Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.252
Filtrar
1.
Nat Commun ; 15(1): 7927, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256376

RESUMO

Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like many animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We describe the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, we demonstrate that nitrogen assimilation mutants perturb bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa. These studies define ammonia as a major mediator of trans-kingdom signaling, implicate nitrogen assimilation as important for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.


Assuntos
Amônia , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Nitrogênio , Pseudomonas aeruginosa , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Animais , Nitrogênio/metabolismo , Amônia/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Nitratos/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Quimiotaxia
2.
Elife ; 132024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269443

RESUMO

How bacterial pathogens exploit host metabolism to promote immune tolerance and persist in infected hosts remains elusive. To achieve this, we show that Pseudomonas aeruginosa (PA), a recalcitrant pathogen, utilizes the quorum sensing (QS) signal 2'-aminoacetophenone (2-AA). Here, we unveil how 2-AA-driven immune tolerization causes distinct metabolic perturbations in murine macrophages' mitochondrial respiration and bioenergetics. We present evidence indicating that these effects stem from decreased pyruvate transport into mitochondria. This reduction is attributed to decreased expression of the mitochondrial pyruvate carrier (Mpc1), which is mediated by diminished expression and nuclear presence of its transcriptional regulator, estrogen-related nuclear receptor alpha (Esrra). Consequently, Esrra exhibits weakened binding to the Mpc1 promoter. This outcome arises from the impaired interaction between Esrra and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a). Ultimately, this cascade results in diminished pyruvate influx into mitochondria and, consequently reduced ATP production in tolerized murine and human macrophages. Exogenously added ATP in infected macrophages restores the transcript levels of Mpc1 and Esrra and enhances cytokine production and intracellular bacterial clearance. Consistent with the in vitro findings, murine infection studies corroborate the 2-AA-mediated long-lasting decrease in ATP and acetyl-CoA and its association with PA persistence, further supporting this QS signaling molecule as the culprit of the host bioenergetic alterations and PA persistence. These findings unveil 2-AA as a modulator of cellular immunometabolism and reveal an unprecedented mechanism of host tolerance to infection involving the Ppargc1a/Esrra axis in its influence on Mpc1/OXPHOS-dependent energy production and PA clearance. These paradigmatic findings pave the way for developing treatments to bolster host resilience to pathogen-induced damage. Given that QS is a common characteristic of prokaryotes, it is likely that 2-AA-like molecules with similar functions may be present in other pathogens.


Assuntos
Metabolismo Energético , Macrófagos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Pseudomonas aeruginosa , Percepção de Quorum , Animais , Camundongos , Pseudomonas aeruginosa/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Tolerância Imunológica , Mitocôndrias/metabolismo , Humanos , Acetofenonas/farmacologia , Acetofenonas/metabolismo
3.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273327

RESUMO

Periodontitis is a chronic inflammatory disease resulting from the dysbiosis of periodontal bacteria and the host's immune response, leading to tissue degradation and sustained inflammation. Traditional treatments, such as mechanical debridement and antimicrobial agents, often fail to fully eradicate pathogenic bacteria, especially in deep periodontal pockets. Consequently, the need for novel therapeutic approaches has increased the interest in bioactive natural extracts, such as that of Opuntia ficus-indica, known for its anti-inflammatory, antioxidant, and antimicrobial properties. This study investigates the encapsulation of Opuntia ficus-indica extract in OFI-loaded chitosan nanoparticles (OFI-NPs) via ionotropic gelation using a microfluidic system, allowing precise control over nanoparticle characteristics and enhancing protection against enzymatic degradation. To achieve localized and sustained release in periodontal pockets, a thermo-responsive hydrogel comprising hyaluronic acid and Pluronic F127 (OFI@tgels) was developed. The transition of OFI@tgels from a solution at low temperatures to a solid at body temperature enables prolonged drug release at inflammation sites. The in vitro application of the optimized formulation eradicated biofilms of S. mutans, P. aeruginosa (PAO1), and P. gingivalis over 36 h and disrupted extracellular polymeric substance formation. Additionally, OFI@tgel modulated immune responses by inhibiting M1 macrophage polarization and promoting a shift to the M2 phenotype. These findings suggest that OFI@tgel is a promising alternative treatment for periodontitis, effectively reducing biofilm formation and modulating the immune response.


