Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 31, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553449

RESUMO

Crosstalk of microbes with human gut epithelia and immune cells is crucial for gut health. However, there is no existing system for a long-term co-culture of human innate immune cells with epithelium and oxygen-intolerant commensal microbes, hindering the understanding of microbe-immune interactions in a controlled manner. Here, we established a gut epithelium-microbe-immune (GuMI) microphysiological system to maintain the long-term continuous co-culture of Faecalibacterium prausnitzii/Faecalibacterium duncaniae with colonic epithelium, antigen-presenting cells (APCs, herein dendritic cells and macrophages), and CD4+ naive T cells circulating underneath the colonic epithelium. In GuMI-APC condition, multiplex cytokine assays suggested that APCs contribute to the elevated level of cytokines and chemokines secreted into both apical and basolateral compartments compared to GuMI condition that lacks APC. In GuMI-APC with F. prausnitzii (GuMI-APC-FP), F. prausnitzii increased the transcription of pro-inflammatory genes such as toll-like receptor 1 (TLR1) and interferon alpha 1 (IFNA1) in the colonic epithelium, without a significant effect on cytokine secretion, compared to the GuMI-APC without bacteria (GuMI-APC-NB). In contrast, in the presence of CD4+ naive T cells (GuMI-APCT-FP), TLR1, IFNA1, and IDO1 transcription levels decreased with a simultaneous increase in F. prausnitzii-induced secretion of pro-inflammatory cytokines (e.g., IL8) compared to GuMI-APC-FP that lacks T cells. These results highlight the contribution of individual innate immune cells in regulating the immune response triggered by the gut commensal F. prausnitzii. The integration of defined populations of immune cells in the gut microphysiological system demonstrated the usefulness of GuMI physiomimetic platform to study microbe-epithelial-immune interactions in healthy and disease conditions.


Assuntos
Faecalibacterium prausnitzii , Sistemas Microfisiológicos , Humanos , Faecalibacterium prausnitzii/fisiologia , Receptor 1 Toll-Like , Citocinas , Inflamação
2.
Sci Rep ; 14(1): 987, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200051

RESUMO

The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.


Assuntos
Adipogenia , Sobrecarga de Ferro , Humanos , Acetatos , Faecalibacterium prausnitzii , Ferro , Butiratos
3.
Cell Commun Signal ; 22(1): 54, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243314

RESUMO

BACKGROUND: The gut microbiota plays a crucial role in coronary artery disease (CAD) development, but limited attention has been given to the role of the microbiota in preventing this disease. This study aimed to identify key biomarkers using metagenomics and untargeted metabolomics and verify their associations with atherosclerosis. METHODS: A total of 371 participants, including individuals with various CAD types and CAD-free controls, were enrolled. Subsequently, significant markers were identified in the stool samples through gut metagenomic sequencing and untargeted metabolomics. In vivo and in vitro experiments were performed to investigate the mechanisms underlying the association between these markers and atherosclerosis. RESULTS: Faecal omics sequencing revealed that individuals with a substantial presence of Faecalibacterium prausnitzii had the lowest incidence of CAD across diverse CAD groups and control subjects. A random forest model confirmed the significant relationship between F. prausnitzii and CAD incidence. Notably, F. prausnitzii emerged as a robust, independent CAD predictor. Furthermore, our findings indicated the potential of the gut microbiota and gut metabolites to predict CAD occurrence and progression, potentially impacting amino acid and vitamin metabolism. F. prausnitzii mitigated inflammation and exhibited an antiatherosclerotic effect on ApoE-/- mice after gavage. This effect was attributed to reduced intestinal LPS synthesis and reinforced mechanical and mucosal barriers, leading to decreased plasma LPS levels and an antiatherosclerotic outcome. CONCLUSIONS: Sequencing of the samples revealed a previously unknown link between specific gut microbiota and atherosclerosis. Treatment with F. prausnitzii may help prevent CAD by inhibiting atherosclerosis.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Faecalibacterium prausnitzii/metabolismo , Lipopolissacarídeos
4.
Nature ; 625(7996): 813-821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172637

RESUMO

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Coortes , Simulação por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Técnicas In Vitro , Metagenoma/genética , Família Multigênica , Países Baixos , Tanzânia
5.
Clin Lab ; 70(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38213219

