Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582763

RESUMO

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Assuntos
Bacteriófagos , Enterococos Resistentes à Vancomicina , Humanos , Animais , Camundongos , Bacteriófagos/fisiologia , Vancomicina/farmacologia , Modelos Animais de Doenças , Myoviridae/fisiologia , Antibacterianos/farmacologia
2.
Arch Virol ; 169(3): 66, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451338

RESUMO

A lytic Acinetobacter baumannii phage, isolate vB_AbaM_AB3P2, was isolated from a sewage treatment plant in China. A. baumannii phage vB_AbaM_AB3P2 has a dsDNA genome that is 44,824 bp in length with a G + C content of 37.75%. Ninety-six open reading frames were identified, and no genes for antibiotic resistance or virulence factors were found. Genomic and phylogenetic analysis of this phage revealed that it represents a new species in the genus Obolenskvirus. Phage vB_AbaM_AB3P2 has a short latent period (10 min) and high stability at 30-70°C and pH 2-10 and is potentially useful for controlling multi-drug-resistant A. baumannii.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Bacteriófagos/genética , Acinetobacter baumannii/genética , Filogenia , Genômica , Myoviridae/genética
3.
Nat Commun ; 15(1): 2654, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531972

RESUMO

The Myoviridae cyanophage A-1(L) specifically infects the model cyanobacteria Anabaena sp. PCC 7120. Following our recent report on the capsid structure of A-1(L), here we present the high-resolution cryo-EM structure of its intact tail machine including the neck, tail and attached fibers. Besides the dodecameric portal, the neck contains a canonical hexamer connected to a unique pentadecamer that anchors five extended bead-chain-like neck fibers. The 1045-Å-long contractile tail is composed of a helical bundle of tape measure proteins surrounded by a layer of tube proteins and a layer of sheath proteins, ended with a five-component baseplate. The six long and six short tail fibers are folded back pairwise, each with one end anchoring to the baseplate and the distal end pointing to the capsid. Structural analysis combined with biochemical assays further enable us to identify the dual hydrolytic activities of the baseplate hub, in addition to two host receptor binding domains in the tail fibers. Moreover, the structure of the intact A-1(L) also helps us to reannotate its genome. These findings will facilitate the application of A-1(L) as a chassis cyanophage in synthetic biology.


Assuntos
Anabaena , Myoviridae , Proteínas do Capsídeo/química , Capsídeo
4.
Microbiol Spectr ; 12(3): e0283323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323825

RESUMO

The Pseudomonas syringae species complex is a heterogeneous group of plant pathogenic bacteria associated with a wide distribution of plant species. Advances in genomics are revealing the complex evolutionary history of this species complex and the wide array of genetic adaptations underpinning their diverse lifestyles. Here, we genomically characterize two P. syringae isolates collected from diseased Callery pears (Pyrus calleryana) in Berkeley, California in 2019 and 2022. We also isolated a lytic bacteriophage, which we characterized and evaluated for biocontrol efficiency. Using a multilocus sequence analysis and core genome alignment, we classified the P. syringae isolates as members of phylogroup 2, related to other strains previously isolated from Pyrus and Prunus. An analysis of effector proteins demonstrated an evolutionary conservation of effectoromes across isolates classified in PG2 and yet uncovered unique effector profiles for each, including the two newly identified isolates. Whole-genome sequencing of the associated phage uncovered a novel phage genus related to Pseudomonas syringae pv. actinidiae phage PHB09 and the Flaumdravirus genus. Finally, using in planta infection assays, we demonstrate that the phage was equally useful in symptom mitigation of immature pear fruit regardless of the Pss strain tested. Overall, this study demonstrates the diversity of P. syringae and their viruses associated with ornamental pear trees, posing spill-over risks to commercial pear trees and the possibility of using phages as biocontrol agents to reduce the impact of disease.IMPORTANCEGlobal change exacerbates the spread and impact of pathogens, especially in agricultural settings. There is a clear need to better monitor the spread and diversity of plant pathogens, including in potential spillover hosts, and for the development of novel and sustainable control strategies. In this study, we characterize the first described strains of Pseudomonas syringae pv. syringae isolated from Callery pear in Berkeley, California from diseased tissues in an urban environment. We show that these strains have divergent virulence profiles from previously described strains and that they can cause disease in commercial pears. Additionally, we describe a novel bacteriophage that is associated with these strains and explore its potential to act as a biocontrol agent. Together, the data presented here demonstrate that ornamental pear trees harbor novel P. syringae pv. syringae isolates that potentially pose a risk to local fruit production, or vice versa-but also provide us with novel associated phages, effective in disease mitigation.


Assuntos
Bacteriófagos , Pyrus , Bacteriófagos/genética , Pyrus/microbiologia , Pseudomonas syringae/genética , Myoviridae , Genômica , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396752

RESUMO

Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus-host bacteria interaction.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Filogenia , Genoma Viral , Myoviridae/genética , Genômica
6.
Genes (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255005

RESUMO

Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses' taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells.


Assuntos
Bacteriófagos , Pseudomonas syringae/genética , Myoviridae/genética , Cobre , Integrases
7.
Enzyme Microb Technol ; 173: 110368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043249

RESUMO

Most of the dsDNA cyanophages employ holin-endolysin lysis systems to damage the host cells. This study aimed to elucidate the lytic activity of ORF91 and ORF117 in the cyanophage MaMV-DH01, which lacked a conventional cholinesterase system. These two proteins contained Lyz-like superfamily domains and were annotated as a member of GH family 19 (named DHGH19) and peptidase (named DHpeptidase), respectively. Overexpression of DHGH19 in E. coli over a 5 h course demonstrated potent bactericidal activity, evident from significant growth inhibition, membrane damage, and leakage of intracellular enzymes of E. coli cells. However, the lytic activity of DHpeptidase was relatively weaker, exhibiting a bacteriostatic effect. It was important to highlight that the specific mutation of enzyme-catalyzed residues in DHGH19 (E122 and E131) showed that these were the essential amino acids for DHGH19 to exert its bactericidal activity. Furthermore, the lytic function of DHGH19 and DHpeptidase on cyanobacteria cells was confirmed by their overexpression in the cyanobacterium Synechocystis sp. PCC6803. Overall, this study provides novel insights into the lytic mechanism of Myoviridae cyanophage, offering potential alternatives for the development of GH19 and peptidase as new antibacterial agents in the future.


Assuntos
Bacteriófagos , Cianobactérias , Peptídeo Hidrolases , Myoviridae/metabolismo , Muramidase , Escherichia coli/genética , Escherichia coli/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Cianobactérias/metabolismo , Bacteriófagos/genética
8.
Sci Rep ; 13(1): 23040, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155176

RESUMO

Infections by multidrug resistant bacteria (MDR) are becoming increasingly difficult to treat and alternative approaches like phage therapy, which is unhindered by drug resistance, are urgently needed to tackle MDR bacterial infections. During phage therapy phage cocktails targeting different receptors are likely to be more effective than monophages. In the present study, phages targeting carbapenem resistant clinical isolate of E. coli U1007 was isolated from Ganges River (U1G), Cooum River (CR) and Hospital waste water (M). Capsid architecture discerned using TEM identified the phage families as Podoviridae for U1G, Myoviridae for CR and Siphoviridae for M phage. Genome sequencing showed the phage genomes varied in size U1G (73,275 bp) CR (45,236 bp) and M (45,294 bp). All three genomes lacked genes encoding tRNA sequence, antibiotic resistant or virulent genes. A machine learning (ML) based multi-class classification model using Random Forest, Logistic Regression, and Decision Tree were employed to predict the host receptor targeted by receptor binding protein of all 3 phages and the best performing algorithm Random Forest predicted LPS O antigen, LamB or OmpC for U1G; FhuA, OmpC for CR phage; and FhuA, LamB, TonB or OmpF for the M phage. OmpC was validated as receptor for U1G by physiological experiments. In vivo intramuscular infection study in zebrafish showed that cocktail of dual phages (U1G + M) along with colsitin resulted in a significant 3.5 log decline in cell counts. Our study highlights the potential of ML tool to predict host receptor and proves the utility of phage cocktail to restrict E. coli U1007 in vivo.


Assuntos
Bacteriófagos , Podoviridae , Humanos , Animais , Escherichia coli/genética , Peixe-Zebra , Myoviridae
9.
PLoS One ; 18(10): e0292933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37831666

RESUMO

The achievement of an active biological entity from environmental DNA is important in the field of phage. In this study, the environmental DNA extracted from hospital wastewater was transferred into Escherichia coli DH10B and Escherichia coli BL21 with chemical transformation and electroporation. After transformation, overnight cultures were filtered and used as phage source. The efficacies of the techniques were evaluated with spot test and double-layer agar assay. The emerged phage, named as ADUt, was purified and host-range analysis was performed. Phage DNA was isolated, sequenced and restriction profile was determined. The genome was assembled. The phylogenetic tree was constructed via VipTree. The extracted DNA resulted in active phage by the transformation of E. coli DH10B, but not E. coli BL21. The chemical transformation was found more successful than electroporation. ADUt phage was found to be polyvalent and effective against limited strains of Shigella and Escherichia genera. The phage genome size and GC ratio are 166904 bp and 35.67%, respectively. ADUt is a member of Straboviridae family and Tequatrovirus genus. This is the first study that uses environmental DNA for acquiring active phage, which may be an important source of new phage discovery. The result showed that DNA transformation yields active bacteriophage with both chemical transformation and electroporation.


Assuntos
Bacteriófagos , DNA Ambiental , Bacteriófagos/genética , Escherichia coli/genética , Filogenia , Myoviridae/genética
10.
Virus Genes ; 59(6): 852-867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857999

RESUMO

Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Klebsiella pneumoniae/genética , Genômica , Myoviridae/genética , Especificidade de Hospedeiro , Bactérias , Genoma Viral/genética
11.
Microb Pathog ; 185: 106403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879452

RESUMO

A common environmental bacteria called Stenotrophomonas maltophilia has become an organism responsible for significant nosocomial infection, mortality in immunocompromised patients, and significantly increasing morbidity and is challenging to treat due to the antibiotic resistance activity of the organism. and bacteriophage therapy is one of the promising treatments against the organism. In this research, we isolated, identified, and characterized Stenotrophomonas phage CM1 against S. maltophilia. Stenotrophomonas phage CM1 head was measured to have a diameter of around 224.25 nm and a tail length of about 159 nm. The phage was found to have noticeable elongated tail spikes around 125 nm in length, the Myoviridae family of viruses, which is categorized under the order Caudovirales. The ideal pH for growth was around 7, demonstrated good thermal stability when incubated at 37-60 °C for 30 min or 60 min, and phage infectivity decreased marginally after 30 min of incubation at 1-5% chloroform concentration. Phage was 3,19,518 base pairs long and had an averaged G + C composition of 43.9 %; 559 open-reading frames (ORFs) were found in the bacteriophage genome, in which 508 of them are hypothetical proteins, 22 of them are other known proteins, 29 of them are tRNAs, and one of them is restriction enzyme. A phylogenetic tree was reconstructed, demonstrating that CM1 shares a close evolutionary relationship with other Stenotrophomonas phages.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Stenotrophomonas/genética , Filogenia , Genoma Viral , Myoviridae/genética , Fases de Leitura Aberta
12.
Curr Microbiol ; 80(12): 372, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843653

RESUMO

Phage therapy is a promising alternative to control bacterial diseases and the increasing problem of antibiotic resistance. In this sense, this research evaluates the viability of lyophilized vibrio phage vB_Pd_PDCC-1 using trehalose as a preservative excipient at different concentrations (4, 2, 1, and 0.5% w/v) and its potential for phage therapy application against a pathogenic bacteria Vibrio diabolicus in brine shrimp nauplii (Artemia franciscana). The lyophilized phages were stored at 4 and 23 °C and rehydrated using biological sterile saline solution to test their viability at days 1, 15, and 60 post-lyophilization. The results showed that trehalose is beneficial in maintaining the viability of post-lyophilization phages (without titer losses) at 4 °C and even at room temperature (23 °C). When lyophilized phages with 4% w/v trehalose concentration were stored at 23 °C, they had not titer losses among the trials; viability and titer concentration were maintained up to 60 days at log 7. The use of lyophilized phage PDCC-1 increased brine shrimp survival and reduced Vibrio concentrations. The present study has identified trehalose as a promising lyophilization excipient to effectively preserve lyophilized bacteriophages for biotechnological applications and long-term storage.


Assuntos
Bacteriófagos , Vibrio , Trealose/farmacologia , Excipientes , Myoviridae
13.
Virus Genes ; 59(6): 874-877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667026

RESUMO

The newly discovered Xanthomonas phage M29 (Xp M29) is the first lytic phage infecting Xanthomonas campestris pv. campestris (Xcc) that was isolated from cabbage leaves in the Czech Republic. The phage consists of icosahedral head approximately 60 nm in diameter and a probably contractile tail of 170 nm. The complete genome size was 42 891 bp, with a G + C content of 59.6%, and 69 ORFs were predicted on both strands. Pairwise nucleotide comparison showed the highest similarity with the recently described Xanthomonas phage FoX3 (91.2%). Bacteriophage Xp M29 has a narrow host range infecting 5 out of 21 isolates of Xcc. Xp M29 is a novel species in a newly formed genus Foxunavirus assigned directly to the class Caudoviricetes.


Assuntos
Bacteriófagos , Xanthomonas campestris , Xanthomonas , República Tcheca , Xanthomonas campestris/genética , Xanthomonas/genética , Bacteriófagos/genética , Myoviridae
14.
Virus Res ; 336: 199226, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739268

RESUMO

Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.


Assuntos
Bacteriófagos , Filogenia , Análise de Sequência de DNA , Genoma Viral , Myoviridae , Genômica , Nucleotídeos
15.
Viruses ; 15(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37632015

RESUMO

Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here, we report cryo-EM reconstructions of all components of the XM1 virion and describe the atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared to other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection and post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection.


Assuntos
Bacteriófagos , Myoviridae , Myoviridae/genética , Bacteriófagos/genética , Antibacterianos , Membrana Celular , DNA
16.
Virology ; 585: 222-231, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392714

RESUMO

A new phage PseuPha1, infecting multiple multi-drug resistant strains of Pseudomonas aeruginosa with strong anti-biofilm activities, was isolated from wastewater in India. PseuPha1 showed optimal multiplicity of infection at 10-3, maintained the infectivity at wide ranges of pH (6-9) and temperature (4-37 °C), and exhibited 50 minutes latent period and a burst size of 200 when tested against P. aeruginosa PAO1. PseuPha1 shared 86.1-89.5% pairwise intergenomic similarity with Pakpunavirus species (n = 11) listed by the International Committee on Taxonomy of Viruses and established distinct phyletic lineages during phylogenetic analyses of phage proteins. While genomic data validated the taxonomic novelty and lytic attributes of PseuPha1, BOX-PCR profiling asserted the genetic heterogeneity of susceptible clinical P. aeruginosa. Our data supported the affiliation of PseuPha1 as a new Pakpunavirus species and provided the first line of evidence for its virulence and infectivity that can be harnessed in wound therapeutics.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Bacteriófagos/genética , Pseudomonas aeruginosa/genética , Filogenia , Myoviridae , Genômica , Fagos de Pseudomonas/genética
17.
Nat Commun ; 14(1): 4052, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422479

RESUMO

E217 is a Pseudomonas phage used in an experimental cocktail to eradicate cystic fibrosis-associated Pseudomonas aeruginosa. Here, we describe the structure of the whole E217 virion before and after DNA ejection at 3.1 Å and 4.5 Å resolution, respectively, determined using cryogenic electron microscopy (cryo-EM). We identify and build de novo structures for 19 unique E217 gene products, resolve the tail genome-ejection machine in both extended and contracted states, and decipher the complete architecture of the baseplate formed by 66 polypeptide chains. We also determine that E217 recognizes the host O-antigen as a receptor, and we resolve the N-terminal portion of the O-antigen-binding tail fiber. We propose that E217 design principles presented in this paper are conserved across PB1-like Myoviridae phages of the Pbunavirus genus that encode a ~1.4 MDa baseplate, dramatically smaller than the coliphage T4.


Assuntos
Fagos de Pseudomonas , Fagos de Pseudomonas/genética , Microscopia Crioeletrônica , Antígenos O , Microscopia Eletrônica , Myoviridae , Bacteriófago T4/química
18.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298271

RESUMO

The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526-gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly.


Assuntos
Bacteriófagos , Myoviridae , Adsorção , Bacteriófagos/genética , Klebsiella pneumoniae , Especificidade de Hospedeiro , Genoma Viral
19.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298457

RESUMO

The most significant serotype of Shiga-toxigenic Escherichia coli that causes foodborne illnesses is Escherichia coli O157:H7. Elimination of E. coli O157:H7 during food processing and storage is a possible solution. Bacteriophages have a significant impact on bacterial populations in nature due to their ability to lyse their bacterial host. In the current study, a virulent bacteriophage, Ec_MI-02, was isolated from the feces of a wild pigeon in the United Arab Emirates (UAE) for potential future use as a bio-preservative or in phage therapy. Using a spot test and an efficiency of plating analysis, Ec_MI-02 was found to infect in addition to the propagation host, E. coli O157:H7 NCTC 12900, five different serotypes of E. coli O157:H7 (three clinical samples from infected patients, one from contaminated green salad, and one from contaminated ground beef). Based on morphology and genome analysis, Ec_MI-02 belongs to the genus Tequatrovirus under the order Caudovirales. The adsorption rate constant (K) of Ec_MI-02 was found to be 1.55 × 10-8 mL/min. The latent period was 50 min with a burst size of almost 10 plaque forming units (pfu)/host cell in the one-step growth curve when the phage Ec_MI-02 was cultivated using the propagation host E. coli O157:H7 NCTC 12900. Ec_MI-02 was found to be stable at a wide range of pH, temperature, and commonly used laboratory disinfectants. Its genome is 165,454 bp long with a GC content of 35.5% and encodes 266 protein coding genes. Ec_MI-02 has genes encoding for rI, rII, and rIII lysis inhibition proteins, which supports the observation of delayed lysis in the one-step growth curve. The current study provides additional evidence that wild birds could also be a good natural reservoir for bacteriophages that do not carry antibiotic resistance genes and could be good candidates for phage therapy. In addition, studying the genetic makeup of bacteriophages that infect human pathogens is crucial for ensuring their safe usage in the food industry.


Assuntos
Bacteriófagos , Escherichia coli O157 , Animais , Bovinos , Humanos , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Columbidae , Myoviridae/genética , Bacteriófagos/genética , Genômica , Fezes
20.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376567

RESUMO

The Myoviridae phage tail is a common component of contractile injection systems (CISs), essential for exerting contractile function and facilitating membrane penetration of the inner tail tube. The near-atomic resolution structures of the Myoviridae tail have been extensively studied, but the dynamic conformational changes before and after contraction and the associated molecular mechanism are still unclear. Here, we present the extended and contracted intact tail-structures of Myoviridae phage P1 by cryo-EM. The ultra-long tail of P1, 2450 Å in length, consists of a neck, a tail terminator, 53 repeated tail sheath rings, 53 repeated tube rings, and a baseplate. The sheath of the contracted tail shrinks by approximately 55%, resulting in the separation of the inner rigid tail tube from the sheath. The extended and contracted tails were further resolved by local reconstruction at 3.3 Å and 3.9 Å resolutions, respectively, allowing us to build the atomic models of the tail terminator protein gp24, the tube protein BplB, and the sheath protein gp22 for the extended tail, and of the sheath protein gp22 for the contracted tail. Our atomic models reveal the complex interaction network in the ultra-long Myoviridae tail and the novel conformational changes of the tail sheath between extended and contracted states. Our structures provide insights into the contraction and stabilization mechanisms of the Myoviridae tail.


Assuntos
Bacteriófago P1 , Myoviridae , Myoviridae/química , Proteínas da Cauda Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...