Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.043
Filtrar
1.
Curr Microbiol ; 81(10): 336, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223428

RESUMO

Fatty acids (FAs) participate in extensive physiological activities such as energy metabolism, transcriptional control, and cell signaling. In bacteria, FAs are degraded and utilized through various metabolic pathways, including ß-oxidation. Over the past ten years, significant progress has been made in studying FA oxidation in bacteria, particularly in E. coli, where the processes and roles of FA ß-oxidation have been comprehensively elucidated. Here, we provide an update on the new research achievements in FAs ß-oxidation in bacteria. Using Xanthomonas as an example, we introduce the oxidation process and regulation mechanism of the DSF-family quorum sensing signal. Based on current findings, we propose the specific enzymes required for ß-oxidation of several specific FAs. Finally, we discuss the future outlook on scientific issues that remain to be addressed. This paper supplies theoretical guidance for further study of the FA ß-oxidation pathway with particular emphasis on its connection to the pathogenicity mechanisms of bacteria.


Assuntos
Ácidos Graxos , Oxirredução , Percepção de Quorum , Transdução de Sinais , Xanthomonas , Ácidos Graxos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Xanthomonas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Virulência , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética
2.
Nat Commun ; 15(1): 7994, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266555

RESUMO

Lignin, a major plant cell wall component, has an important role in plant-defense mechanisms against pathogens and is a promising renewable carbon source to produce bio-based chemicals. However, our understanding of microbial metabolism is incomplete regarding certain lignin-related compounds like p-coumaryl and sinapyl alcohols. Here, we reveal peripheral pathways for the catabolism of the three main lignin precursors (p-coumaryl, coniferyl, and sinapyl alcohols) in the plant pathogen Xanthomonas citri. Our study demonstrates all the necessary enzymatic steps for funneling these monolignols into the tricarboxylic acid cycle, concurrently uncovering aryl aldehyde reductases that likely protect the pathogen from aldehydes toxicity. It also shows that lignin-related aromatic compounds activate transcriptional responses related to chemotaxis and flagellar-dependent motility, which might play an important role during plant infection. Together our findings provide foundational knowledge to support biotechnological advances for both plant diseases treatments and conversion of lignin-derived compounds into bio-based chemicals.


Assuntos
Lignina , Xanthomonas , Xanthomonas/metabolismo , Xanthomonas/genética , Lignina/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ciclo do Ácido Cítrico , Quimiotaxia , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética
3.
Mol Plant Pathol ; 25(9): e70001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223938

RESUMO

Xanthomonas albilineans (Xal) is a gram-negative bacterial pathogen responsible for developing sugarcane leaf scald disease, which engenders significant economic losses within the sugarcane industry. In the current study, homologous recombination exchange was carried out to induce mutations within the virB/D4-like type IV secretion system (T4SS) genes of Xal. The results revealed that the virB11-deletion mutant (ΔvirB11) exhibited a loss in swimming and twitching motility. Application of transmission electron microscopy analysis further demonstrated that the ΔvirB11 failed to develop flagella formation and type IV pilus morphology and exhibited reduced swarming behaviour and virulence. However, these alterations had no discernible impact on bacterial growth. Comparative transcriptome analysis between the wild-type Xal JG43 and the deletion-mutant ΔvirB11 revealed 123 differentially expressed genes (DEGs), of which 28 and 10 DEGs were notably associated with flagellar assembly and chemotaxis, respectively. In light of these findings, we postulate that virB11 plays an indispensable role in regulating the processes related to motility and chemotaxis in Xal.


Assuntos
Proteínas de Bactérias , Fímbrias Bacterianas , Flagelos , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Virulência/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Regulação Bacteriana da Expressão Gênica , Morfogênese , Doenças das Plantas/microbiologia , Saccharum/microbiologia
4.
Elife ; 132024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136681

RESUMO

Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker, elicits canker symptoms in citrus plants because of the transcriptional activator-like (TAL) effector PthA4, which activates the expression of the citrus susceptibility gene CsLOB1. This study reports the regulation of the putative carbohydrate-binding protein gene Cs9g12620 by PthA4-mediated induction of CsLOB1 during Xcc infection. We found that the transcription of Cs9g12620 was induced by infection with Xcc in a PthA4-dependent manner. Even though it specifically bound to a putative TAL effector-binding element in the Cs9g12620 promoter, PthA4 exerted a suppressive effect on the promoter activity. In contrast, CsLOB1 bound to the Cs9g12620 promoter to activate its expression. The silencing of CsLOB1 significantly reduced the level of expression of Cs9g12620, which demonstrated that Cs9g12620 was directly regulated by CsLOB1. Intriguingly, PhtA4 interacted with CsLOB1 and exerted feedback control that suppressed the induction of expression of Cs9g12620 by CsLOB1. Transient overexpression and gene silencing revealed that Cs9g12620 was required for the optimal development of canker symptoms. These results support the hypothesis that the expression of Cs9g12620 is dynamically directed by PthA4 for canker formation through the PthA4-mediated induction of CsLOB1.


Assuntos
Proteínas de Bactérias , Citrus , Doenças das Plantas , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Doenças das Plantas/microbiologia , Citrus/microbiologia , Citrus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas
5.
BMC Genomics ; 25(1): 777, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123115

RESUMO

BACKGROUND: Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied. RESULTS: In this study, we conducted transcriptome sequencing to explore the HrpG regulons of 17 Xanthomonas strains, encompassing six species and nine pathovars, each exhibiting distinct host and tissue specificities. We employed constitutive expression of plasmid-borne hrpG*, which encodes a constitutively active form of HrpG, to induce the regulon. Our findings reveal substantial inter- and intra-specific diversity in the HrpG* regulons across the strains. Besides 21 genes directly involved in the biosynthesis of the T3SS, the core HrpG* regulon is limited to only five additional genes encoding the transcriptional activator HrpX, the two T3E proteins XopR and XopL, a major facility superfamily (MFS) transporter, and the phosphatase PhoC. Interestingly, genes involved in chemotaxis and genes encoding enzymes with carbohydrate-active and proteolytic activities are variably regulated by HrpG*. CONCLUSIONS: The diversity in the HrpG* regulon suggests that HrpG-dependent virulence in Xanthomonas might be achieved through several distinct strain-specific strategies, potentially reflecting adaptation to diverse ecological niches. These findings enhance our understanding of the complex role of HrpG in regulating various virulence and adaptive pathways, extending beyond T3Es and the T3SS.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Regulon , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Transcriptoma , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Appl Environ Microbiol ; 90(9): e0131124, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39207142

RESUMO

The interplay between plant hosts, phytopathogenic bacteria, and enteric human pathogens in the phyllosphere has consequences for human health. Salmonella enterica has been known to take advantage of phytobacterial infection to increase its success on plants, but there is little knowledge of additional factors that may influence the relationship between enteric pathogens and plant disease. In this study, we investigated the role of humidity and the extent of plant disease progression on S. enterica colonization of plants. We found that high humidity was necessary for the replication of S. enterica on diseased lettuce, but not required for S. enterica ingress into the UV-protected apoplast. Additionally, the Xanthomonas hortorum pv. vitians (hereafter, X. vitians)-infected lettuce host was found to be a relatively hostile environment for S. enterica when it arrived prior to the development of watersoaking or following necrosis onset, supporting the existence of an ideal window during X. vitians infection progress that maximizes S. enterica survival. In vitro growth studies in sucrose media suggest that X. vitians may allow S. enterica to benefit from cross-feeding during plant infection. Overall, this study emphasizes the role of phytobacterial disease as a driver of S. enterica success in the phyllosphere, demonstrates how the time of arrival during disease progress can influence S. enterica's fate in the apoplast, and highlights the potential for humidity to transform an infected apoplast into a growth-promoting environment for bacterial colonizers. IMPORTANCE: Bacterial leaf spot of lettuce caused by Xanthomonas hortorum pv. vitians is a common threat to leafy green production. The global impact caused by phytopathogens, including X. vitians, is likely to increase with climate change. We found that even under a scenario where increased humidity did not enhance plant disease, high humidity had a substantial effect on facilitating Salmonella enterica growth on Xanthomonas-infected plants. High humidity climates may directly contribute to the survival of human enteric pathogens in crop fields or indirectly affect bacterial survival via changes to the phyllosphere brought on by phytopathogen disease.