RESUMO

BACKGROUND: Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases with uncertain etiology. We aimed to determine the amounts of Akkermansia muciniphila and Faecalibacterium prausnitzii in the intestinal microbiota of these patients and to correlate their amounts with blood IL-8, IL-10, and IL-12 cytokine levels. METHODS: Thirty UC, 30 CDs, and 46 healthy controls were included. IL-8, IL-10, and IL-12 levels of blood samples were analyzed by ELISA. The amounts of Akkermansia muciniphila and Faecalibacterium prausnitzii were determined by the LightCycler 480 qPCR system. RESULTS: F. prausnitzii, A. muciniphila, IL-10, and IL-12 decreased in patient groups, while IL-8 decreased in UC but increased in CD. A significant difference was detected between the patient and control groups in terms of F. prausnitzii, A. muciniphila, and IL-8, but not for others. The amount of F. prausnitzii was correlated with IL-8 and IL-10 in UC and with IL-10 in CD patients. CONCLUSIONS: The decrease in the amount of F. prausnitzii was associated with the increase in UC disease severity. A. muciniphila and F. prausnitzii were detected in lower amounts in both diseases. F. prausnitzii decreased more with the severity of UC, suggesting that these bacteria may have complex roles in their etiopathogenesis.


Assuntos
Colite Ulcerativa , Doença de Crohn , Humanos , Faecalibacterium prausnitzii , Interleucina-10 , Interleucina-8 , Verrucomicrobia , Interleucina-12 , Akkermansia
6.
Biomed Pharmacother ; 167: 115568, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793274

RESUMO

Ulcerative colitis (UC) is a severe inflammatory bowel disease (IBD) characterized by multifactorial complex disorders triggered by environmental factors, genetic susceptibility, and also gut microbial dysbiosis. Faecalibacterium prausnitzii, Bacteroides faecis, and Roseburia intestinalis are underrepresented species in UC patients, leading to the hypothesis that therapeutic application of those bacteria could ameliorate clinical symptoms and disease severity. Acute colitis was induced in mice by 3.5% DSS, and the commensal bacterial species were administered by oral gavage simultaneously with DSS treatment for up to 7 days. The signs of colonic inflammation, the intestinal barrier integrity, the proportion of regulatory T cells (Tregs), and the expression of pro-inflammatory and anti-inflammatory cytokines were quantified. The concentrations of SCFAs in feces were measured using Gas-liquid chromatography. The gut microbiome was analyzed in all treatment groups at the endpoint of the experiment. Results were benchmarked against a contemporary mesalazine treatment regime. We show that commensal species alone and in combination reduced disease activity index scores, inhibited colon shortening, strengthened the colonic epithelial barrier, and positively modulated tight junction protein expression. The expression level of pro-inflammatory cytokines was significantly reduced. Immune modulation occurred via inhibition of the loss of CD4 +CD25 +Treg cells in the spleen. Our study proofed that therapeutic application of F. prausnitzii, B. faecis, and R. intestinalis significantly ameliorated DSS-induced colitis at the level of clinical symptoms, histological inflammation, and immune status. Our data suggest that these positive effects are mediated by immune-modulatory pathways and influence on Treg/Th17 balance.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Faecalibacterium prausnitzii/metabolismo , Células Th17 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo , Citocinas/metabolismo , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Medicine (Baltimore) ; 102(35): e34978, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657059