Assuntos
Quitosana , Hidrogéis , Nanopartículas , Opuntia , Periodontite , Extratos Vegetais , Quitosana/química , Opuntia/química , Nanopartículas/química , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Periodontite/terapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Hidrogéis/química , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus mutans/efeitos dos fármacos , Humanos , Biofilmes/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Poloxâmero/química , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
4.
J Med Microbiol ; 73(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268705

RESUMO

Introduction. As growing numbers of patients are at higher risk of infection, novel topical broad-spectrum antimicrobials are urgently required for wound infection management. Robust pre-clinical studies should support the development of such novel antimicrobials.Gap statement. To date, evidence of robust investigation of the cytotoxicity and antimicrobial spectrum of activity of antimicrobial peptides (AMP)s is lacking in published literature. Using a more clinical lens, we address this gap in experimental approach, building on our experience with poly-l-lysine (PLL)-based AMP polymers.Aim. To evaluate the in vitro bactericidal activity and cytotoxicity of a PLL-based 16-armed star AMP polymer, designated 16-PLL10, as a novel candidate antimicrobial.Methods. Antimicrobial susceptibilities of clinical isolates and reference strains of ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) pathogens, to 16-PLL10 were investigated. Human erythrocyte haemolysis and keratinocyte viability assays were used to assess toxicity. Modifications were made to 16-PLL10 and re-evaluated for improvement.Results. Minimum bactericidal concentration of 16-PLL10 ranged from 1.25 µM to ≥25 µM. At 2.5 µM, 16-PLL10 was broadly bactericidal against ESKAPE strains/wound isolates. Log-reduction in colony forming units (c.f.u.) per millilitre after 1 h, ranged from 0.3 (E. cloacae) to 5.6 (K. pneumoniae). At bactericidal concentrations, 16-PLL10 was toxic to human keratinocyte and erythrocytes. Conjugates of 16-PLL10, Trifluoroacetylated (TFA)-16-PLL10, and Poly-ethylene glycol (PEG)ylated 16-PLL10, synthesised to address toxicity, only moderately reduced cytotoxicity and haemolysis.Conclusions. Due to poor selectivity indices, further development of 16-PLL10 is unlikely warranted. However, considering the unmet need for novel topical antimicrobials, the ease of AMP polymer synthesises/modification is attractive. To support more rational development, prioritising clinically relevant pathogens and human cells, to establish selective toxicity profiles in vitro, is critical. Further characterisation and discovery utilising artificial intelligence and computational screening approaches can accelerate future AMP nanomaterial development.


Assuntos
Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Polilisina , Humanos , Polilisina/farmacologia , Polilisina/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Eritrócitos/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polímeros/farmacologia , Polímeros/química , Acinetobacter baumannii/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
5.
Sci Rep ; 14(1): 21006, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251613

RESUMO

The emission of glyphosate and antibiotic residues from human activities threatens the diversity and functioning of the microbial community. This study examines the impact of a glyphosate-based herbicide (GBH) and common antibiotics on Gram-negative bacteria within the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli). Ten strains, including type and multidrug-resistant strains for each species were analysed and eight antibiotics (cefotaxime, meropenem, aztreonam, ciprofloxacin, gentamicin, tigecycline, sulfamethoxazole-trimethoprim, and colistin) were combined with the GBH. While most combinations yielded additive or indifferent effects in 70 associations, antagonistic effects were observed with ciprofloxacin and gentamicin in five strains. GBH notably decreased the minimum inhibitory concentration of colistin in eight strains and displayed synergistic activity with meropenem against metallo-ß-lactamase (MBL)-producing strains. Investigation into the effect of GBH properties on outer membrane permeability involved exposing strains to a combination of this GBH and vancomycin. Results indicated that GBH rendered strains sensitive to vancomycin, which is typically ineffective against Gram-negative bacteria. Furthermore, we examined the impact of GBH in combination with three carbapenem agents on 14 strains exhibiting varying carbapenem-resistance mechanisms to assess its effect on carbapenemase activity. The GBH efficiently inhibited MBL activity, demonstrating similar effects to EDTA (ethylenediaminetetraacetic acid). Chelating effect of GBH may have multifaceted impacts on bacterial cells, potentially by increasing outer membrane permeability and inactivating metalloenzyme activity.


Assuntos
Acinetobacter baumannii , Antibacterianos , Glicina , Glifosato , Bactérias Gram-Negativas , Herbicidas , Testes de Sensibilidade Microbiana , Glicina/análogos & derivados , Glicina/farmacologia , Antibacterianos/farmacologia , Herbicidas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Humanos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ciprofloxacina/farmacologia , Enterococcus faecium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Colistina/farmacologia , Vancomicina/farmacologia , Enterobacter/efeitos dos fármacos , Sinergismo Farmacológico , Meropeném/farmacologia , Fenótipo , Gentamicinas/farmacologia
6.
J Photochem Photobiol B ; 259: 113023, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241393

RESUMO

Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.


Assuntos
Meios de Cultura , Luz , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultura/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Luz Azul
7.
Arch Microbiol ; 206(10): 402, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261342

RESUMO

A global water crisis is emerging due to increasing levels of contaminated water and decreasing clean water supply on Earth. This study aims to address the removal of azo dye from wastewater to enable its reuse. Recently, utilizing microorganisms has been proven to be a practical choice for the remediation of azo dyes in wastewater. Hence, in this study, we employed a preformed biofilm of Pseudomonas aeruginosa on a solid support (called substrate) to degrade azo dyes. This process offers several advantages, such as stability, substrate portability, more biofilm production in less time, and efficient utilization of enzymes for remediation. From 50 ppm of initial Congo Red concentration, 75.74% decolorization was achieved within ten h using a preformed biofilm on a coverslip. A maximum of 52.27% decolorization was achieved using biofilm during its formation after 72 h of incubation. The Fourier-transform infrared (FTIR) spectroscopic analysis of Congo Red dye before and after remediation revealed a significant change in peak intensity, indicating dye degradation. Phytotoxicity studies performed by seed germination with Vigna radiata revealed that, after 5-7 days, almost 40% more seeds with longer root and shoot lengths were germinated in the presence of treated dye compared to the untreated one. This data indicated that the harmful Congo Red was successfully degraded to a non-toxic product by Pseudomonas aeruginosa biofilm grown on a glass substrate.


Assuntos
Biodegradação Ambiental , Biofilmes , Vermelho Congo , Pseudomonas aeruginosa , Biofilmes/crescimento & desenvolvimento , Vermelho Congo/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes/metabolismo , Germinação
8.
FASEB J ; 38(18): e70051, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39269436

RESUMO

Pseudomonas aeruginosa is a frequent cause of antimicrobial-resistant hospital-acquired pneumonia, especially in critically ill patients. Inflammation triggered by P. aeruginosa infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Emerging data have shed light on the pro-resolving actions of angiotensin-(1-7) [Ang-(1-7)] signaling through the G protein-coupled receptor Mas (MasR) during infections. Herein, we investigated the role of the Ang-(1-7)/Mas axis in pneumonia caused by P. aeruginosa by using genetic and pharmacological approach and found that Mas receptor-deficient animals developed a more severe form of pneumonia showing higher neutrophilic infiltration into the airways, bacterial load, cytokines, and chemokines production and more severe pulmonary damage. Conversely, treatment of pseudomonas-infected mice with Ang-(1-7) was able to decrease neutrophilic infiltration in airways and lungs, local and systemic levels of pro-inflammatory cytokines and chemokines, and increase the efferocytosis rates, mitigating lung damage/dysfunction caused by infection. Notably, the therapeutic association of Ang-(1-7) with antibiotics improved the survival rates of mice subjected to lethal inoculum of P. aeruginosa, extending the therapeutic window for imipenem. Mechanistically, Ang-(1-7) increased phagocytosis of bacteria by neutrophils and macrophages to accelerate pathogen clearance. Altogether, harnessing the Ang-(1-7) pathway during infection is a potential strategy for the development of host-directed therapies to promote mechanisms of resistance and resilience to pneumonia.


Assuntos
Angiotensina I , Antibacterianos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Proto-Oncogene Mas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Receptores Acoplados a Proteínas G , Animais , Angiotensina I/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/metabolismo , Citocinas/metabolismo , Camundongos Knockout , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/microbiologia , Masculino , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Transdução de Sinais/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos
9.
Molecules ; 29(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275040

RESUMO

Graphitic carbon nitride (g-C3N4, CN) has emerged as a promising photocatalytic material due to its inherent stability, antibacterial properties, and eco-friendliness. However, its tendency to aggregate and limited dispersion hinder its efficacy in practical antibacterial applications. To address these limitations, this study focuses on developing a composite hydrogel coating, in which sodium alginate (SA) molecules interact electrostatically and through hydrogen bonding to anchor CN, thereby significantly improving its dispersion. The optimal CN loading of 35% results in a hydrogel with a tensile strength of 120 MPa and an antibacterial rate of 99.87% within 6 h. The enhanced mechanical properties are attributed to hydrogen bonding between the -NH2 groups of CN and the -OH groups of SA, while the -OH groups of SA facilitate the attraction of photogenerated holes from CN, promoting carrier transfer and separation, thereby strengthening the antibacterial action. Moreover, the hydrogel coating exhibits excellent antibacterial and corrosion resistance capabilities against Pseudomonas aeruginosa on 316L stainless steel (316L SS), laying the foundation for advanced antimicrobial and anticorrosion hydrogel systems.


Assuntos
Alginatos , Antibacterianos , Grafite , Hidrogéis , Pseudomonas aeruginosa , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Grafite/química , Grafite/farmacologia , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Corrosão , Testes de Sensibilidade Microbiana , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ligação de Hidrogênio , Aço Inoxidável/química
10.
Molecules ; 29(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275074

RESUMO

This study aimed at the biotransformation of sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica and the identification of the drug metabolites by liquid chromatography-mass spectrometry. The drug was incubated with the organisms in tryptic soya broth at 37 °C. The broth was filtered and subjected to liquid chromatography-mass spectrometry. The metabolites identified by the use of mass spectral (+ve ion mode) fragmentation patterns were (3-methylphenyl)methanethiol (Bacillus subtilis), 1-(4-amino-3-ethylphenyl)-N-methylmethanesulfonamide (Salmonella enterica subsp. enterica) and 1-{4-amino-3-[(1E)-3-(dimethylamino)prop-1-en-1-yl]phenyl}methanesulfinamide (Salmonella enterica subsp. enterica, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus). These metabolites exhibit high gastrointestinal absorption, no blood-brain barrier permeability (except (3-methylphenyl)methanethiol), a bioavailability score of 0.55 and no inhibitory effect on CYP2C19, CYP2C9, CYP2D6, CYP3A4 or cytochrome P450 1A2 (except (3-methylphenyl)methanethiol), as determined by SwissADME software ver. 2024. The metabolites appear to be more toxic than the parent drug, as suggested by their calculated median lethal dose values. All four organisms under investigation transformed sumatriptan to different chemical substances that were more toxic than the parent drug.


Assuntos
Bacillus subtilis , Biotransformação , Pseudomonas aeruginosa , Salmonella enterica , Staphylococcus aureus , Sumatriptana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/efeitos dos fármacos , Sumatriptana/metabolismo , Sumatriptana/farmacologia , Salmonella enterica/metabolismo , Salmonella enterica/efeitos dos fármacos , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo
11.
NPJ Biofilms Microbiomes ; 10(1): 82, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261499

RESUMO

Pseudomonas aeruginosa is a widespread nosocomial pathogen with a significant to cause both severe planktonic acute and biofilm-related chronic infections. Small RNAs (sRNAs) are noncoding regulatory molecules that are stabilized by the RNA chaperone Hfq to trigger various virulence-related signaling pathways. Here, we identified an Hfq-binding sRNA in P. aeruginosa PAO1, PqsS, which promotes bacterial pathogenicity and pseudomonas quinolone signal quorum sensing (pqs QS) system. Specifically, PqsS enhanced acute bacterial infections by inducing host cell death and promoting rhamnolipid-regulated swarming motility. Meanwhile, PqsS reduced chronic infection traits including biofilm formation and antibiotic resistance. Moreover, PqsS repressed pqsL transcript, increasing PQS levels for pqs QS. A PQS-rich environment promoted PqsS expression, thus forming a positive feedback loop. Furthermore, we demonstrated that the PqsS interacts and destabilizes the pqsL mRNA by recruiting RNase E to drive degradation. These findings provide insights for future research on P. aeruginosa pathogenesis and targeted treatment.


Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro , Pseudomonas aeruginosa , Quinolonas , Percepção de Quorum , RNA Bacteriano , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/metabolismo , Virulência , Biofilmes/crescimento & desenvolvimento , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quinolonas/metabolismo , Quinolonas/farmacologia , Endorribonucleases/metabolismo , Endorribonucleases/genética , Animais , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Infecções por Pseudomonas/microbiologia , Humanos , Camundongos , Glicolipídeos/metabolismo
12.
Med Mycol J ; 65(3): 49-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39218647

RESUMO

Candida albicans, the most common pathogenic fungus, can form biofilms on the surface of medical devices and often causes bloodstream infections. Biofilms have a complex structure composed of microorganisms and a surrounding extracellular matrix. Biofilms are difficult to treat because they are resistant to antifungal drugs and the host environment. Nearly one in four patients with candidemia have a polymicrobial infection. These polymicrobial biofilms, especially those comprising cross-kingdom species of fungi and bacteria, can lead to long hospital stays and high mortality rates. This review outlines the unique interactions of dual-species biofilms with Candida albicans and the clinically important bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.


Assuntos
Biofilmes , Candida albicans , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antifúngicos/farmacologia , Coinfecção/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento
13.
Nat Microbiol ; 9(9): 2308-2322, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39227714

RESUMO

Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space.


Assuntos
Quimiotaxia , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Fímbrias Bacterianas/metabolismo , Microfluídica/métodos , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética
14.
BMC Infect Dis ; 24(1): 911, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227823

RESUMO

BACKGROUND: The 2016 IDSA guideline recommends a treatment duration of at least 7 days for hospital-acquired (HAP)/ventilator-associated pneumonia (VAP). The limited literature has demonstrated higher rates of recurrence for non-glucose fermenting gram-negative bacilli with short course therapy, raising the concern of optimal treatment duration for these pathogens. Therefore, we aimed to compare the outcomes for patients receiving shorter therapy treatment (≤ 8 days) versus longer regimen (> 8 days) for the treatment of multidrug resistant (MDR) Pseudomonas pneumonia. METHODS: A single-center, retrospective cohort study was conducted to evaluate adult patients receiving an antimicrobial regimen with activity against MDR Pseudomonas aeruginosa in respiratory culture between 2017 and 2020 for a minimum of 6 consecutive days. Exclusion criteria were inmates, those with polymicrobial pneumonia, community-acquired pneumonia, and infections requiring prolonged antibiotic therapy. RESULTS: Of 427 patients with MDR P. aeruginosa respiratory isolates, 85 patients were included. Baseline characteristics were similar among groups with a median age of 65.5 years and median APACHE 2 score of 20. Roughly 75% had ventilator-associated pneumonia. Compared to those who received ≤ 8 days of therapy, no difference was seen for clinical success in patients treated for more than 8 days (80% vs. 65.5%, p = 0.16). The number of 30-day and 90-day in-hospital mortality, 30-days relapse, and other secondary outcomes did not significantly differ among the treatment groups. CONCLUSIONS: Prolonging treatment duration beyond 8 days did not improve patient outcomes for MDR P. aeruginosa HAP/VAP.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Masculino , Feminino , Pseudomonas aeruginosa/efeitos dos fármacos , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Idoso , Pessoa de Meia-Idade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/mortalidade , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pneumonia Associada à Ventilação Mecânica/mortalidade , Resultado do Tratamento , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade , Duração da Terapia
15.
Medicine (Baltimore) ; 103(36): e39462, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39252304

