Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
World J Gastroenterol ; 30(11): 1556-1571, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617455

RESUMO

BACKGROUND: Hepatitis B cirrhosis (HBC) is a chronic disease characterized by irreversible diffuse liver damage and aggravated by intestinal microbial imbalance and metabolic dysfunction. Although the relationship between certain single probiotics and HBC has been explored, the impact of the complex ready-to-eat Lactobacillus paracasei N1115 (LP N1115) supplement on patients with HBC has not been determined. AIM: To compare the changes in the microbiota, inflammatory factor levels, and liver function before and after probiotic treatment in HBC patients. METHODS: This study included 160 HBC patients diagnosed at the General Hospital of Ningxia Medical University between October 2018 and December 2020. Patients were randomly divided into an intervention group that received LP N1115 supplementation and routine treatment and a control group that received routine treatment only. Fecal samples were collected at the onset and conclusion of the 12-wk intervention period. The structure of the intestinal microbiota and the levels of serological indicators, such as liver function and inflammatory factors, were assessed. RESULTS: Following LP N1115 intervention, the intestinal microbial diversity significantly increased in the intervention group (P < 0.05), and the structure of the intestinal microbiota was characterized by an increase in the proportions of probiotic microbes and a reduction in harmful bacteria. Additionally, the intervention group demonstrated notable improvements in liver function indices and significantly lower levels of inflammatory factors (P < 0.05). CONCLUSION: LP N1115 is a promising treatment for ameliorating intestinal microbial imbalance in HBC patients by modulating the structure of the intestinal microbiota, improving liver function, and reducing inflammatory factor levels.


Assuntos
Microbioma Gastrointestinal , Hepatite B , Lacticaseibacillus paracasei , Humanos , Cirrose Hepática/diagnóstico
2.
BMC Oral Health ; 24(1): 477, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643116

RESUMO

BACKGROUND: This study examines the oral health benefits of heat-killed Lacticaseibacillus paracasei GMNL-143, particularly its potential in oral microbiota alterations and gingivitis improvement. METHODS: We assessed GMNL-143's in vitro interactions with oral pathogens and its ability to prevent pathogen adherence to gingival cells. A randomized, double-blind, crossover clinical trial was performed on gingivitis patients using GMNL-143 toothpaste or placebo for four weeks, followed by a crossover after a washout. RESULTS: GMNL-143 showed coaggregation with oral pathogens in vitro, linked to its surface layer protein. In patients, GMNL-143 toothpaste lowered the gingival index and reduced Streptococcus mutans in crevicular fluid. A positive relationship was found between Aggregatibacter actinomycetemcomitans and gingival index changes, and a negative one between Campylobacter and gingival index changes in plaque. CONCLUSION: GMNL-143 toothpaste may shift oral bacterial composition towards a healthier state, suggesting its potential in managing mild to moderate gingivitis. TRIAL REGISTRATION: ID NCT04190485 ( https://clinicaltrials.gov/ ); 09/12/2019, retrospective registration.


Assuntos
Gengivite , Lacticaseibacillus paracasei , Microbiota , Adulto , Humanos , Cremes Dentais/uso terapêutico , Estudos Retrospectivos , Gengivite/tratamento farmacológico , Método Duplo-Cego , Índice de Placa Dentária
3.
Cell Biochem Funct ; 42(2): e3975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38475877

RESUMO

Different organic compounds can have varying degrees of impact on the activity of Lactobacillus paracasei. The study focused on the impact and action mechanism of different organic selenium products on the bioactivity of two strains of L. paracasei. The growth, antioxidant activity, extracellular polysaccharide secretion, quorum sensing (QS), and biofilm formation of the strains before and after the addition of organic selenium crude products and three organic selenium standard were evaluated. The results showed that the addition of crude organic selenium promoted the various activities of the strain. l-selenocysteine had the strongest regulatory effect, with maximum GIM1.80 biofilm formation when it reached a critical concentration of 0.4 µg/mL; l-selenomethionine resulted in the highest activity of the signal molecule Auto inducer-2 of GDMCC1.155, when it reached a critical concentration of 0.4 µg/mL. The results of scanning electron microscopy demonstrated that the addition of organic selenium effectively improved the morphological structure of the two bacterial cells. Molecular docking revealed that the mechanism by which organic selenium regulates QS in Lactobacillus was achieved by binding two crucial receptor proteins (histidine protein kinase HKP and periplasmic binding protein LuxP) from specific sites. Furthermore, organic selenium products have a beneficial regulatory effect on the biological activity of L. paracasei. Overall, these findings provide a new alternative (organic selenium) for regulating the viability and beneficial activity of L. paracasei.


Assuntos
Lacticaseibacillus paracasei , Selênio , Percepção de Quorum , Antioxidantes/farmacologia , Selênio/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Biofilmes
4.
Sci Rep ; 14(1): 3319, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336830

RESUMO

The PsdRSAB and ApsRSAB detoxification modules, together with the antimicrobial peptides (AMPs)-resistance determinants Dlt system and MprF protein, play major roles in the response to AMPs in Lacticaseibacillus paracasei BL23. Sensitivity assays with a collection of mutants showed that the PsdAB ABC transporter and the Dlt system are the main subtilin resistance determinants. Quantification of the transcriptional response to subtilin indicate that this response is exclusively regulated by the two paralogous systems PsdRSAB and ApsRSAB. Remarkably, a cross-regulation of the derAB, mprF and dlt-operon genes-usually under control of ApsR-by PsdR in response to subtilin was unveiled. The high similarity of the predicted structures of both response regulators (RR), and of the RR-binding sites support this possibility, which we experimentally verified by protein-DNA binding studies. ApsR-P shows a preferential binding in the order PderA > Pdlt > PmprF > PpsdA. However, PsdR-P bound with similar apparent affinity constants to the four promoters. This supports the cross-regulation of derAB, mprF and the dlt-operon by PsdR. The possibility of cross-regulation at the level of RR-promoter interaction allows some regulatory overlap with two RRs controlling the expression of systems involved in maintenance of critical cell membrane functions in response to lantibiotics.


Assuntos
Bacteriocinas , Lacticaseibacillus paracasei , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Regiões Promotoras Genéticas , Óperon , Regulação Bacteriana da Expressão Gênica
5.
Microb Pathog ; 189: 106598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423403

RESUMO

Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.


Assuntos
Acne Vulgar , Lacticaseibacillus paracasei , Humanos , Propionibacterium acnes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Inflamação/tratamento farmacológico , Testes de Sensibilidade Microbiana
6.
Poult Sci ; 103(4): 103505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359769

RESUMO

This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.


Assuntos
Lacticaseibacillus paracasei , Microbiota , Probióticos , Animais , Feminino , Antioxidantes , Galinhas , Dieta/veterinária , Probióticos/farmacologia , Probióticos/análise , Suplementos Nutricionais/análise , Ração Animal/análise
7.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393172

RESUMO

Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists' preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.


Assuntos
Bacteriocinas , Queijo , Lacticaseibacillus paracasei , Lactobacillus , Bacteriocinas/farmacologia , Staphylococcus aureus , Microbiologia de Alimentos
8.
Food Funct ; 15(3): 1671-1688, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251779

RESUMO

Gout flares have emerged as a significant public health concern. Colchicine (COL) is a first-line and standard drug for treating gout flares. However, its clinical use is limited due to various adverse effects. Besides, COL fails to adequately meet the needs of patients, particularly young patients. In this study, we investigate the therapeutic administration of Lactobacillus paracasei GY-1 (GY-1) to overcome the limitations of COL. Our results demonstrate that GY-1 attenuates COL toxicity in terms of body weight loss, decreased feed intake, mortality, reduced locomotor activity, colon shortening, increased oxidative stress, histological damage, and impaired gut permeability. Meanwhile, we demonstrate that GY-1 enhances the therapeutic effect for gout flares when combined with COL, as evidenced by the reduction in paw swelling, decreased levels of proinflammatory cytokines including IL-1ß and TNF-α, and an increase in the anti-inflammatory cytokine IL-10. Additionally, the absolute quantification of the gut microbiota shows that GY-1 restores the gut microbiota imbalance caused by COL. Furthermore, GY-1 reduces the abundance of 4 Alistipes species and 6 Porphyromonadaceae species, which may be responsible for toxicity alleviation. At the same time, GY-1 increases the abundance of Bacteroides sartorii and Enterococcus sp., which may contribute to its therapeutic efficacy. This study demonstrates the feasibility of developing probiotic-based adjuvant therapy or bacteriotherapy for treating gout flares. To our knowledge, GY-1 is the first probiotic that could be used as an alternative synergetic agent with COL for the therapeutic treatment of gout flares.


Assuntos
Gota , Lacticaseibacillus paracasei , Humanos , Gota/tratamento farmacológico , Colchicina/efeitos adversos , Exacerbação dos Sintomas , Supressores da Gota , Citocinas
9.
Genes (Basel) ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38254954

RESUMO

Aquaculture plays a crucial role in meeting the increasing global demand for food and protein sources. However, its expansion is followed by increasing challenges, such as infectious disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12 and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors. Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore, MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their application as probiotics in larviculture, which is a major bottleneck in aquaculture.


Assuntos
Lacticaseibacillus paracasei , Rotíferos , Animais , Genômica , Rotíferos/genética , Antibacterianos , Aquicultura , Peptídeos
10.
Nutrients ; 16(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257109

RESUMO

Previous clinical studies have shown that heat-killed Lacticaseibacillus paracasei MCC1849 suppresses subjective symptoms among healthy adults. However, the mechanism underlying this beneficial effect remains unclear. This clinical study aimed to investigate the effects of MCC1849 on immune functions in humans. In this randomized, double-blind, placebo-controlled, parallel-group study, 100 healthy adults were randomly divided into MCC1849 or placebo groups. Participants ingested test powder with 5 × 1010 MCC1849 cells or placebo powder for 4 weeks. Immune functions were evaluated using expression levels of CD86 and HLA-DR on dendritic cells (DCs), neutrophils, and natural killer cells. The expression levels of interferon (IFN)-α, -ß, and -γ in peripheral blood mononuclear cells incubated with Cpg2216 in vitro were quantified. Efficacy analysis was performed on participants in the per-protocol set (placebo group; n = 47, MCC1849 group; n = 49). The expression level of CD86 on pDCs and the gene expression levels of IFN-α, -ß, and -γ upon TLR9 agonist stimulation were significantly higher in the MCC1849 group at 4 weeks. No side effects were observed. This is the first report to show the positive effects of MCC1849 on human immune cells. These findings reveal one possible mechanism of how MCC1849 suppresses subjective symptoms.


Assuntos
Lacticaseibacillus paracasei , Adulto , Humanos , Temperatura Alta , Interferon-alfa , Leucócitos Mononucleares , Pós , Método Duplo-Cego
11.
Nutrients ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257160

RESUMO

Glycolipid metabolic disorders (GLMD) refer to a series of metabolic disorders caused by abnormal processes of glucose and lipid synthesis, decomposition, and absorption in the body, leading to glucose and lipid excess, insulin resistance, and obesity. Probiotic intervention is a new strategy to alleviate metabolic syndrome. Lactobacillus paracasei JY062 (L. paracasei JY062) was separated from the Tibet-fermented dairy products. The results demonstrated a strong ability to relieve blood glucose disorders, blood lipid disorders, and tissue damage. The LPH group had the best effect, significantly decreasing the total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), leptin, insulin, and free fatty acid (FFA) concentrations and increasing the high-density lipoprotein cholesterol, adiponectin, and GLP-1 level compared to HFD-group mice. L. paracasei JY062 could activate the APN-AMPK pathway, increased AdipoQ, AMPK GLUT-4, and PGC-1α mRNA expression and decreased SREBP-1c, ACC, and FAS mRNA expression. L. paracasei JY062 intervention decreased the relative abundance of harmful bacteria, increased the relative abundance of beneficial bacteria, and restored the imbalance of gut microbiota homeostasis caused by a high-glucose-fat diet. L. paracasei JY062 alleviated glucolipid metabolism disorders via the adipoinsular axis and gut microbiota. This study provided a theoretical basis for probiotics to ameliorate glucolipid metabolism disorders by regulating the adipoinsular axis.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Doenças Metabólicas , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , HDL-Colesterol , Glucose , RNA Mensageiro
12.
Future Microbiol ; 19: 227-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270125

RESUMO

Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , Lacticaseibacillus paracasei , Humanos , Glicólise , Ácido Láctico/farmacologia , Ácido Láctico/metabolismo , Linhagem Celular Tumoral
13.
J Agric Food Chem ; 72(4): 2214-2228, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237048

RESUMO

Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN's ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/ß-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells.


Assuntos
Colite , Lacticaseibacillus paracasei , Probióticos , Simbióticos , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Mananas , Probióticos/farmacologia , Nicho de Células-Tronco , Triptofano , Colite/induzido quimicamente , Colite/genética , Colite/terapia , Lactobacillus , Oligossacarídeos , Antibacterianos/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
14.
Chirality ; 36(1): e23620, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37727057

RESUMO

Chiral heterocyclic alcohols are important precursors for production of pharmaceutical medicines and natural products. (S)-1-(furan-2-yl)propan-1-ol ((S)-2) can be used production of pyranone, which can be used in the synthesis of sugar analogues, antibiotics, tirantamycines, and anticancer drugs. The synthetic approaches for (S)-2, however, have substantial difficulties in terms of inadequate enantiomeric excess (ee) and gram scale synthesis. Moreover, the biocatalytic synthesis of (S)-2 is unknown until now. In this study, the synthesis of (S)-2 was carried out by performing the asymmetric bioreduction of 1-(furan-2-yl)propan-1-one (1) using the Lactobacillus paracasei BD101 biocatalyst obtained from boza, a grain-based fermented beverage. (S)-2 was obtained with >99% conversion, >99% ee, and 96% yield under the optimized conditions. Furthermore, in 50 h, 8.37 g of 1 was entirely transformed into (S)-2 on gram scale (96% isolated yield, 8.11 g). This is the first report on the high-gram scale biocatalyzed synthesis of enantiopure (S)-2. These data suggest that L. paracasei BD101 can be used to bioreduction of 1 in gram scale and efficiently produce (S)-2. Furthermore, these findings laid the base for future study into the biocatalytic production of (S)-2. It was particularly notable as it was the highest known to date optical purity of (S)-2 generated by asymmetric reduction using a biocatalyst. This work offers a productive environmentally friendly method for producing (S)-2 using biocatalysts.


Assuntos
Lacticaseibacillus paracasei , Estereoisomerismo , Álcoois , Biocatálise , 1-Propanol , Fenilpropanolamina
17.
J Dairy Sci ; 107(3): 1355-1369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37776999

RESUMO

It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.


Assuntos
Escherichia coli O157 , Lacticaseibacillus paracasei , Animais , Leite , Antibacterianos/farmacologia , Contagem de Células/veterinária
18.
J Sci Food Agric ; 104(2): 664-674, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37653286

RESUMO

BACKGROUND: A large number of people worldwide suffer from gluten-induced food allergy. As investigated in our previous research, Lactobacillus paracasei AH2 isolated from traditionally homemade sourdough in Anhui province of China showed the potential to reduce the immune reactivity of wheat protein by in vitro evaluation. However, whether L. paracasei AH2 has a role in alleviating wheat allergy in an in vivo model and its underlying mechanisms have not been elucidated. RESULTS: In this study, the alleviative effects of L. paracasei AH2 on gluten-induced allergic response were evaluated. Compared with a gluten-allergic mouse, L. paracasei AH2 suppressed anaphylaxis symptoms, gluten-specific immunoglobulin E, histamine and interleukin-4. Moreover, L. paracasei AH2 attenuated splenomegaly and induced Th1 or Treg cell differentiation to modulate the Th1/Th2 immune balance toward Th1 polarization. Short-chain fatty acid (SCFA) levels were enhanced after L. paracasei AH2 supplementation, contributing to allergy relief as well as reducing the pH of colonic contents. The α and ß diversities of the gut microbiota were modulated by L. paracasei AH2 with increased relative abundance of Lacticaseibacillus and SCFA producers (Faecalibaculum, Alloprevotella and Bacteroides genera), as well as decreased unfavorable Lachnospiraceae_NK4A136_group and Alistipes. Additionally, L. paracasei AH2 protected the intestinal barrier function by upregulating tight junctions and improved the antioxidant activities in serum. CONCLUSION: Our findings indicate that L. paracasei AH2 could act as a potential probiotic for relieving wheat allergy by modulating the gut microbiota and elevating SCFA levels. © 2023 Society of Chemical Industry.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Hipersensibilidade a Trigo , Humanos , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Glutens , Camundongos Endogâmicos BALB C , Ácidos Graxos Voláteis
19.
Food Res Int ; 175: 113773, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129062

RESUMO

The bacterial surface components are considered as effector molecules and show the potential to support intestinal health, but the detailed mechanism of how the gut microbiota changes after the intervention of surface molecules is still unknown. In the present study, capsular polysaccharide (B-CPS) and surface layer protein (B-SLP) were extracted from Lacticaseibacillus paracasei S-NB. The protective effect of direct administration of B-CPS (100 µg/mL) and B-SLP (100 µg/mL) on intestinal epithelial barrier dysfunction was verified based on the LPS-induced Caco-2 cell model. Additionally, the B-CPS and B-SLP could be utilized as carbon source and nitrogen source for the growth of several Lactobacillus strains, respectively. The postbiotic potential of B-CPS and B-SLP was further evaluated by in vitro fermentation with fecal cultures. The B-CPS and a combination of B-CPS and B-SLP regulated the composition of gut microbiota by increasing the relative abundances of Bacteroides, Bifidobacterium, Phascolarctobacterium, Parabacteroides, Subdoligranulum and Collinsella and decreasing the abundance of pathogenic bacteria like Escherichia-Shigella, Blautia, Citrobacter and Fusobacterium. Meanwhile, the total short-chain fatty acid production markedly increased after fermentation with either B-CPS individually or in combination with B-SLP. These results provided an important basis for the application of B-CPS and B-SLP as postbiotics to improve human intestinal health.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Humanos , Células CACO-2 , Bactérias , Polissacarídeos/farmacologia
20.
Food Funct ; 15(2): 647-662, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38099933

RESUMO

This study evaluated the effects of formulations with Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 on adiposity, the alteration of microbiota, and the metabolome in high-fat diet-fed mice. The strains were selected based on their fat and glucose absorption inhibitory activities and potential metabolic interactions. The optimal ratio of the two strains in the probiotic formulation was determined based on their adipocyte differentiation inhibitory activities. Treatment of formulations with BEPC22 and BELP53 for 10 weeks decreased body weight gain at 6 weeks; it also decreased the food efficiency ratio, white adipose tissue volume, and adipocyte size. Moreover, it decreased the expression of the lipogenic gene Ppar-γ in the liver, while significantly increasing the expression of the fat oxidation gene Ppar-α in the white adipose tissue. Notably, treatment with a combination of the two strains significantly reduced the plasma levels of the obesity hormone leptin and altered the microbiota and metabolome. The omics data also indicated the alteration of anti-obesity microbes and metabolites such as Akkermansia and indolelactic acid, respectively. These findings suggest that treatment with a combination of BEPC22 and BELP53 exerts synergistic beneficial effects against obesity.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Obesidade/genética , Metaboloma , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...