RESUMO

BACKGROUND: Glucagon-like peptide 1 (GLP-1) receptor agonists are a class of medications used to treat type 2 diabetes, including metformin, which is considered first-line therapy for type 2 diabetes. In recent years, GLP-1 receptor agonists (GLP-1 RAs) have been found to alter the composition and structure of gut flora and also promote the production of gut probiotics. However, there have been few clinical studies regarding the effects of GLP-1 RAs on gut flora. In this study, we investigated changes in the abundance of Lactobacillus delbrueckii (L delbrueckii) and Faecalibacterium prausnitzii (F prausnitzii) 1 week after administration of a GLP-1 RA in the clinical treatment of type 2 diabetes. The association with glycemic and body mass index (BMI) correlations was also explored. METHODS: Twelve newly diagnosed patients with type 2 diabetes were examined for changes in the abundance of L delbrueckii and F prausnitzii by Fluorescence in Situ Hybridization 1 week after administration of GLP-1 RAs. Subjects BMI was measured and fasting glucose changes were detected using the glucose oxidase method, and Spearman correlation analysis was performed to explore their relevance. RESULTS: There was no significant change in the abundance of L delbrueckii in the intestine (P = .695) and no significant correlation with BMI and fasting glucose levels (R = 0.134, P = .534) after the use of GLP-1 RA (R = -0.098, P = .647); F prausnitzii on the other hand had a significantly higher abundance (P = .002) and a significant negative correlation with fasting glucose level (R = -0.689, P < .001), but no significant correlation with BMI (R = -0.056, P = .796). CONCLUSION: F prausnitzii may be one of the pathways through which glucose is regulated in the treatment of type 2 diabetes by GLP-1 RAs.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Faecalibacterium prausnitzii , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hibridização in Situ Fluorescente , Peptídeo 1 Semelhante ao Glucagon , Glucose , Intestinos
8.
Front Endocrinol (Lausanne) ; 14: 1220044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711887

RESUMO

Introduction: Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. Methods: In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. Results: The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. Discussion: In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.


Assuntos
Faecalibacterium prausnitzii , Doenças Metabólicas , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/etiologia , Obesidade/etiologia , Preparações Farmacêuticas
9.
Cancer Res ; 83(22): 3710-3725, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602831

RESUMO

Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy; however, their application is limited by the occurrence of immune-related adverse events. The gut microbiota plays important roles in the response to and toxicity of immunotherapy and Faecalibacterium prausnitzii (F. prausnitzii) has been shown to possess immunomodulatory potential. Here, we found that patients receiving ICIs who developed colitis had a lower abundance of F. prausnitzii. In vivo, immunocompetent mice administered with dextran sodium sulfate and immunodeficient NSG mice with human peripheral blood mononuclear cell transfer were treated with ICIs to study ICI-induced colitis. Dual CTLA4 and PD-1 blockade exacerbated autoimmune colitis, activated an inflammatory response, and promoted myeloid cell infiltration, with higher percentages of macrophages, dendritic cells, monocytes, and neutrophils. F. prausnitzii administration mitigated the exacerbated colitis induced by ICIs. Concomitantly, F. prausnitzii enhanced the antitumor immunity elicited by ICIs in tumor-bearing mice while abrogating colitis. In addition, administration of F. prausnitzii increased gut microbial alpha diversity and modulated the microbial composition, increasing a subset of gut probiotics and decreasing potential gut pathogens. F. prausnitzii abundance was reduced in mice that developed ICI-associated colitis. Together, this study shows that F. prausnitzii administration ameliorates ICI-induced colitis, reshapes the gut microbial composition, and enhances the antitumor activity of immunotherapy. SIGNIFICANCE: F. prausnitzii alleviates colitis while enhancing the tumor-suppressive effects of immune checkpoint blockade, indicating that supplementation with F. prausnitzii could be a treatment strategy to mitigate immunotherapy toxicity in patients with cancer.


Assuntos
Colite , Neoplasias , Humanos , Camundongos , Animais , Faecalibacterium prausnitzii , Receptor de Morte Celular Programada 1 , Leucócitos Mononucleares , Antígeno CTLA-4 , Colite/induzido quimicamente
10.
Nature ; 620(7973): 381-385, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532933

RESUMO

The human gut microbiota has gained interest as an environmental factor that may contribute to health or disease1. The development of next-generation probiotics is a promising strategy to modulate the gut microbiota and improve human health; however, several key candidate next-generation probiotics are strictly anaerobic2 and may require synergy with other bacteria for optimal growth. Faecalibacterium prausnitzii is a highly prevalent and abundant human gut bacterium associated with human health, but it has not yet been developed into probiotic formulations2. Here we describe the co-isolation of F. prausnitzii and Desulfovibrio piger, a sulfate-reducing bacterium, and their cross-feeding for growth and butyrate production. To produce a next-generation probiotic formulation, we adapted F. prausnitzii to tolerate oxygen exposure, and, in proof-of-concept studies, we demonstrate that the symbiotic product is tolerated by mice and humans (ClinicalTrials.gov identifier: NCT03728868 ) and is detected in the human gut in a subset of study participants. Our study describes a technology for the production of next-generation probiotics based on the adaptation of strictly anaerobic bacteria to tolerate oxygen exposures without a reduction in potential beneficial properties. Our technology may be used for the development of other strictly anaerobic strains as next-generation probiotics.