RESUMO

RATIONALE: Infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa are strongly associated with poor outcomes, including prolonged hospitalization and an increased risk of mortality. Antimicrobial options for the treatment of severe infections due to MDR P aeruginosa are quite limited, and treatment remains challenging. PATIENT CONCERNS: A 65-year-old woman presented to our orthopedic clinic with a 3-month history of progressive pain and stiffness in her left knee. Her primary care provider administered a hyaluronic acid injection, which unfortunately resulted in worsening symptoms. Subsequent treatment included a 1-month course of intravenous gentamicin and ceftriaxone, which failed to alleviate her symptoms. DIAGNOSIS: MDR P aeruginosa septic arthritis of the knee. The culture isolate was tested for susceptibility to multiple antibiotics. Magnetic resonance imaging evaluations were conducted, showing notable erosive and osteolytic changes around the joint surfaces that had progressed significantly. INTERVENTIONS: The patient underwent arthroscopic irrigation and synovectomy. The treatment regimen included a combination of intravenous colistin and piperacillin/tazobactam administered over a 6-week period. Total knee arthroplasty was performed 6 months later without additional antibiotic treatment. OUTCOMES: Patient's knee condition remained continuously stable without abnormal findings of inflammation. The patient's knee range of motion increased 0 to 125 degrees, her pain almost disappeared, and she was able to maintain activities of daily life. LESSONS: This case underscores the challenges of managing infections with MDR organisms in complex clinical scenarios, emphasizing the need for timely intervention and appropriate antibiotic therapy.


Assuntos
Antibacterianos , Artrite Infecciosa , Farmacorresistência Bacteriana Múltipla , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Feminino , Idoso , Artrite Infecciosa/microbiologia , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/isolamento & purificação , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Articulação do Joelho/microbiologia
16.
Sci Rep ; 14(1): 20894, 2024 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245771

RESUMO

This study proposes an innovative approach to combat the escalating threat of antibiotic resistance in bacteria by introducing a novel ZnO-propolis nanocomposite (ZnO-P NCs). The overuse of antibiotics, particularly during events like the COVID-19 pandemic, has intensified bacterial resistance, necessitating innovative solutions. The study employs a cost-effective and controllable biosynthesis method to produce ZnO nanoparticles (ZnO-NPs), with propolis extract crucially contributing to the reduction and stabilization of Zn2+ ions. A biodegradable nano-propolis matrix is then created by incorporating ZnO-NPs, forming the ZnO-P NCs. Structural stability is confirmed through FT-IR and Zeta potential analysis, while nanoscale properties are validated via TEM, SEM, and XRD analyses. The antimicrobial efficacy of various substances, including propolis, nano propolis, ethanolic propolis extract, ZnO-NPs, and ZnO-P NCs, is assessed against Gram-negative and Gram-positive bacteria, alongside a comparison with 28 antibiotics. Among the bacteria tested, Pseudomonas aeruginosa PAO1 ATCC15692 was more sensitive (40 mm) to the biosynthesized nanocomposite ZnO-P NCs than to ZnO-NPs (38 mm) and nanopropolis (32 mm), while Escherichia coli was resistant to nanopropolis (0 mm) than to ZnO-NPs (31 mm), and ZnO-P NCs (34 mm). The study reveals a synergy effect when combining propolis with green-synthesized ZnO-NPs in the form of ZnO-P NCs, significantly improving their efficiency against all tested bacteria, including antibiotic-resistant strains like E. coli. The nanocomposite outperforms other materials and antibiotics, demonstrating remarkable antibacterial effectiveness. SEM imaging confirms the disruption of bacterial cell membranes by ZnO-NPs and ZnO-P NCs. The study emphasizes the potential applications of ZnO-NPs integrated into biodegradable materials and underscores the significance of the zinc oxide-propolis nanocomposite in countering antimicrobial resistance. Overall, this research offers a comprehensive solution to combat multidrug-resistant bacteria, opening avenues for novel approaches in infection control.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Nanocompostos , Própole , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Própole/química , Própole/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química
17.
Front Cell Infect Microbiol ; 14: 1448104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239637

RESUMO

The chronic airway infections with Pseudomonas aeruginosa are the major co-morbidity in people with cystic fibrosis (CF). Within CF lungs, P. aeruginosa persists in the conducting airways together with human mucins as the most abundant structural component of its microenvironment. We investigated the adhesion of 41 serial CF airway P. aeruginosa isolates to airway mucin preparations from CF sputa. Mucins and bacteria were retrieved from five modulator-naïve patients with advanced CF lung disease. The P. aeruginosa isolates from CF airways and non-CF reference strains showed a strain-specific signature in their adhesion to ovine, porcine and bovine submaxillary mucins and CF airway mucins ranging from no or low to moderate and strong binding. Serial CF clonal isolates and colony morphotypes from the same sputum sample were as heterogeneous in their affinity to mucin as representatives of other clones thus making 'mucin binding' one of the most variable intraclonal phenotypic traits of P. aeruginosa known to date. Most P. aeruginosa CF airway isolates did not adhere more strongly to CF airway mucins than to plastic surfaces. The strong binders, however, exhibited a strain-specific affinity gradient to O-glycans, CF airway and mammalian submaxillary mucins.


Assuntos
Aderência Bacteriana , Fibrose Cística , Mucinas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Escarro , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Mucinas/metabolismo , Humanos , Animais , Escarro/microbiologia , Infecções por Pseudomonas/microbiologia , Suínos , Bovinos , Ovinos
18.
Sci Rep ; 14(1): 20715, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237556

RESUMO

Chronic wounds represent a significant global health concern, statistically impacting 1-2% of the population in developed countries throughout their lifetimes. These wounds cause considerable discomfort for patients and necessitate substantial expenditures of time and resources for treatment. Among the emerging therapeutic approaches, medicated dressings incorporating bioactive molecules, including natural compounds, are particularly promising. Hence, the objective of this study was to develop novel antimicrobial dressings for wound treatment. Specifically, polycaprolactone membranes were manufactured using the electrospinning technique and subsequently coated with natural polyelectrolytes (chitosan as a polycation and a mixture of manuka honey with essential oils nanoemulsions as a polyanion) employing the Layer-by-Layer assembly technique. Physico-chemical and morphological characterization was conducted through QCM-D, FTIR-ATR, XPS, and SEM analyses. The results from SEM and QCM-D demonstrated successful layer deposition and coating formation. Furthermore, FTIR-ATR and XPS analyses distinguished among different coating compositions. The coated membranes were tested in the presence of fibroblast cells, demonstrating biocompatibility and expression of genes coding for VEGF, COL1, and TGF-ß1, which are associated with the healing process (assessed through RT-qPCR analysis). Finally, the membranes exhibited excellent antibacterial activity against both Staphylococcus aureus and Pseudomonas aeruginosa, with higher bacterial strain inhibition observed when cinnamon essential oil nanoemulsion was incorporated. Taken together, these results demonstrate the potential application of nanocoated membranes for biomedical applications, such as wound healing.


Assuntos
Mel , Óleos Voláteis , Poliésteres , Cicatrização , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cicatrização/efeitos dos fármacos , Poliésteres/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Membranas Artificiais , Leptospermum/química , Bandagens , Staphylococcus aureus/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Fibroblastos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Polieletrólitos/química
19.
Microb Cell Fact ; 23(1): 240, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238019

RESUMO

Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Prata , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
20.
Arch Microbiol ; 206(10): 396, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249533

RESUMO

Bacteria threaten human and animal health, and standard antibiotics no longer effective. Antibiotic-resistant microorganisms can make infection treatment challenging and perhaps fail. Investigating the attributes of cyclotide, a peptide with promising antibacterial properties that holds great potential in the field of antibiotic research. The structure of these cyclic peptides involves six conserved cysteine residues that form three disulfide bonds, resulting in a cyclic cystine knot (CCK). This feature guarantees their durability when exposed to changes in temperature, chemicals, and enzymatic degradation. The two cyclotides, cycloviolacin O17 and mra30, were obtained from Viola dalatensis Gadnep through a series of techniques including the use of a 50% acetonitrile/49% miliQ water/1% formic acid solution for extraction, ammonium salt precipitation, RP-HPLC purification and sequence identification by LC-MS/MS. These cyclotides exhibit antibacterial effects on specific strains of bacteria like Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa at a concentration of 0.2 mg/mL, leading to inhibition zones ranging from 10 to 14 mm. In addition, the disulfide bonds play a crucial role in the antibacterial function of cyclotides. Disrupting the disulfide bonds through ankylation reaction results in the loss of antibacterial properties in the cyclotides (cyO17 and mra30). The minimum inhibitory concentration (MIC) values of mra30 and cyO17 are significantly low, ranging from 0.1 to 0.6 µM. These values are approximately three times lower than the MIC values observed in salt precipitation samples.


Assuntos
Antibacterianos , Ciclotídeos , Testes de Sensibilidade Microbiana , Viola , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Ciclotídeos/química , Ciclotídeos/farmacologia , Ciclotídeos/isolamento & purificação , Viola/química , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Massas em Tandem , Bacillus subtilis/efeitos dos fármacos , Sequência de Aminoácidos , Bactérias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA