the other study sites, the rate constants for cDCE degradation predicted from qPCR and qProt measurements agreed within a factor of 4. Under the right circumstances, qPCR and qProt measurements can be useful to rapidly predict rates of cDCE and VC biodegradation, providing a major advance in effective site management.


Assuntos
Chloroflexi , Tricloroetileno , Cloreto de Vinil , Chloroflexi/genética , Chloroflexi/metabolismo , Cloreto de Vinil/metabolismo , Biomarcadores , Biodegradação Ambiental , Peptídeos/metabolismo , Tricloroetileno/metabolismo
20.
J Phys Chem B ; 127(48): 10360-10369, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37983555

RESUMO

The light harvesting-reaction center complex (LH-RC) of Roseiflexus castenholzii binds bacteriochlorophylls a (BChls a), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wt-LH-RC) of Rfl. castenholzii and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.43 ps)-1 to (1.75 ps)-1, accounting for 38% acceleration of the EET process. Interestingly, photoexcitation of wt-LH-RC at 800 nm induced pronounced excitation dynamics of Car despite the insufficient photon energy for direct Car excitation, a phenomenon which is attributed to the BChl-Car exciplex 1[B800(↑↑)···Car(↓↓)]*. Such an exciplex is suggested to play an essential role in promoting the B800 → B880 EET process, as corroborated by the recently reported cryo-EM structures of wt-LH-RC and m-LH-RC. The mechanism of Car-mediated EET will be helpful to deepen the understanding of the role of Car in bacterial photosynthesis.


Assuntos
Chloroflexi , Fotossíntese , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Bacterioclorofilas/química , Proteínas de Bactérias/química , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...