Assuntos
Biotecnologia , Microbioma Gastrointestinal , Probióticos , Animais , Humanos , Camundongos , Butiratos/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia , Probióticos/metabolismo , Aerobiose , Faecalibacterium prausnitzii/efeitos dos fármacos , Faecalibacterium prausnitzii/metabolismo , Simbiose , Biotecnologia/métodos
11.
Arthritis Res Ther ; 25(1): 130, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496081

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS: In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS: The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION: These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.


Assuntos
Artrite Reumatoide , Faecalibacterium prausnitzii , Camundongos , Animais , Faecalibacterium prausnitzii/metabolismo , Interleucina-17/metabolismo , Ácidos Graxos Voláteis/metabolismo , Modelos Animais de Doenças , Butiratos , Artrite Reumatoide/tratamento farmacológico
12.
Artigo em Inglês | MEDLINE | ID: mdl-37277225

RESUMO

INTRODUCTION: The commensal bacterium Faecalibacterium prausnitzii is a prominent member of the microbiome of animals and humans, and it plays an important role in several physiological processes. Numerous studies have correlated the reduction of F. prausnitzii abundance with many disease states, including irritable bowel syndrome, Crohn's disease, obesity, asthma, major depressive disorder, and metabolic diseases in humans. Studies have also correlated F. prausnitzii with diseases in humans involved in altered glucose metabolism, including diabetes. RESEARCH DESIGN AND METHODS: The aim of this study was to investigate the effects of compositions derived from three strains of F. prausnitzii (coined FPZ) on glucose metabolism in diet-induced obese male C57BL/6J prediabetic and type 2 diabetic mice. The primary endpoints of these studies were measuring changes in fasting blood glucose, glucose tolerance (as measured by a glucose tolerance test), and percent hemoglobin A1c (HbA1c) with longer term treatment. Two placebo-controlled trials were carried out using both live cell FPZ and killed cell FPZ and extracts. Two additional placebo-controlled trials were carried out in non-diabetic mice and mice that previously had type 2 diabetes (T2D). RESULTS: Both trials in prediabetic and diabetic mice revealed that peroral administration of live FPZ or extracts from FPZ lowered fasting blood glucose levels and improved glucose tolerance compared with control mice. A trial administering longer FPZ treatment also resulted in lowered percent HbA1c compared with control mice. Additionally, trials in non-diabetic mice treated with FPZ demonstrated that FPZ treatment does not lead to hypoglycemia. CONCLUSIONS: The trial results have shown that treatment with different formulations of FPZ result in lower blood glucose levels, lower percent HbA1c, and improved glucose response in mice compared with control prediabetic/diabetic mice. FPZ is a promising candidate as an orally administered probiotic or postbiotic to manage and improve pre-diabetes and T2D.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Humanos , Masculino , Camundongos , Animais , Estado Pré-Diabético/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas , Glicemia/metabolismo , Faecalibacterium prausnitzii/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Endogâmicos C57BL , Obesidade
13.
Nutrients ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375584

RESUMO

BACKGROUND: Faecalibacterium prausnitzii, one of the most important bacteria of the human gut microbiota, produces butyrate (a short-chain fatty acid). Short-chain fatty acids are known to influence thyroid physiology and thyroid cancer's response to treatment. We aimed to analyze the relative abundance of Faecalibacterium prausnitzii on the gut microbiota of differentiated thyroid cancer patients compared to controls and its variation after radioiodine therapy (RAIT). METHODS: Fecal samples were collected from 37 patients diagnosed with differentiated thyroid cancer before and after radioiodine therapy and from 10 volunteers. The abundance of F. prausnitzii was determined using shotgun metagenomics. RESULTS: Our study found that the relative abundance of F. prausnitzii is significantly reduced in thyroid cancer patients compared to volunteers. We also found that there was a mixed response to RAIT, with an increase in the relative and absolute abundances of this bacterium in most patients. CONCLUSIONS: Our study confirms that thyroid cancer patients present a dysbiotic gut microbiota, with a reduction in F. prausnitzii's relative abundance. In our study, radioiodine did not negatively affect F. prausnitzii, quite the opposite, suggesting that this bacterium might play a role in resolving radiation aggression issues.


Assuntos
Microbioma Gastrointestinal , Neoplasias da Glândula Tireoide , Humanos , Faecalibacterium prausnitzii , Radioisótopos do Iodo/uso terapêutico , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis , Neoplasias da Glândula Tireoide/radioterapia
14.
Br J Biomed Sci ; 80: 10794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025162

RESUMO

Purpose: Additional effective therapeutic strategies for Type 2 diabetes (T2D) patients are urgently needed. Gut microbiota plays an important role in T2D development and is a promising treatment strategy for T2D patients. Faecalibacterium prausnitzii (F. prausnitzii) is regarded as one of the most important bacterial indicators for a healthy gut, but the mechanisms of its anti-diabetic properties are still unclear. Methods and Results: The abundance of F. prausnitzii in feces of patients with T2D was detected by using qPCR. The effects of F. prausnitzii on glucose homeostasis, insulin resistance (IR), dyslipidemia, hepatic steatosis and inflammation were investigated in type 2 diabetic (T2D) db/db mice. We also investigated F. prausnitzii in people. Our results showed that the abundance of F. prausnitzii was significantly lower in T2D patients compared to healthy subjects. In T2D mice, we found that F. prausnitzii treatment significantly decreased fasting blood glucose and IR index, indicating improved glucose intolerance as well as IR. Furthermore, based on evaluation of lipid-regulating enzyme activities and proinflammatory cytokine levels, F. prausnitzii was not only able to improve inflammation in both adipose tissue and liver, but also ameliorate hepatic steatosis through inhibiting the activity of hepatic lipogenic enzymes. Conclusion: These results suggested that F. prausnitzii might serve as a therapeutic option for T2D by improved IR, lipid metabolism and inflammation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Transtornos do Metabolismo dos Lipídeos , Humanos , Camundongos , Animais , Faecalibacterium prausnitzii/metabolismo , Metabolismo dos Lipídeos , Inflamação
15.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990641

RESUMO

Faecalibacterium prausnitzii is a promising biomarker of a healthy human microbiota. However, previous studies reported the heterogeneity of this species and found the presence of several distinct groups at the species level among F. prausnitzii strains. Our recent study revealed that methods previously developed for quantification of F. prausnitzii were not specific to the species level because of the heterogeneity within the F. prausnitzii species and the application of 16S rRNA gene, which is an invalid genetic marker for the species. Therefore, previously available data failed to provide information on different groups, which limits our understanding of the importance of this organism for host health. Here, we propose an alternative gene marker for quantification of F. prausnitzii-related taxa. A total of nine group-specific primer pairs were designed by targeting rpoA gene sequences. The newly developed rpoA-based qPCR successfully quantified targeted groups. Application of the developed qPCR assay in six healthy adults revealed marked differences in abundance and prevalence among the different targeted groups in stool samples. The developed assay will facilitate detailed understanding of the impact of Faecalibacterium populations at the group level on human health and to understand the links between depletion of specific groups in Faecalibacterium and different human disorders.


Assuntos
Faecalibacterium prausnitzii , Microbiota , Adulto , Humanos , Faecalibacterium/genética , Marcadores Genéticos , RNA Ribossômico 16S/genética , Faecalibacterium prausnitzii/genética
16.
Nutrients ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986043

RESUMO

Faecalibacterium prausnitzii (F. prausnitzii) is a bacterial taxon in the human gut with anti-inflammatory properties, and this may contribute to the beneficial effects of healthy eating habits. However, little is known about the nutrients that enhance the growth of F. prausnitzii other than simple sugars and fibers. Here, we combined dietary and microbiome data from the American Gut Project (AGP) to identify nutrients that may be linked to the relative abundance of F. prausnitzii. Using a machine learning approach in combination with univariate analyses, we identified that sugar alcohols, carbocyclic sugar, and vitamins may contribute to F. prausnitzii growth. We next explored the effects of these nutrients on the growth of two F. prausnitzii strains in vitro and observed robust and strain-dependent growth patterns on sorbitol and inositol, respectively. In the context of a complex community using in vitro fermentation, neither inositol alone nor in combinations with vitamin B exerted a significant growth-promoting effect on F. prausnitzii, partly due to high variability among the fecal microbiota community from four healthy donors. However, the fecal communities that showed an increase in F. prausnitzii on inulin also responded with at least 60% more F. prausnitzii on any of inositol containing media than control. Future nutritional studies aiming to increase the relative abundance of F. prausnitzii should explore a personalized approach accounting for strain-level genetic variations and community-level microbiome composition.


Assuntos
Microbiota , Complexo Vitamínico B , Humanos , Faecalibacterium prausnitzii , Inositol , Inulina
17.
Microbiol Spectr ; 11(1): e0181722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36598219

RESUMO

Faecalibacterium represents one of the most abundant bacterial groups in the human intestinal microbiota of healthy adults and can represent more than 10% of the total bacterial population, Faecalibacterium prausnitzii being the only recognized species up to the past year. Reduction in the abundance of F. prausnitzii in the human gut has been linked to several human disorders, such as Crohn's disease. In this study, we developed a strategy to modify the relative abundance of F. prausnitzii in fecal microbiotas as a means of evaluating its contribution to the immunomodulatory effect of intestinal microbiotas with different F. prausnitzii contents using a peripheral blood mononuclear cell (PBMC) model. We used a polyclonal antibody against the surface of F. prausnitzii M21 to capture the bacterium from synthetic and human fecal microbiotas using immunoseparation techniques. As a proof-of-principle study, the levels of immunomodulation exerted by microbiotas of healthy donors (HDs) with different relative abundances of F. prausnitzii, achieved with the above-mentioned immunoseparation technique, were evaluated in a PBMC model. For this purpose, PBMCs were cocultivated with the modified microbiotas or a pure culture of F. prausnitzii and, subsequently, the microbiota of Crohn's donors was added to the coculture. The cytokine concentration was determined, showing that our experimental model supports the anti-inflammatory effects of this bacterium. IMPORTANCE There is increasing interest in deciphering the contribution of gut microbiota species to health and disease amelioration. The approach proposed herein provides a novel and affordable strategy to probe deeply into microbiota-host interactions by strategically modifying the relative abundance of specific gut microbes, hence facilitating the study of their contribution to a given trait of the microbiota.


Assuntos
Doença de Crohn , Microbiota , Adulto , Humanos , Faecalibacterium prausnitzii , Leucócitos Mononucleares , Fezes/microbiologia
18.
PLoS One ; 17(11): e0271847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36399439

RESUMO

Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a next-generation probiotic for use in restoring the balance of the gut microbial flora and, due to its strong anti-inflammatory properties, for the treatment of certain pathological conditions. However, very little information is available about gene function and regulation in this species. Here, we utilized a systems biology approach-weighted gene co-expression network analysis (WGCNA)-to analyze gene expression in three publicly available RNAseq datasets from F. prausnitzii strain A2-165, all obtained in different laboratory conditions. The co-expression network was then subdivided into 24 co-expression gene modules. A subsequent enrichment analysis revealed that these modules are associated with different kinds of biological processes, such as arginine, histidine, cobalamin, or fatty acid metabolism as well as bacteriophage function, molecular chaperones, stress response, or SOS response. Some genes appeared to be associated with mechanisms of protection against oxidative stress and could be essential for F. prausnitzii's adaptation and survival under anaerobic laboratory conditions. Hub and bottleneck genes were identified by analyses of intramodular connectivity and betweenness, respectively; this highlighted the high connectivity of genes located on mobile genetic elements, which could promote the genetic evolution of F. prausnitzii within its ecological niche. This study provides the first exploration of the complex regulatory networks in F. prausnitzii, and all of the "omics" data are available online for exploration through a graphical interface at https://shiny.migale.inrae.fr/app/faeprau.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Faecalibacterium prausnitzii/genética , Simbiose , Microbioma Gastrointestinal/genética , Anti-Inflamatórios
19.
Circ Res ; 131(9): e120-e134, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36164984

RESUMO

BACKGROUND: Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS: We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS: We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS: Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.


Assuntos
Faecalibacterium prausnitzii , Insuficiência Renal Crônica , Animais , Butiratos/farmacologia , Butiratos/uso terapêutico , Modelos Animais de Doenças , Inflamação , Rim/fisiologia , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...