Assuntos
Umidade , Lactuca , Doenças das Plantas , Salmonella enterica , Lactuca/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/fisiologia , Doenças das Plantas/microbiologia , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/fisiologia
7.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39147561

RESUMO

Xanthan gum is a microbial polysaccharide produced by Xanthomonas and widely used in various industries. To produce xanthan gum, the native Xanthomonas citri-386 was used in a cheese-whey-based culture medium. The culture conditions were investigated in batch experiments based on the response surface methodology to increase xanthan production and viscosity. Three independent variables in this study included feeding times of acetate, pyruvate, and citrate. The maximum xanthan gum production and viscosity within 120 h by X. citri-386 using Box-Behnken design were 25.7 g/l and 65 500 cP, respectively, with a 151% and 394% increase as compared to the control sample. Overall, the findings of this study recommend the use of X. citri-386 in the cheese-whey-based medium as an economical medium with optimal amounts of acetate, pyruvate, and citrate for commercial production of xanthan gum on an industrial scale. The adjustment of the pyruvate and acetate concentrations optimized xanthan gum production in the environment.


Assuntos
Acetatos , Ácido Cítrico , Meios de Cultura , Polissacarídeos Bacterianos , Ácido Pirúvico , Xanthomonas , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/crescimento & desenvolvimento , Ácido Pirúvico/metabolismo , Ácido Cítrico/metabolismo , Meios de Cultura/química , Acetatos/metabolismo , Viscosidade
8.
Talanta ; 279: 126655, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098241

RESUMO

Quarantine plant bacteria (QPB) are significant component of invasive alien species that result in substantial economic losses and serious environmental damage. Herein, a colorimetric aptasensor has been proposed based on the sandwich structure and the cascaded catalytic strategy for on-site detecting Xanthomonas hyacinthi, a type of QPB, in natural environments. The self-screened aptamer obtained through SELEX can bind to specific sites on the surface of viable organism with high affinity and specificity, which guarantees the selectivity of aptasensor. As an important part of the aptasensor, MIL-88-NH2(Fe) not only acts as a multifunctional carrier for both aptamers and glucose oxidase, but also catalyzes enzyme-like reaction because of specific surface area, amino and peroxidase-like activity. The present of Xanthomonas hyacinthi can trigger the formation of a sandwich structure and the occurrence of cascade catalytic reaction, enabling the detection with UV-Vis spectra and naked eyes. The proposed aptasensor presents a low detection limit of 2 cfu/mL and a wide linear range of 10 -107 cfu/mL. Compared to traditional detection methods for QPB, the reasonable design, high selectivity and convenience significantly improve the detection efficiency and contribute to environmental protection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Colorimetria , Xanthomonas , Aptâmeros de Nucleotídeos/química , Colorimetria/métodos , Xanthomonas/química , Técnicas Biossensoriais/métodos , Catálise , Limite de Detecção , Técnica de Seleção de Aptâmeros , Estruturas Metalorgânicas/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo
9.
Appl Environ Microbiol ; 90(9): e0084824, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39158313

RESUMO

Xanthomonas species are major pathogens of plants and have been studied extensively. There is increasing recognition of the importance of non-pathogenic species within the same genus. With this came the need to understand the genomic and functional diversity of non-pathogenic Xanthomonas (NPX) at the species and strain level. This study reports isolation and investigation into the genomic diversity and variation in NPX isolates, chiefly Xanthomonas indica, a newly discovered NPX species from rice. The study establishes the relationship of X. indica strains within clade I of Xanthomonads with another NPX species, X. sontii, also associated with rice seeds. Identification of highly diverse strains, open-pan genome, and systematic hyper-variation at the lipopolysaccharide biosynthetic locus when compared to pathogenic Xanthomonas indicates the acquisition of new functions for adaptation. Furthermore, comparative genomics studies established the absence of major virulence genes such as type III secretion system and effectors, which are present in the pathogens, and the presence of a known bacterial-killing type IV secretion system (X-T4SS). The diverse non-pathogenic strains of X. indica and X. sontii were found to protect rice from bacterial leaf blight pathogen, X. oryzae pv. oryzae (Xoo). The absence of phenotype of an X-T4SS mutant suggests redundancy in the genetic basis of the mechanisms involved in the bioprotection function, which may include multiple genetic loci, such as putative bacteriocin-encoding gene clusters and involvement of other factors such as nutrient and niche competition apart from induction of innate immunity through shared microbial-associated molecular patterns. The rice-NPX community and its pathogenic counterpart can be a promising model for understanding plant-microbe-microbiome interaction studies.IMPORTANCEThe Xanthomonas group of bacteria is known for its characteristic lifestyle as a phytopathogen. However, the discovery of non-pathogenic Xanthomonas (NPX) species is a major shift in understanding this group of bacteria. Multi-strain, in-depth genomic, evolutionary and functional studies on each of these NPX species are still lacking. This study on diverse non-pathogenic strains provides novel insights into genome diversity, dynamics, and evolutionary trends of NPX species from rice microbiome apart from its relationship with other relatives that form a sub-clade. Interestingly, we also uncovered that NPX species protect rice from pathogenic Xanthomonas species. The plant protection property shows their importance as a part of a healthy plant microbiome. Furthermore, finding an open pan-genome and large-scale variation at lipopolysaccharide biosynthetic locus indicates a significant role of the NPX community in host adaptation. The findings and high-quality genomic resources of NPX species and the strains will allow further systematic molecular and host-associated microbial community studies for plant health.


Assuntos
Genoma Bacteriano , Genômica , Microbiota , Oryza , Xanthomonas , Xanthomonas/genética , Xanthomonas/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Filogenia
10.
Sci Rep ; 14(1): 18781, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138326

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight in rice. Polyhydroxyalkanoates (PHAs) consitute a diverse group of biopolyesters synthesized by bacteria under nutrient-limited conditions. The phaC gene is important for PHA polymerization. We investigated the effects of phaC gene mutagensis in Xoo strain PXO99A. The phaC gene knock-out mutant exhibited reduced swarming ability relative to that of the wild-type. Under conditions where glucose was the sole sugar source, extracellular polysaccharide (EPS) production by ΔphaC declined by 44.8%. ΔphaC showed weak hypersensitive response (HR) induction in the leaves of non-host Nicotiana tabacum, concomitant with downregulation of hpa1 gene expression. When inoculated in rice leaves by the leaf-clipping method, ΔphaC displayed reduced virulence in terms of lesion length compared with the wild-type strain. The complemented strain showed no significant difference from the wild-type strain, suggesting that the deletion of phaC in Xoo induces significant alterations in various physiological and biological processes. These include bacterial swarming ability, EPS production, transcription of hrp genes, and glucose metabolism. These changes are intricately linked to the energy utilization and virulence of Xoo during plant infection. These findings revealed involvement of phaC in Xoo is in the maintaining carbon metabolism by functioning in the PHA metabolic pathway.


Assuntos
Proteínas de Bactérias , Carbono , Oryza , Doenças das Plantas , Polissacarídeos Bacterianos , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Oryza/microbiologia , Carbono/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Nicotiana/microbiologia , Folhas de Planta/microbiologia
12.
BMC Genomics ; 25(1): 711, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044136

RESUMO

BACKGROUND: Bacterial spot of pepper (BSP), caused by four different Xanthomonas species, primarily X. euvesicatoria (Xe), poses a significant challenge in pepper cultivation. Host resistance is considered the most important approach for BSP control, offering long-term protection and sustainability. While breeding for resistance to BSP for many years focused on dominant R genes, introgression of recessive resistance has been a more recent focus of breeding programs. The molecular interactions underlying recessive resistance remain poorly understood. RESULTS: In this study, transcriptomic analyses were performed to elucidate defense responses triggered by Xe race P6 infection by two distinct pepper lines: the Xe-resistant line ECW50R containing bs5, a recessive resistance gene that confers resistance to all pepper Xe races, and the Xe-susceptible line ECW. The results revealed a total of 3357 upregulated and 4091 downregulated genes at 0, 1, 2, and 4 days post-inoculation (dpi), with the highest number of differentially expressed genes (DEGs) observed at 2 dpi. Pathway analysis highlighted DEGs in key pathways such as plant-pathogen interaction, MAPK signaling pathway, plant hormone signal transduction, and photosynthesis - antenna proteins, along with cysteine and methionine metabolism. Notably, upregulation of genes associated with PAMP-Triggered Immunity (PTI) was observed, including components like FLS2, Ca-dependent pathways, Rboh, and reactive oxygen species (ROS) generation. In support of these results, infiltration of ECW50R leaves with bacterial suspension of Xe led to observable hydrogen peroxide accumulation without a rapid increase in electrolyte leakage, suggestive of the absence of Effector-Triggered Immunity (ETI). Furthermore, the study confirmed that bs5 does not disrupt the effector delivery system, as evidenced by incompatible interactions between avirulence genes and their corresponding dominant resistant genes in the bs5 background. CONCLUSION: Overall, these findings provide insights into the molecular mechanisms underlying bs5-mediated resistance in pepper against Xe and suggest a robust defense mechanism in ECW50R, primarily mediated through PTI. Given that bs5 provides early strong response for resistance, combining this resistance with other dominant resistance genes will enhance the durability of resistance to BSP.


Assuntos
Capsicum , Resistência à Doença , Perfilação da Expressão Gênica , Doenças das Plantas , Xanthomonas , Capsicum/genética , Capsicum/microbiologia , Capsicum/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma
13.
Pestic Biochem Physiol ; 203: 106016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084807

RESUMO

The novel bactericidal target-filamentous temperature-sensitive protein Z (FtsZ)-has drawn the attention of pharmacologists to address the emerging issues with drug/pesticide resistance caused by pathogenic bacteria. To enrich the structural diversity of FtsZ inhibitors, the antibacterial activity and structure-activity relationship (SAR) of natural sanguinarine and its analogs were investigated by using natural-products repurposing strategy. Notably, sanguinarine and chelerythrine exerted potent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity, with EC50 values of 0.96 and 0.93 mg L-1, respectively, among these molecules. Furthermore, these two compounds could inhibit the GTPase activity of XooFtsZ, with IC50 values of 241.49 µM and 283.14 µM, respectively. An array of bioassays including transmission electron microscopy (TEM), fluorescence titration, and Fourier transform infrared spectroscopy (FT-IR) co-verified that sanguinarine and chelerythrine were potential XooFtsZ inhibitors that could interfere with the assembly of FtsZ filaments by inhibiting the GTPase hydrolytic ability of XooFtsZ protein. Additionally, the pot experiment suggested that chelerythrine and sanguinarine demonstrated excellent curative activity with values of 59.52% and 54.76%, respectively. Excitedly, these two natural compounds also showed outstanding druggability, validated by acceptable drug-like properties and low toxicity on rice. Overall, the results suggested that chelerythrine was a new and potential XooFtsZ inhibitor to develop new bactericide and provided important guiding values for rational drug design of FtsZ inhibitors. Notably, our findings provide a novel strategy to discover novel, promising and green bacterial compounds for the management of plant bacterial diseases.


Assuntos
Antibacterianos , Proteínas de Bactérias , Benzofenantridinas , Proteínas do Citoesqueleto , Isoquinolinas , Xanthomonas , Benzofenantridinas/farmacologia , Benzofenantridinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Relação Estrutura-Atividade , Isoquinolinas/farmacologia , Isoquinolinas/química , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Xanthomonas/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana
14.
Sci Rep ; 14(1): 16214, 2024 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003420

RESUMO

Leaf scald, caused by Xanthomonas albilineans, is a severe disease affecting sugarcane worldwide. One of the most practical ways to control it is by developing resistant sugarcane cultivars. It is essential to identify genes associated with the response to leaf scald. A panel of 170 sugarcane genotypes was evaluated for resistance to leaf scald in field conditions for 2 years, followed by a 1-year greenhouse experiment. The phenotypic evaluation data showed a wide continuous distribution, with heritability values ranging from 0.58 to 0.84. Thirteen single nucleotide polymorphisms (SNPs) were identified, significantly associated with leaf scald resistance. Among these, eight were stable across multiple environments and association models. The candidate genes identified and validated based on RNA-seq and qRT-PCR included two genes that encode NB-ARC leucine-rich repeat (LRR)-containing domain disease-resistance protein. These findings provide a basis for developing marker-assisted selection strategies in sugarcane breeding programs.


Assuntos
Resistência à Doença , Doenças das Plantas , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Saccharum , Xanthomonas , Saccharum/genética , Saccharum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Xanthomonas/patogenicidade , Genótipo , Fenótipo , Genes de Plantas , Proteínas de Plantas/genética
15.
Physiol Plant ; 176(4): e14439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991551

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight (BB), has developed a unique strategy to infect rice by hijacking the host's methylglyoxal (MG) detoxification pathway. This results in an over-accumulation of MG, which facilitates tissue colonization and evasion of host's immune responses. While MG role in abiotic stresses is well-documented, its involvement in biotic stresses has not been extensively explored. Recently, Fu et al. (2024) provided the first evidence of MG role in promoting Xoo pathogenesis in rice. This new virulence strategy contributes to the pathogen's remarkable adaptability and survival. In this mechanism of hijacking of MG detoxification pathway, Xoo induces OsWRKY62.1 to inhibit OsGLY II expression, leading to MG overaccumulation in infected rice cells. This excess MG hinders plant cell organelle function, creating a favorable environment for Xoo by compromising the rice defense system. In this article, we have presented our perspectives on how the BB pathogen adapts its virulence mechanisms to infect and cause disease in rice.


Assuntos
Oryza , Doenças das Plantas , Aldeído Pirúvico , Xanthomonas , Oryza/microbiologia , Oryza/metabolismo , Aldeído Pirúvico/metabolismo , Xanthomonas/patogenicidade , Xanthomonas/fisiologia , Doenças das Plantas/microbiologia , Virulência , Interações Hospedeiro-Patógeno , Inativação Metabólica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
16.
Mol Plant Pathol ; 25(7): e13496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011828

RESUMO

The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Metiltransferases , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/metabolismo , Xanthomonas/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Virulência , Doenças das Plantas/microbiologia , Ligação Proteica
17.
J Agric Food Chem ; 72(28): 15561-15571, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957133

RESUMO

Rice bacterial leaf blight and rice bacterial leaf streak have induced tremendous damage to production of rice worldwide. To discover an effective novel antibacterial agent, a series of novel trans-resveratrol (RSV) derivatives containing 1,3,4-oxadiazole and amide moieties were designed and synthesized for the first time. Most of them showed excellent antibacterial activities against Xanthomonas oryzae pv oryzicola and Xanthomonas oryzae pv oryzae. Especially, compound J12 had the best inhibitory with the half-maximal effective concentration values of 4.2 and 5.0 mg/L, respectively, which were better than that of RSV (63.7 and 75.4 mg/L), bismerthiazol (79.5 and 89.6 mg/L), and thiodiazole copper (105.4 and 112.8 mg/L). Furthermore, compound J12 had an excellent control effect against rice bacterial leaf streak and rice bacterial leaf blight, with protective activities of 46.2 and 42.1% and curative activities of 44.5 and 41.7%, respectively. Preliminary mechanisms indicated that compound J12 could not only remarkably decrease biofilm formation, extracellular polysaccharide production, and the synthesis of extracellular enzymes but also destroy bacterial cell surface morphology, thereby reducing the pathogenicity of bacteria. In addition, compound J12 could increase the activity of defense-related enzymes and affect the expression of multiple pathogenic-related genes including plant-pathogen interaction, the MAPK signaling pathway, and phenylpropanoid biosynthesis, and this could improve the defense of rice against rice bacterial leaf streak infection. The present work indicates that the RSV derivatives can be used as promising candidates for the development of antibacterial agents.


Assuntos
Antibacterianos , Oryza , Doenças das Plantas , Resveratrol , Xanthomonas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Xanthomonas/efeitos dos fármacos , Resveratrol/farmacologia , Resveratrol/química , Doenças das Plantas/microbiologia , Oryza/microbiologia , Relação Estrutura-Atividade , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos
18.
J Am Chem Soc ; 146(26): 17738-17746, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957137

RESUMO

Various Xanthomonas species cause well-known plant diseases. Among various pathogenic factors, the role of α-1,6-cyclized ß-1,2-glucohexadecaose (CßG16α) produced by Xanthomonas campestris pv. campestris was previously shown to be vital for infecting model organisms, Arabidopsis thaliana and Nicotiana benthamiana. However, enzymes responsible for biosynthesizing CßG16α are essentially unknown, which limits the generation of agrichemicals that inhibit CßG16α synthesis. In this study, we discovered that OpgD from X. campestris pv. campestris converts linear ß-1,2-glucan to CßG16α. Structural and functional analyses revealed OpgD from X. campestris pv. campestris possesses an anomer-inverting transglycosylation mechanism, which is unprecedented among glycoside hydrolase family enzymes.


Assuntos
Xanthomonas campestris , Xanthomonas campestris/enzimologia , Xanthomonas/enzimologia , Doenças das Plantas/microbiologia , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Modelos Moleculares
19.
Environ Microbiol ; 26(7): e16676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010309

RESUMO

Just as the human gut microbiome is colonized by a variety of microbes, so too is the rhizosphere of plants. An imbalance in this microbial community, known as dysbiosis, can have a negative impact on plant health. This study sought to explore the effect of rhizosphere dysbiosis on the health of tomato plants (Solanum lycopersicum L.), using them and the foliar bacterial spot pathogen Xanthomonas perforans as model organisms. The rhizospheres of 3-week-old tomato plants were treated with either streptomycin or water as a control, and then spray-inoculated with X. perforans after 24 h. Half of the plants that were treated with both streptomycin and X. perforans received soil microbiome transplants from uninfected plant donors 48 h after the streptomycin was applied. The plants treated with streptomycin showed a 26% increase in disease severity compared to those that did not receive the antibiotic. However, the plants that received the soil microbiome transplant exhibited an intermediate level of disease severity. The antibiotic-treated plants demonstrated a reduced abundance of rhizobacterial taxa such as Cyanobacteria from the genus Cylindrospermum. They also showed a down-regulation of genes related to plant primary and secondary metabolism, and an up-regulation of plant defence genes associated with induced systemic resistance. This study highlights the vital role that beneficial rhizosphere microbes play in disease resistance, even against foliar pathogens.


Assuntos
Disbiose , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Transcriptoma , Doenças das Plantas/microbiologia , Disbiose/microbiologia , Solanum lycopersicum/microbiologia , Xanthomonas/genética , Folhas de Planta/microbiologia , Microbiota , Resistência à Doença/genética , Raízes de Plantas/microbiologia , Antibacterianos/farmacologia , Estreptomicina/farmacologia
20.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062838

RESUMO

LuxR-type regulators play pivotal roles in regulating numerous bacterial processes, including bacterial motility and virulence, thereby exerting a significant influence on bacterial behavior and pathogenicity. Xanthomonas oryzae pv. oryzicola, a rice pathogen, causes bacterial leaf streak. Our research has identified VmsR, which is a response regulator of the two-component system (TCS) that belongs to the LuxR family. These findings of the experiment reveal that VmsR plays a crucial role in regulating pathogenicity, motility, biofilm formation, and the production of extracellular polysaccharides (EPSs) in Xoc GX01. Notably, our study shows that the vmsR mutant exhibits a reduced swimming motility but an enhanced swarming motility. Furthermore, this mutant displays decreased virulence while significantly increasing EPS production and biofilm formation. We have uncovered that VmsR directly interacts with the promoter regions of fliC and fliS, promoting their expression. In contrast, VmsR specifically binds to the promoter of gumB, resulting in its downregulation. These findings indicate that the knockout of vmsR has profound effects on virulence, motility, biofilm formation, and EPS production in Xoc GX01, providing insights into the intricate regulatory network of Xoc.


Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transativadores/genética , Transativadores/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA