Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.213
Filtrar
1.
Curr Microbiol ; 81(5): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592505

RESUMO

Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC ß-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.


Assuntos
Antibacterianos , Ceftazidima , Enterobacter , Antibacterianos/farmacologia , Cefotaxima , beta-Lactamases/genética , Combinação Amoxicilina e Clavulanato de Potássio
2.
Euro Surveill ; 29(11)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487887

RESUMO

BackgroundFrom 2019 to 2022, the French National Reference Centre for Antibiotic Resistance (NRC) received a total of 25 isolates of Enterobacter hormaechei subsp. hoffmannii sequence type (ST)1740. All produced metallo-ß-lactamase(s) and were from the Lyon area.AimTo understand these strains' spread and evolution, more extended microbiological and molecular analyses were conducted.MethodsPatients' demographics and specimen type related to isolates were retrieved. All strains underwent short-read whole genome sequencing, and for 15, long-read sequencing to understand carbapenemase-gene acquisition. Clonal relationships were inferred from core-genome single nt polymorphisms (SNPs). Plasmids and the close genetic environment of each carbapenemase-encoding gene were analysed.ResultsPatients (10 female/15 male) were on average 56.6 years old. Seven isolates were recovered from infections and 18 through screening. With ≤ 27 SNPs difference between each other's genome sequences, the 25 strains represented a clone dissemination. All possessed a chromosome-encoded bla NDM-1 gene inside a composite transposon flanked by two IS3000. While spreading, the clone independently acquired a bla VIM-4-carrying plasmid of IncHI2 type (n = 12 isolates), or a bla IMP-13-carrying plasmid of IncP-1 type (n = 1 isolate). Of the 12 isolates co-producing NDM-1 and VIM-4, seven harboured the colistin resistance gene mcr9.2; the remaining five likely lost this gene through excision.ConclusionThis long-term outbreak was caused by a chromosome-encoded NDM-1-producing ST1740 E. hormaechei subsp. hoffmannii clone, which, during its dissemination, acquired plasmids encoding VIM-4 or IMP-13 metallo-ß-lactamases. To our knowledge, IMP-13 has not prior been reported in Enterobacterales in France. Epidemiological and environmental investigations should be considered alongside microbiological and molecular ones.


Assuntos
Enterobacter , beta-Lactamases , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Enterobacter/genética , beta-Lactamases/genética , Plasmídeos/genética , Colistina , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Microb Biotechnol ; 17(3): e14437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465735

RESUMO

Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.


Assuntos
Cucumis melo , Cucurbitaceae , Enterobacter , Escherichia coli O157 , Microbiologia de Alimentos , Cucumis melo/microbiologia , Cucurbitaceae/microbiologia , Contagem de Colônia Microbiana
4.
Sci Rep ; 14(1): 6220, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486043

RESUMO

Enterobacter asburiae, member of the Enterobacter cloacae complex (ECC) group, shows an increasing clinical relevance being responsible for infections like pneumonia, urinary tract infections and septicemia. The aim of the present study was the investigation of the genomic features of two XDR E. asburiae ST229 clinical strains co-carrying blaNDM-1 and blaVIM-1 determinants, collected in October 2021 and in June 2022, respectively. Two E. asburiae strains were collected from rectal swabs of as many patients admitted to the cardiopulmonary intensive care unit of Fondazione I.R.C.C.S. "Policlinico San Matteo" in Pavia, Italy. Based on the antibiotic susceptibility profile results, both isolates showed an XDR phenotype, retaining susceptibility only to fluoroquinolones. Both isolates shared identical resistome, virulome, plasmid content, and belonged to ST229, a rarely reported sequence type. They co-harbored blaNDM-1 and blaVIM-1 genes, that resulted located on transferable plasmids by conjugation and transformation. Moreover, both strains differed in 24 SNPs and showed genetic relatedness with E. asburiae ST709 and ST27. We described the first case of ST229 E. asburiae co-harboring blaNDM-1 and blaVIM-1 in Italy. This study points out the emergence of carbapenemases in low-risk pathogens, representing a novel challenge for public health, that should include such types of strains in dedicated surveillance programs. Antimicrobial susceptibility testing was carried out using Thermo Scientific™ Sensititre™ Gram Negative MIC Plates DKMGN. Both strains underwent whole-genome sequencing (WGS) using Illumina Miseq platform. Resistome, plasmidome, virulome, MLST, plasmid MLST and a SNPs-based phylogenetic tree were in silico determined.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterobacter , beta-Lactamases , Humanos , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Filogenia
5.
Microbiome ; 12(1): 62, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521963

RESUMO

BACKGROUND: The International Space Station (ISS) stands as a testament to human achievement in space exploration. Despite its highly controlled environment, characterised by microgravity, increased CO 2 levels, and elevated solar radiation, microorganisms occupy a unique niche. These microbial inhabitants play a significant role in influencing the health and well-being of astronauts on board. One microorganism of particular interest in our study is Enterobacter bugandensis, primarily found in clinical specimens including the human gastrointestinal tract, and also reported to possess pathogenic traits, leading to a plethora of infections. RESULTS: Distinct from their Earth counterparts, ISS E. bugandensis strains have exhibited resistance mechanisms that categorise them within the ESKAPE pathogen group, a collection of pathogens recognised for their formidable resistance to antimicrobial treatments. During the 2-year Microbial Tracking 1 mission, 13 strains of multidrug-resistant E. bugandensis were isolated from various locations within the ISS. We have carried out a comprehensive study to understand the genomic intricacies of ISS-derived E. bugandensis in comparison to terrestrial strains, with a keen focus on those associated with clinical infections. We unravel the evolutionary trajectories of pivotal genes, especially those contributing to functional adaptations and potential antimicrobial resistance. A hypothesis central to our study was that the singular nature of the stresses of the space environment, distinct from any on Earth, could be driving these genomic adaptations. Extending our investigation, we meticulously mapped the prevalence and distribution of E. bugandensis across the ISS over time. This temporal analysis provided insights into the persistence, succession, and potential patterns of colonisation of E. bugandensis in space. Furthermore, by leveraging advanced analytical techniques, including metabolic modelling, we delved into the coexisting microbial communities alongside E. bugandensis in the ISS across multiple missions and spatial locations. This exploration revealed intricate microbial interactions, offering a window into the microbial ecosystem dynamics within the ISS. CONCLUSIONS: Our comprehensive analysis illuminated not only the ways these interactions sculpt microbial diversity but also the factors that might contribute to the potential dominance and succession of E. bugandensis within the ISS environment. The implications of these findings are twofold. Firstly, they shed light on microbial behaviour, adaptation, and evolution in extreme, isolated environments. Secondly, they underscore the need for robust preventive measures, ensuring the health and safety of astronauts by mitigating risks associated with potential pathogenic threats. Video Abstract.


Assuntos
Anti-Infecciosos , Enterobacter , Microbiota , Voo Espacial , Humanos , Genômica , Microbiota/genética , Astronave
6.
Environ Pollut ; 348: 123880, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554835

RESUMO

The study aimed to evaluate the potential of a novel isolated ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium bioremoval through MICP. The optimization and modelling of the biotic and abiotic factors affecting the process of mineralization were also performed. In addition, the underlying mechanism of MICP-driven Cd mineralization under microbial-inclusive and cell-free conditions was revealed and supported through the characterization of the bio-precipitates obtained using various characterization techniques. The results indicated that the isolate could remove 97.18% Cd2+ of 11.4 ppm under optimized conditions of 36.86 h, pH 7.63, and biomass dose of 1.75 ml. Besides, the presence and absence of bacterial cells were found to influence both the morphologies and crystalline structures of precipitates. The precipitates obtained under microbial-inclusive conditions showed typical rhombohedral crystalline structures of the composition comprising CaCO3, CdCO3, and 0.67Ca0.33CdCO3. However, the crystalline nature of the precipitate reduced to a nano-sized granular structure in cell-free media. Unlike the cadmium mineralization process under microbial-inclusive media, where bacterial cells serve as nucleation sites for crystallization, the carbonate precipitation effectively captures Cd2+ through co-precipitation, chemisorption, or alternative mechanisms involving interactions between metal ions and CaCO3 under cell-free conditions. The findings presented suggest that using cell-free culture supernatant enriched with carbonate ions provides an avenue that could be harnessed for sustainable metal remediation.


Assuntos
Cádmio , Carbonato de Cálcio , Enterobacter , Carbonato de Cálcio/química , Cádmio/química , Precipitação Química , Carbonatos/química
7.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522197

RESUMO

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Plásticos , Polietileno , Solo , Rizosfera , Microplásticos , Metais Pesados/toxicidade , Metais Pesados/análise , Enterobacter , Poluentes do Solo/análise
8.
J Virol ; 98(3): e0173123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329345

RESUMO

In our 2012 genome announcement (J Virol 86:11403-11404, 2012, https://doi.org/10.1128/JVI.01954-12), we initially identified the host bacterium of bacteriophage Enc34 as Enterobacter cancerogenus using biochemical tests. However, later in-house DNA sequencing revealed that the true host is a strain of Hafnia alvei. Capitalizing on our new DNA-sequencing capabilities, we also refined the genomic termini of Enc34, confirming a 60,496-bp genome with 12-nucleotide 5' cohesive ends. IMPORTANCE: Our correction reflects the evolving landscape of bacterial identification, where molecular methods have supplanted traditional biochemical tests. This case underscores the significance of revisiting past identifications, as seemingly known bacterial strains may yield unexpected discoveries, necessitating essential updates to the scientific record. Despite the host identity correction, our genome announcement retains importance as the first complete genome sequence of a Hafnia alvei bacteriophage.


Assuntos
Bacteriófagos , Hafnia alvei , 60490 , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Enterobacter/química , Enterobacter/virologia , Genoma Viral/genética , Hafnia alvei/classificação , Hafnia alvei/genética , Hafnia alvei/virologia , Erro Científico Experimental , Análise de Sequência de DNA
9.
Appl Environ Microbiol ; 90(3): e0224523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319098

RESUMO

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Assuntos
Enterobacter , Hifas , Enterobacter/genética , Enterobacter/metabolismo , Hifas/metabolismo , Fenilacetatos/metabolismo , Rhizoctonia/genética
10.
Microbiol Spectr ; 12(3): e0358923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319115

RESUMO

Whole-genome sequence analysis of six Enterobacter hormaechei and two Serratia nevei strains, using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing, revealed the presence of the epidemic blaOXA-181-carrying IncX3 plasmids co-harboring qnrS1 and ∆ere(A) genes, as well as multiple multidrug resistance (MDR) plasmids disseminating in all strains, originated from dogs and cats in Thailand. The subspecies and sequence types (ST) of the E. hormaechei strains recovered from canine and feline opportunistic infections included E. hormaechei subsp. xiangfangensis ST171 (n = 3), ST121 (n = 1), and ST182 (n = 1), as well as E. hormaechei subsp. steigerwaltii ST65 (n = 1). Five of the six E. hormaechei strains harbored an identical 51,479-bp blaOXA-181-carrying IncX3 plasmid. However, the blaOXA-181 plasmid (pCUVET22-969.1) of the E. hormaechei strain CUVET22-969 presented a variation due to the insertion of ISKpn74 and ISSbo1 into the virB region. Additionally, the blaOXA-181 plasmids of S. nevei strains were nearly identical to the others at the nucleotide level, with ISEcl1 inserted upstream of the qnrS1 gene. The E. hormaechei and S. nevei lineages from canine and feline origins might acquire the epidemic blaOXA-181-carrying IncX3 and MDR plasmids, which are shared among Enterobacterales, contributing to the development of resistance. These findings suggest the spillover of significant OXA-181-encoding plasmids to these bacteria, causing severe opportunistic infections in dogs and cats in Thailand. Surveillance and effective hygienic practice, especially in hospitalized animals and veterinary hospitals, should be urgently implemented to prevent the spread of these plasmids in healthcare settings and communities. IMPORTANCE: blaOXA-181 is a significant carbapenemase-encoding gene, usually associated with an epidemic IncX3 plasmid found in Enterobacterales worldwide. In this article, we revealed six carbapenemase-producing (CP) Enterobacter hormaechei and two CP Serratia nevei strains harboring blaOXA-181-carrying IncX3 and multidrug resistance plasmids recovered from dogs and cats in Thailand. The carriage of these plasmids can promote extensively drug-resistant properties, limiting antimicrobial treatment options in veterinary medicine. Since E. hormaechei and S. nevei harboring blaOXA-181-carrying IncX3 plasmids have not been previously reported in dogs and cats, our findings provide the first evidence of dissemination of the epidemic plasmids in these bacterial species isolated from animal origins. Pets in communities can serve as reservoirs of significant antimicrobial resistance determinants. This situation places a burden on antimicrobial treatment in small animal practice and poses a public health threat.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Doenças do Gato , Doenças do Cão , Enterobacter , Gatos , Animais , Cães , Serratia/genética , Antibacterianos , Doenças do Cão/microbiologia , Plasmídeos/genética , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Testes de Sensibilidade Microbiana
11.
Environ Sci Technol ; 58(9): 4204-4213, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373240

RESUMO

Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.


Assuntos
Arsênio , Arsenitos , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Enterobacter/metabolismo , Oxirredução
12.
Ecotoxicol Environ Saf ; 272: 116077, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335578

RESUMO

Vermicomposting via housefly larvae can be used to efficiently treat manure and regenerate biofertilizer; however, the uptake of heavy metals could negatively influence the growth and development of larvae. Intestinal bacteria play an important role in the development of houseflies, but their effects on resistance to heavy metal damage in houseflies are still poorly understood. In this study, the life history traits and gut microbiota of housefly larvae were evaluated after exposure to an environment with Cu2+ -Enterobacter hormaechei. The data showed that exposure to 300 µg/mL Cu2+ significantly inhibited larval development and locomotor activity and reduced immune capacity. However, dietary supplementation with a Cu2+ -Enterobacter hormaechei mixture resulted in increased body weight and length, and the immune capacity of the larvae returned to normal levels. The abundances of Providencia and Klebsiella increased when larvae were fed Cu2+ -contaminated diets, while the abundances of Enterobacter and Bacillus increased when larvae were exposed to a Cu2+ -Enterobacter hormaechei mixture-contaminated environment. In vitro scanning electron microscopy analysis revealed that Enterobacter hormaechei exhibited obvious adsorption of Cu2+ when cultured in the presence of Cu2+, which reduced the damage caused by Cu2+ to other bacteria in the intestine and protected the larvae from Cu2+ injury. Overall, our results showed that Enterobacter hormaechei can absorb Cu2+ and increase the abundance of beneficial bacteria, thus protecting housefly larvae from damage caused by Cu2+. These results may fill the gaps in our understanding of the interactions between heavy metals and beneficial intestinal bacteria, offering valuable insights into the interplay between housefly larvae and metal contaminants in the environment. This approach could enhance the efficiency of converting manure contaminated with heavy metals to resources using houseflies.


Assuntos
Moscas Domésticas , Metais Pesados , Animais , Moscas Domésticas/microbiologia , Larva , Esterco/microbiologia , Metais Pesados/toxicidade , Enterobacter
13.
Int J Antimicrob Agents ; 63(4): 107105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325719

RESUMO

OBJECTIVES: Trends in the susceptibility to ceftazidime-avibactam (CZA) and tigecycline (TGC) among Enterobacter species from different geographic areas are unknown.This study aimed to analyse the trends in CZA and TGC susceptibility changes across different continents from 2014 to 2021 utilizing Antimicrobial Testing Leadership and Surveillance (ATLAS) data. METHODS: A total of 23 669 isolates of Enterobacter species were collected over an 8-y period. RESULTS: The overall non-susceptibility rate of Enterobacter isolates to both CZA and TGC was 3.2%. India (16.5%), Guatemala (15.4%), and the Philippines (13.1%) exhibited the highest resistance to CZA. The increase in CZA resistance rates was particularly evident in Asia, with an increase from 4.0% to 8.3%, and in Latin America, from 1.5% to 5%. The non-susceptibility rate for TGC mildly increased in Africa/Middle East but decreased in other continents during the study period. The overall rate of carbapenem resistance increased from 2.9% in 2014-2017 to 4.3% in 2018-2021. Among carbapenem-resistant Enterobacter isolates, the CZA resistance rate was highest in Asia (87.4%), followed by Europe (69.2%) and Africa/Middle East (60.8%). Among the 380 Enterobacter isolates resistant to CZA and carbapenem, the most common genotype of carbapenemase genes was blaNDM (59.2%), followed by blaVIM (24.2%), blaOXA (4.2%), blaIMP (1.1%), and blaKPC (1.1%). The susceptibility of carbapenem-resistant Enterobacter to TGC remained high, with an overall susceptibility rate of 90%. CONCLUSIONS: The heterogeneous distribution of CZA resistance rates among different geographical regions highlights the divergent therapeutic options for drug-resistant Enterobacter species.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Enterobacter/genética , Liderança , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Combinação de Medicamentos , Tigeciclina , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
15.
Microbiol Spectr ; 12(4): e0352923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385742

RESUMO

Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum ß-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Enterobacter , Humanos , Enterobacter cloacae/genética , Tipagem de Sequências Multilocus , Proteínas de Bactérias/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Plasmídeos/genética , Unidades de Terapia Intensiva , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
16.
Antonie Van Leeuwenhoek ; 117(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170259

RESUMO

The inherent potential of apple plants was investigated to explore bacterial endophytes and their role in suppressing Dematophora necatrix, the causative pathogen of white root rot disease. Resultantly 34 endophytic bacteria isolated from healthy apple plants, and subsequently 6 most efficient isolates viz., Bacillus megaterium strain EA3, Enterobacter sp. strain EA7, Bacillus megaterium strain EK2, Stenotrophomonas maltophilia strain EK6, Acinetobacter nosocomialis strain ES2 and Pseudomonas aeruginosa strain ES8 depicting anti-pathogen interactions through preliminary screening were assessed further under in vitro, glasshouse and field conditions against white root rot pathogen/disease. Maximum mycelial growth inhibition (80.37%) was obtained with S. maltophilia strain EK6 encouraging for its seed treatment and soil application thereby providing significant effective control (87.91%) of white root rot under glasshouse conditions to other five bacterial endophytes evaluated simultaneously, followed by field efficacy of 83.70%. In addition, it has significantly enhanced the growth parameters of apple trees under both glasshouse and field conditions. The inoculated healthy plants were assessed for endophytic colonization which revealed maximum endosphere colonialism by S. maltophilia strain EK6. Additionally, confocal microscopic images of transverse sections of root cells colonized by bacterial endophytes as compared to untreated control implied their persistence and establishment in endosphere of apple seedlings. The study provides the first report on interaction between apple associated bacterial root endophytes and D. necatrix. The obtained endophytic strains could be employed as alternative for mitigating white root rot disease in future.


Assuntos
Malus , Endófitos , Enterobacter , Pseudomonas aeruginosa , Plântula , Raízes de Plantas/microbiologia
17.
Sci Total Environ ; 915: 169945, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218466

RESUMO

In this study we present an in-depth characterization of two blaKPC-2 encoding plasmids found in the Enterobacter kobei FL23 strain recovered from recreational coastal water. The plasmids belong to distinct incompatibility groups and carry a diverse collection of resistance genes. Furthermore, the genetic context of the blaKPC-2 gene was different in each of them. While pEkFL23-IncX3 presents a new Tn4401k, a new isoform, similar to Tn4401b but with a truncated tnpA and a deleted tnpR; pEkFL23-IncU/P6 carries a new isoform of a non-Tn4401 element (NTEKPC), named NTEKPC-IIh. Its difference from NTEKPC-IId is the truncated Tn3 resolvase upstream blaKPC-2. Capacity of conjugation, maintenance rates and fitness cost of both replicons were also assessed. Both were transferred after mating assays, whereas only pEkFL23-IncX3 was transferred under the adverse conditions of Marine broth at 25 °C as a mating platform. A remarkable stability of both plasmids was observed in the parental and transconjugant strains. Finally, both replicons did not impose a significant fitness cost to their transformant hosts, with pEkFL23-IncU/P6 conferring a statistically significant (p < 0.05) advantage in head-to-head competitions. Our findings show that E. kobei FL23 is a disquieting case of a carbapenem-resistant bacteria identified in a community setting, being a possible silent disseminator of two seemingly stable and metabolic weightless multidrug resistance plasmids.


Assuntos
Antibacterianos , Enterobacter , beta-Lactamases , beta-Lactamases/genética , Klebsiella pneumoniae , Plasmídeos , Isoformas de Proteínas/genética , Água , Testes de Sensibilidade Microbiana
18.
Arch Microbiol ; 206(2): 81, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294553

RESUMO

Enterobacter genus includes the bacteria occupying every aspect of environment, however, their adaptability at varying temperature is not clear. In the present study, we analyzed the transcriptome response of Enterobacter sp. S-33 and their functional genes under various temperatures (30-45 ℃) that were expressed and accumulated in cells under temperature-stress. During a temperature shift from 37 to 45 ℃, 165 genes showed differential expression including 112 up-regulated and 53 down-regulated. In particular, heat-shock genes such as CspA, 16 kDa heat shock protein A/B and transcriptional regulators such as LysR, TetR, and LuxR were differentially expressed, indicating the role of complex molecular mechanism of Enterobacter adapting to temperature stress. Similarly, genes associated to signal transduction, ABC transporters, iron homeostasis, and quorum sensing were also induced. The Gene ontology enrichment analysis of differentially expressed genes (DEGs) were categorized into "transmembrane transport", "tRNA binding", "hydrogen sulfide biosynthetic process" and "sulfate assimilation" terms. In addition, Kyoto Encyclopedia of Genes and Genomes pathways showed that ABC transporter as well as quorum sensing pathways were significantly enriched. Overall, current study has contributed to explore the adaptive molecular mechanisms of Enterobacter spp. upon temperature change, which further opens new avenues for future in-depth functional studies.


Assuntos
Enterobacter , Transcriptoma , Enterobacter/genética , Temperatura , Transporte Biológico , Ontologia Genética
19.
BMC Microbiol ; 24(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172684

RESUMO

BACKGROUND: Harmonia axyridis is an effective natural enemy insect to a variety of phloem-sucking pests and Lepidopteran larvae, such as aphids, scabies, and phylloxera, while its industrial production is limited due to unmature artificial diet. Insect intestinal microbiota affect host development and reproduction. The aim of this study is to understand intestinal microbiota composition of H. axyridis and screen effective probiotics on artificial diet. Considering the role of the components and composition of the diet on the structure and composition of the intestinal microbiome, four kinds of diets were set up: (1) aphid; (2) basic diet; (3) basic diet + glucose; (4) basic diet + trehalose. The gut microbiota of H. axyridis was detected after feeding on different diets. RESULTS: Results showed that the gut microbiota between artificial diet group and aphid groups were far apart, while the basic and glucose groups were clearly clustered. Besides, the glucose group and trehalose group had one unique phylum, Cryptophyta and Candidatus Saccharibacteria, respectively. The highest abundance of Proteobacteria was found in the aphid diet. The highest abundance of Firmicutes was found in the basic diet. However, the addition of glucose or trehalose alleviated the change. In addition, the relative abundance of Enterobacter, Klebsiella, Enterobacteriaceae_unclassified, Enterobacteriales_unclassified and Serratia in the aphid group was higher than other groups. Moreover, the function of gut genes in each group also showed clear differences. CONCLUSION: These results have offered a strong link between artificial diets and gut microbes, and also have provided a theoretical basis for the screening of synergistic probiotics in artificial diet.


Assuntos
Afídeos , Besouros , Microbioma Gastrointestinal , Animais , Trealose , Insetos , Dieta , Enterobacter , Glucose
20.
BMC Microbiol ; 24(1): 26, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238664

RESUMO

The human-pathogenic Enterobacter species are widely distributed in diverse environmental conditions, however, the understanding of the virulence factors and genetic variations within the genus is very limited. In this study, we performed comparative genomics analysis of 49 strains originated from diverse niches and belonged to eight Enterobacter species, in order to further understand the mechanism of adaption to the environment in Enterobacter. The results showed that they had an open pan-genome and high genomic diversity which allowed adaptation to distinctive ecological niches. We found the number of secretion systems was the highest among various virulence factors in these Enterobacter strains. Three types of T6SS gene clusters including T6SS-A, T6SS-B and T6SS-C were detected in most Enterobacter strains. T6SS-A and T6SS-B shared 13 specific core genes, but they had different gene structures, suggesting they probably have different biological functions. Notably, T6SS-C was restricted to E. cancerogenus. We detected a T6SS gene cluster, highly similar to T6SS-C (91.2%), in the remote related Citrobacter rodenitum, suggesting that this unique gene cluster was probably acquired by horizontal gene transfer. The genomes of Enterobacter strains possess high genetic diversity, limited number of conserved core genes, and multiple copies of T6SS gene clusters with differentiated structures, suggesting that the origins of T6SS were not by duplication instead by independent acquisition. These findings provide valuable information for better understanding of the functional features of Enterobacter species and their evolutionary relationships.


Assuntos
Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/genética , Enterobacter/genética , Proteínas de Bactérias/genética , Genômica , Fatores de Virulência/genética , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...