Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros











Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175652, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168344

RESUMO

Bio-tiles are a biobased alternative to conventional tiles that utilise a promising technology called microbially induced calcium carbonate (CaCO3) precipitation (MICP). This technology has low energy requirements and also sequesters carbon. Bio-tiles have been made in previous work using a submersion method, however, the process required additives such as 0.3 M magnesium chloride to achieve bio-tiles that meet international standards. The current study aimed to improve the bio-tile strength properties with CaCO3 crystal seeding and a pumping method instead of the use of magnesium that also increases ionic strength. With this technique, cementation solution containing the required calcium and urea for the MICP reaction was pumped through a sealed mould in a series of programmed treatments. The highest concentration of ureolytic Sporosarcina pasteurii with an effective urease activity of 40 mmol NH4-N/L·min was found to be most beneficial to the breaking strength of the bio-tiles, as were the shortest retention times of 1 h between treatments. Seeding with CaCO3 crystals offered significant benefit to the MICP process. Pre-seeding of the geotextiles was explored and the mass of seeds initially present on the geotextiles was found to have a direct improvement on the breaking strength of 21-82 %, increasing with seed loading. The highest CaCO3 seed loading tested of 0.072 g seeds/cm2 geotextile resulted in bio-tiles with a breaking strength of 940 ± 92 N and a modulus of rupture of 16.4 ± 1.7 N/mm2, meeting international targets for extruded tiles with 6-10 % water absorption. When a seed loading of 0.021 g/cm2 was used instead, bio-tiles meeting targets for tiles with a water absorption of >10 % were produced at 628 ± 18 N and 10.5 ± 1.1 N/mm2.


Assuntos
Carbonato de Cálcio , Sporosarcina , Carbonato de Cálcio/química , Precipitação Química , Materiais de Construção
2.
Chemosphere ; 363: 142977, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084306

RESUMO

Microbially induced carbonate precipitation (MICP) is a common biomineralization method, which is often used for remediation of heavy metal pollution such as hexavalent chromium (Cr(VI)) in recent years. Calcium sources are essential for the MICP process. This study investigated the potential of MICP technology for Cr(VI) remediation under the influence of three calcium sources (CaCl2, Ca(CH3COO)2, Ca(C6H11O7)2). The results indicated that CaCl2 was the most efficient in the mineralization of Cr(VI), and Ca(C6H11O7)2 could significantly promote Cr(VI) reduction. The addition of different calcium sources all promoted the urease activity of Sporosarcina saromensis W5, in which the CaCl2 group showed higher urease activity at the same Ca2+ concentration. Besides, with CaCl2, Ca(CH3COO)2 and Ca(C6H11O7)2 treatments, the final fraction of Cr species (Cr(VI), reduced Cr(III) and organic Cr(III)-complexes) were mainly converted to the carbonate-bound, cytoplasm and cell membrane state, respectively. Furthermore, the characterization results revealed that three calcium sources could co-precipitate with Cr species to produce Ca10Cr6O24(CO3), and calcite and vaterite were present in the CaCl2 and Ca(CH3COO)2 groups, while only calcite was present in the Ca(C6H11O7)2 group. Overall, this study contributes to the optimization of MICP-mediated remediation of heavy metal contaminated soil. CaCl2 was the more suitable calcium source than the other two for the application of MICP technology in the Cr(VI) reduction and mineralization.


Assuntos
Cálcio , Carbonatos , Cromo , Sporosarcina , Cromo/metabolismo , Cromo/química , Cálcio/metabolismo , Sporosarcina/metabolismo , Carbonatos/química , Carbonatos/metabolismo , Precipitação Química , Urease/metabolismo , Biodegradação Ambiental , Cloreto de Cálcio/química , Poluentes do Solo/metabolismo
3.
J Hazard Mater ; 476: 135005, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996684

RESUMO

Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, ß, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.


Assuntos
Mineração , Sporosarcina , Urease , Sporosarcina/genética , Sporosarcina/metabolismo , Urease/metabolismo , Precipitação Química , Carbonatos/química , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química
4.
J Hazard Mater ; 476: 135140, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002486

RESUMO

Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO3. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.


Assuntos
Cádmio , Carbonato de Cálcio , Carvão Vegetal , Substâncias Húmicas , Poluentes do Solo , Solo , Sporosarcina , Cádmio/química , Carbonato de Cálcio/química , Carvão Vegetal/química , Poluentes do Solo/química , Sporosarcina/metabolismo , Solo/química , Microbiologia do Solo , Precipitação Química , Recuperação e Remediação Ambiental/métodos
5.
Sci Total Environ ; 947: 174489, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986689

RESUMO

This paper investigates the feasibility of using randomly collected fruit and vegetable (FV) waste as a cheap growing medium of bacteria for biocementation applications. Biocementation has been proposed in the literature as an environmentally-friendly ground improvement method to increase the stability of geomaterials, prevent erosion and encapsulate waste, but currently suffers from the high costs involved, such as bacteria cultivation costs. After analysis of FV waste of varied composition in terms of sugar and protein content, diluted FV waste was used to grow ureolytic (S. pasteurii, and B.licheniformis) and also an autochthonous heterotrophic carbonic anhydase (CA)-producing B.licheniformis strain, whose growth in FV media had not been attempted before. Bacterial growth and enzymatic activity in FV were of appropriate levels, although reduced compared to commercial media. Namely, the CA-producing B.licheniformis had a maximum OD600 of 1.799 and a CA activity of 0.817 U/mL in FV media. For the ureolytic pathway, B. licheniformis reached a maximum OD600 of 0.986 and a maximum urease activity of 0.675 mM urea/min, and S. pasteurii a maximum OD600 = 0.999 and a maximum urease activity of 0.756 mM urea/min. Biocementation of a clay and locomotive ash, a geomaterial specific to UK railway embankments, using precultured bacteria in FV was then proven, based on recorded unconfined compressive strengths of 1-3 MPa and calcite content increases of up to 4.02 and 8.62 % for the clay and ash respectively. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS), attested the formation of bioprecipitates with characteristic morphologies and elementary composition of calcite crystals. These findings suggest the potential of employing FV to biocement these problematic geomaterials and are of wider relevance for environmental and geoenvironmental applications involving bioaugmentation. Such applications that require substrates in very large quantities can help tackle the management of the very voluminous fruit and vegetable waste produced worldwide.


Assuntos
Frutas , Verduras , Carbonato de Cálcio/química , Bacillus/metabolismo , Sporosarcina/metabolismo
6.
Microb Cell Fact ; 23(1): 168, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858761

RESUMO

BACKGROUND: Microbially induced calcium carbonate precipitation has been extensively researched for geoengineering applications as well as diverse uses within the built environment. Bacteria play a crucial role in producing calcium carbonate minerals, via enzymes including carbonic anhydrase-an enzyme with the capability to hydrolyse CO2, commonly employed in carbon capture systems. This study describes previously uncharacterised carbonic anhydrase enzyme sequences capable of sequestering CO2 and subsequentially generating CaCO3 biominerals and suggests a route to produce carbon negative cementitious materials for the construction industry. RESULTS: Here, Bacillus subtilis was engineered to recombinantly express previously uncharacterised carbonic anhydrase enzymes from Bacillus megaterium and used as a whole cell catalyst allowing this novel bacterium to sequester CO2 and convert it to calcium carbonate. A significant decrease in CO2 was observed from 3800 PPM to 820 PPM upon induction of carbonic anhydrase and minerals recovered from these experiments were identified as calcite and vaterite using X-ray diffraction. Further experiments mixed the use of this enzyme (as a cell free extract) with Sporosarcina pasteurii to increase mineral production whilst maintaining a comparable level of CO2 sequestration. CONCLUSION: Recombinantly produced carbonic anhydrase successfully sequestered CO2 and converted it into calcium carbonate minerals using an engineered microbial system. Through this approach, a process to manufacture cementitious materials with carbon sequestration ability could be developed.


Assuntos
Bacillus subtilis , Carbonato de Cálcio , Dióxido de Carbono , Anidrases Carbônicas , Sporosarcina , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Sporosarcina/metabolismo , Sporosarcina/enzimologia , Sporosarcina/genética , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/enzimologia , Sequestro de Carbono , Precipitação Química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
7.
Microbiol Spectr ; 12(8): e0076024, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916328

RESUMO

Biosorption and biomineralization are commonly used for the immobilization of metal ions. Biosorption is commonly used as a green method to enrich rare earth ions from wastewater. However, little attention has been paid to the facilitating role of biomineralization in the enrichment of rare earth ions. In this study, a strain of Bacillus sp. DW015, isolated from ion adsorption type rare earth ores and a urease-producing strain Sporosarcina pasteurii were used to enrich rare earth elements (REEs) from an aqueous solution. The results indicate that biomineralization accelerates the enrichment of Terbium(III) compared to biosorption alone. Kinetic analysis suggests that the main mode of action of DW015 was biosorption, following pseudo-second-order kinetics (R2 = 0.998). The biomineralization of DW015 did not significantly contribute to the enrichment of Tb(III), whereas excessive biomineralization of S. pasteurii led to a decrease in the enrichment of Tb(III). A synergistic system of biosorption and biomineralization was established by combining the two bacteria, with the optimal mixed bacteria (S. pasteurii:DW015) ratio being 1:19. This study provides fundamental support for the synergistic effect of biosorption and biomineralization and offers a new reference for future microbial-based enrichment methods. IMPORTANCE: A weak microbially induced calcium carbonate precipitation (MICP) promotes the enrichment of Tb(III) by bacteria, while a strong MICP leads to the release of Tb(III). However, existing explanations cannot elucidate these mechanisms. In this study, the morphology of the bioprecipitation and the degree of Tb(III) enrichment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The data revealed that MICP could drive stable attachment of Tb(III) onto the cell surface, forming a Tb-CaCO3 mixed solid phase. Excessive rapid rate of calcite generation could disrupt the Tb(III) adsorption equilibrium, leading to the release of Tb(III). Therefore, in order for Tb(III) to be stably embedded in calcite, it is necessary to have a sufficient number of adsorption sites on the bacteria and to regulate the rate of MICP. This study provides theoretical support for the process design of MICP for the enrichment of rare earth ions.


Assuntos
Bacillus , Biomineralização , Sporosarcina , Térbio , Sporosarcina/metabolismo , Bacillus/metabolismo , Térbio/metabolismo , Térbio/química , Adsorção , Cinética , Águas Residuárias/microbiologia , Águas Residuárias/química
8.
Microb Ecol ; 87(1): 69, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730059

RESUMO

Biocrust inoculation and microbially induced carbonate precipitation (MICP) are tools used in restoring degraded arid lands. It remains unclear whether the ecological functions of the two tools persist when these methods are combined and subjected to freeze-thaw (FT) cycles. We hypothesized a synergetic interaction between MICP treatment and biocrust under FT cycles, which would allow both components to retain their ecological functions. We grew cyanobacterial (Nostoc commune) biocrusts on bare soil and on MICP (Sporosarcina pasteurii)-treated soil, subjecting them to repeated FT cycles simulating the Mongolian climate. Generalized linear modeling revealed that FT cycling did not affect physical structure or related functions but could increase the productivity and reduce the nutrient condition of the crust. The results confirm the high tolerance of MICP-treated soil and biocrust to FT cycling. MICP treatment + biocrust maintained higher total carbohydrate content under FT stress. Our study indicates that biocrust on biomineralized soil has a robust enough structure to endure FT cycling during spring and autumn and to promote restoration of degraded lands.


Assuntos
Cianobactérias , Congelamento , Microbiologia do Solo , Solo , Solo/química , Cianobactérias/metabolismo , Cianobactérias/química , Carbonatos/química , Carbonatos/metabolismo , Ecossistema , Sporosarcina/metabolismo , Sporosarcina/crescimento & desenvolvimento
9.
J Environ Manage ; 359: 121048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723498

RESUMO

The microbially induced calcium carbonate precipitation (MICP) technology is an emerging novel and sustainable technique for soil stabilization and remediation. MICP, a microorganism-mediated biomineralization process, has attracted interest for its potential to enhance soil characteristics. The inclusion of biochar, a carbon-rich substance formed by biomass pyrolysis, adds another degree of intricacy to this process. The study highlights the impact of the combination of biochar and MICP together, using a bacterium, Sporosarcina ureae, on soil improvement. This blend of MICP and biochar improved the soil in terms of its geotechnical properties and also enabled the sequestering of carbon safely. It was observed that addition of 4% biochar significantly increased the soil's shear strength parameters (c and φ) as well as its stiffness after 21 treatment cycles. This improvement was because the calcium carbonate precipitate, which acts as a crucial binding agent, increased significantly due to microbial action in the soil-biochar mixture compared to the pure soil sample. The excess carbonate precipitation on account of biochar addition was verified through SEM-EDAX analysis where the images showed noteworthy carbonate precipitation on the surface of particles and increment in the calcium mass at the same treatment cycles when compared with untreated sand. The collaboration between MICP and biochar effectively increased the carbon sequestration within the sand sample. It was observed that at 21 cycles of treatment, the carbon storage within the sand sample increased by almost 3 times at 4% biochar compared to sand without any biochar. The statistical analysis further affirmed that strength depends on both biochar and the number of treatment cycles, whereas carbon sequestration potential is primarily influenced by the biochar content alone. This strategy, as a sustainable and environmentally friendly approach, has the potential to reform soil improvement practices and contribute to both soil strength enhancement and climate change mitigation, supporting the maintenance of ecological balance.


Assuntos
Carbonato de Cálcio , Carvão Vegetal , Solo , Sporosarcina , Carbonato de Cálcio/química , Carvão Vegetal/química , Solo/química , Areia/química
10.
J Hazard Mater ; 474: 134624, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810579

RESUMO

Microbiologically induced CaCO3 precipitation (MICP) has been proposed as a potential bioremediation method to immobilize contaminating metals. In this study, carbonate mineralizing bacteria HJ1 and HJ2, isolated from heavy metal contaminated soil, was employed for Cd2+ and Pb2+ immobilization with or without ß-tricalcium phosphate addition. Compared with the only treatments amended with strains, the combined application of ß-tricalcium phosphate and HJ1 improved the immobilization rates of Cd and Pb by 1.49 and 1.70 times at 24 h, and the combined application of ß-tricalcium phosphate and HJ2 increased the immobilization rates of Cd and Pb by 1.25 and 1.79 times. The characterization of biomineralization products revealed that Cd2+ and Pb2+ primarily immobilized from the liquid phase as CdCO3 and PbCO3, and the addition of ß-tricalcium phosphate facilitated the formation of Ca4.03Cd0.97(PO4)3(OH) and Pb3(PO4)2. Also, the calcium source was related to the speciation of carbonate precipitation and improved the Cd and Pb remediation efficiency. This research demonstrated the feasibility and effectiveness of MICP combined with ß-tricalcium phosphate in immobilization of Cd and Pb, which will provide a fundamental basis for future applications of MICP to mitigate soil heavy metal pollutions.


Assuntos
Biodegradação Ambiental , Biomineralização , Cádmio , Fosfatos de Cálcio , Chumbo , Poluentes do Solo , Sporosarcina , Chumbo/metabolismo , Chumbo/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Cádmio/metabolismo , Cádmio/química , Sporosarcina/metabolismo , Poluentes do Solo/metabolismo
11.
J Hazard Mater ; 473: 134600, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759409

RESUMO

Microbiologically induced calcite precipitation (MICP), as a newly developing bioremediation technology, could redeem heavy metal contamination in diverse scenarios. In this study, MICP bacterium Sporosarcina ureilytica ML-2 was employed to suppress the pollution of Pb, Cd and Zn in municipal sludge nutrient soil. After MICP remediation, the exchangeable Cd and Zn in sludge nutrient soil were correspondingly reduced by 31.02 % and 6.09 %, while the carbonate-bound Pb, Cd and Zn as well as the residual fractions were increased by 16.12 %, 6.63 %, 13.09 % and 6.10 %, 45.70 %, 3.86 %, respectively. In addition, the extractable Pb, Cd and Zn either by diethylenetriaminepentaacetic acid (DTPA) or toxicity characteristic leaching procedure (TCLP) in sludge nutrient soil were significantly reduced. These results demonstrated that the bio-calcite generated via MICP helped to immobilize heavy metals. Furthermore, MICP treatment improved the abundance of functional microorganisms related to urea cycle, while reduced the overall abundance of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). This work confirmed the feasibility of MICP in remediation of heavy metal in sludge nutrient soil, which expanded the application field of MICP and provided a promising way for heavy metal pollution management.


Assuntos
Biodegradação Ambiental , Carbonato de Cálcio , Metais Pesados , Esgotos , Poluentes do Solo , Sporosarcina , Carbonato de Cálcio/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Esgotos/microbiologia , Metais Pesados/análise , Sporosarcina/metabolismo , Sporosarcina/genética , Microbiologia do Solo , Precipitação Química
12.
Biotechnol J ; 19(4): e2300466, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581094

RESUMO

The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.


Assuntos
Carbonato de Cálcio , Ácidos Nicotínicos , Sporosarcina , Carbonato de Cálcio/química , Urease/metabolismo , Biomassa , Ureia/química , Ureia/metabolismo , Vitaminas , Aminoácidos , Glucose
13.
J Microbiol ; 62(4): 285-296, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587589

RESUMO

Three novel, Gram-stain-positive, obligate aerobic, catalase- and oxidase-positive bacterial strains, designated B2O-1T, T2O-4T, and 0.2-SM1T-5T, were isolated from jeotgal, a traditional Korean fermented seafood. Strains B2O-1T, T2O-4T, and 0.2-SM1T-5T exhibited distinct colony colors, characterized by pink, yellow, and red opaque circular colonies, respectively. Phylogenetic analysis revealed that three strains formed a paraphyletic clade within the genus Sporosarcina and shared < 99.0% similarity with Sporosarcina aquimarina KCTC 3840T and Sporosarcina saromensis KCTC 13119T in their 16S rRNA gene sequences. The three strains exhibiting Orthologous Average Nucleotide Identity values < 79.3% and digital DNA-DNA hybridization values < 23.1% within the genus Sporosarcina affirmed their distinctiveness. Strains B2O-1T, T2O-4T, and 0.2-SM1T-5T contained MK-7 as a sole respiratory menaquinone and A4α type peptidoglycan based on lysine with alanine, glutamic acid, and aspartic acid. The common polar lipids include diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Strain T2O-4T contained one unidentified phospholipid, whereas strain 0.2-SM1T-5T contained two unidentified phospholipids. Cellular fatty acid profiles, with C15:0 anteiso as the major fatty acid, supported the affiliation of the three strains to the genus Sporosarcina. Based on the polyphasic characteristics, strains B2O-1T (= KCTC 43506T = JCM 36032T), T2O-4T (= KCTC 43489T = JCM 36031T), and 0.2-SM1T-5T (= KCTC 43519T = JCM 36034T) represent three novel species within the genus Sporosarcina, named Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., respectively.


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Alimentos Marinhos , Sporosarcina , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Alimentos Marinhos/microbiologia , Sporosarcina/genética , Sporosarcina/classificação , Sporosarcina/isolamento & purificação , Sporosarcina/metabolismo , Alimentos Fermentados/microbiologia , República da Coreia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Fermentação , Peptidoglicano , Microbiologia de Alimentos , Vitamina K 2/análise , Vitamina K 2/análogos & derivados , Fosfolipídeos/análise
14.
Sci Total Environ ; 921: 171060, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38378057

RESUMO

Bioremediation based on microbial-induced carbonate precipitation (MICP) was conducted in cadmium and lead contaminated soil to investigate the effects of MICP on Cd and Pb in soil. In this study, soil indigenous nitrogen was shown to induce MICP to stabilize heavy metals without inputting exogenous urea. The results showed that applying Bacillus pasteurii coupled with CaCl2 reduced Cd and Pb bioavailability, which could be clarified through the proportion of exchangeable Cd and Pb in soil decreasing by 23.65 % and 12.76 %, respectively. Moreover, B. pasteurii was combined separately with hydroxyapatite (HAP), eggshells (ES), and oyster shells (OS) to investigate their effects on soil heavy metals' chemical fractions, toxicity characteristic leaching procedure (TCLP)-extractable Cd and Pb as well as enzymatic activity. Results showed that applying B. pasteurii in soil significantly decreased the heavy metals in the exchangeable fraction and increased them in the carbonate phase fraction. When B. pasteurii was combined with ES and OS, the content of carbonate-bound Cd increased by 114.72 % and 118.81 %, respectively, significantly higher than when B. pasteurii was combined with HAP, wherein the fraction of carbonate-bound Cd increased by 86 %. The combination of B. pasteurii and biogenic calcium effectively reduced the leached contents of Cd and Pb in soil, and the TCLP-extractable Cd and Pb fractions decreased by 43.88 % and 30.66 %, respectively, in the BP + ES group and by 52.60 % and 41.77 %, respectively, in the BP + OS group. This proved that MICP reduced heavy metal bioavailability in the soil. Meanwhile, applying B. pasteurii and calcium materials significantly increased the soil urease enzyme activity. The microstructure and chemical composition of the soil samples were studied, and the results from scanning electron microscope, Fourier transform infra-red spectroscopy, and X-ray diffraction demonstrated the MICP process and identified the formation of CaCO3, Ca0.67Cd0.33CO3, and PbCO3 in heavy metal-contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Sporosarcina , Cádmio/análise , Cálcio , Chumbo , Solo/química , Metais Pesados/análise , Bactérias , Carbonato de Cálcio , Biodegradação Ambiental , Carbonatos , Poluentes do Solo/análise
15.
ACS Appl Mater Interfaces ; 16(2): 2075-2085, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176018

RESUMO

Microbially induced calcium carbonate precipitation (MICP) has emerged as a novel technology with the potential to produce building materials through lower-temperature processes. The formation of calcium carbonate bridges in MICP allows the biocementation of aggregate particles to produce biobricks. Current approaches require several pulses of microbes and mineralization media to increase the quantity of calcium carbonate minerals and improve the strength of the material, thus leading to a reduction in sustainability. One potential technique to improve the efficiency of strength development involves trapping the bacteria on the aggregate surfaces using silane coupling agents such as positively charged 3-aminopropyl-methyl-diethoxysilane (APMDES). This treatment traps bacteria on sand through electrostatic interactions that attract negatively charged walls of bacteria to positively charged amine groups. The APMDES treatment promoted an abundant and immediate association of bacteria with sand, increasing the spatial density of ureolytic microbes on sand and promoting efficient initial calcium carbonate precipitation. Though microbial viability was compromised by treatment, urea hydrolysis was minimally affected. Strength was gained much more rapidly for the APMDES-treated sand than for the untreated sand. Three injections of bacteria and biomineralization media using APMDES-treated sand led to the same strength gain as seven injections using untreated sand. The higher strength with APMDES treatment was not explained by increased calcium carbonate accrual in the structure and may be influenced by additional factors such as differences in the microstructure of calcium carbonate bridges between sand particles. Overall, incorporating pretreatment methods, such as amine silane coupling agents, opens a new avenue in biomineralization research by producing materials with an improved efficiency and sustainability.


Assuntos
Areia , Sporosarcina , Silanos , Bactérias , Carbonatos , Carbonato de Cálcio/química , Aminas , Precipitação Química
16.
J Environ Qual ; 53(1): 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37830264

RESUMO

The urealytically active microorganism Sporosarcina luteola induces the precipitation of metals, which has attracted attention in biomineralization, bioremediation, and industrial waste recycling. Herein, we report a novel biosurfactant-producing strain of S. luteola ME44 isolated from Chinese Oilfield. The structure, composition, and surface activity of the biosurfactants produced by S. luteola ME44 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight mass spectrometry, and surface tensiometer. The biosurfactant extracted by strain ME44 was identified as surfactin with five variants and the yield was 1010 ± 60 mg⋅L-1 . This is the first report on the structural composition and surface activity of biosurfactants isolated from the S. luteola. It extended our knowledge about the role of the species S. luteola in the ecosystem of extreme natural environments such as oil reservoir. In addition, S. luteola ME44 showed bioprecipitation properties for metal ions Cd(II), Cu(II), Zn(II), and Ag(I), which indicated the application potential of S. luteola in the field of bioremediation.


Assuntos
Campos de Petróleo e Gás , Sporosarcina , Ecossistema , Tensoativos/química , Biodegradação Ambiental
17.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38111211

RESUMO

AIM: This study aimed to understand the morphological effects of (in)organic additives on microbially induced calcium carbonate precipitation (MICP). METHODS AND RESULTS: MICP was monitored in real time in the presence of (in)organic additives: bovine serum albumin (BSA), biofilm surface layer protein A (BslA), magnesium chloride (MgCl2), and poly-l-lysine. This monitoring was carried out using confocal microscopy to observe the formation of CaCO3 from the point of nucleation, in comparison to conditions without additives. Complementary methodologies, namely scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction, were employed to assess the visual morphology, elemental composition, and crystalline structures of CaCO3, respectively, following the crystals' formation. The results demonstrated that in the presence of additives, more CaCO3 crystals were produced at 100 min compared to the reaction without additives. The inclusion of BslA resulted in larger crystals than reactions containing other additives, including MgCl2. BSA induced a significant number of crystals from the early stages of the reaction (20 min) but did not have a substantial impact on crystal size compared to conditions without additives. All additives led to a higher content of calcite compared to vaterite after a 24-h reaction, with the exception of MgCl2, which produced a substantial quantity of magnesium calcite. CONCLUSIONS: The work demonstrates the effect of several (in)organic additives on MICP and sets the stage for further research to understand additive effects on MICP to achieve controlled CaCO3 precipitation.


Assuntos
Carbonato de Cálcio , Sporosarcina , Carbonato de Cálcio/metabolismo , Cloreto de Magnésio/metabolismo , Sporosarcina/metabolismo , Precipitação Química , Microscopia Eletrônica de Varredura
18.
Appl Environ Microbiol ; 89(8): e0179422, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37439668

RESUMO

Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.


Assuntos
Carbonato de Cálcio , Conservação de Recursos Energéticos , Microbiologia Industrial , Sporosarcina , Compostos de Amônio/metabolismo , Carbonato de Cálcio/economia , Carbonato de Cálcio/metabolismo , Precipitação Química , Sporosarcina/citologia , Sporosarcina/metabolismo , Ureia/metabolismo
19.
Environ Sci Pollut Res Int ; 30(38): 89355-89368, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442938

RESUMO

The microbial reduction of Cr(VI) to Cr(III) is widely applied, but most studies ignored the stability of reduction products. In this study, the Cr(VI)-reducing bacterium of Sporosarcina saromensis combined with microbially induced carbonate precipitation (MICP) was used to explore the reduction and mineralization mechanisms of Cr(VI). The results indicated that the high concentration of Ca2+ could significantly enhance the reduction and mineralization of Cr(VI). The highest reduction and mineralization efficiencies of 99.5% and 55.9% were achieved at 4 g/L Ca2+. Moreover, the urease activity of S. saromensis in the experimental group was up to 13.28 U/mg NH3-N. Besides, the characteristic results revealed that Cr(VI) and reduced Cr(III) were absorbed on the surface or got into the interspace of CaCO3, which produced a new stable phase (Ca10Cr6O24(CO3)). Overall, the combination of S. saromensis and MICP technology might be a high-efficiency and environmentally friendly strategy for further application in the Cr(VI)-containing groundwater.


Assuntos
Cromo , Sporosarcina , Carbonatos , Carbonato de Cálcio
20.
J Environ Manage ; 343: 118181, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229857

RESUMO

With the recent increases in energy demands, the dust hazards of coal mining caused by transportation, loading and unloading and other processes are becoming increasingly serious. To control dust in open pit coal mines more environmentally friendly and efficiently, and to promote the use and development of non-in situ high-yield urease microorganisms for dust suppression in coal mines, Bacillus pasteurii was selected for dust suppression experiments in this article. Additionally, the growth of microorganisms in the coal dust microenvironment was simulated, and the effect of microbial mineralization products on the calorific value of upper coal dust was further studied. Our findings indicated that Bacillus pasteurii induced dust suppression by forming a calcite precipitate with non-uniform particle size to coal dust cementation. Moreover, after a single spray, the wind erosion resistance efficiency was 84% when the wind speed was set at 10 m/s. The growth of microorganisms and urease activity in the coal dust leachate were largely equal to those in the control group, reaching a peak at approximately 24 h, that the maximum growth quantity of OD600 was about 1.5, and the maximum urease activity was 11 mmol·L-1·min-1. The difference between the peak heat release rate of mixed coal dust and pure coal was only 4.82 kW/m2, which would not affect the value of coal products. Non in-situ Bacillus pasteurii can be growth metabolized normally in the microenvironment of coal dust. Finally, the mechanism of coal dust suppression by mineralization of microbial bacterial solution to form calcium carbonate was described by a reaction equation, which is important for further application and development of microbial dust suppressants.


Assuntos
Minas de Carvão , Sporosarcina , Poeira/análise , Urease , Carbonato de Cálcio , Minerais , Carvão Mineral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA