Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Vet Intern Med ; 38(1): 424-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38141173

RESUMO

BACKGROUND: Dexamethasone is routinely administered to horses but its effect on the antibody response to a commercial EIV/EHV vaccine is unclear. HYPOTHESIS: Horses receiving dexamethasone will have lower postvaccination antibody levels against EIV and EHV-1 than vaccinated controls. ANIMALS: Fifty-five healthy adult research horses. METHODS: Randomized cohort study. Control (no vaccine, group 1), vaccination only (EIV/EHV-1/EHV-4, Prestige 2, Merck Animal Health, group 2), vaccination and concurrent single intravenous dose of dexamethasone (approximately .05 mg/kg, group 3), vaccination and 3 intravenous doses of dexamethasone at 24 hours intervals (group 4). Serum SAA levels were measured on day 1 and day 3. Antibody levels against EIV (hemagglutination inhibition assay, Kentucky 2014 antigen) and EHV-1 (multiplex ELISA targeting total IgG and IgG 4/7) were measured on day 1 and day 30. RESULTS: Significantly increased mean antibody titers after vaccination were only noted against EIV and only after the vaccination alone (n = 14, prevaccine mean [prvm] 166.9, SD 259.6, 95% CI 16.95-316.8; postvaccine mean [povm] 249.1, SD 257.2, 95% confidence interval [CI] 100.6-397.6, P = .02) and the single dose dexamethasone (n = 14, prvm 93.14, SD 72.2, CI 51.45-134.8; povm 185.1, SD 118, CI 116.7-253.6, P = .01), but not after multiple doses of dexamethasone (n = 14, prvm 194.3, SD 258.3, CI 45.16-343.4; povm 240.0, SD 235.7, CI 103.9-376.1, P > .05). CONCLUSION: The effect of dexamethasone on the postvaccine antibody response varies depending on the dosing frequency and the antigen-specific antibody type.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Orthomyxoviridae , Vacinas , Humanos , Animais , Cavalos , Formação de Anticorpos , Estudos de Coortes , Anticorpos Antivirais , Vacinação/veterinária , Imunoglobulina G , Dexametasona/farmacologia , Infecções por Herpesviridae/veterinária
2.
Virus Res ; 339: 199262, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37931881

RESUMO

Infection with equid herpesvirus 1 (EHV-1), a DNA virus of the Herpesviridae family represents a significant welfare issue in horses and a great impact on the equine industry. During EHV-1 infection, entry of the virus into different cell types is complex due to the presence of twelve glycoproteins (GPs) on the viral envelope. To investigate virus entry mechanisms, specific combinations of GPs were pseudotyped onto lentiviral vectors. Pseudotyped virus (PV) particles bearing gB, gD, gH and gL were able to transduce several target cell lines (HEK293T/17, RK13, CHO-K1, FHK-Tcl3, MDCK I & II), demonstrating that these four EHV-1 glycoproteins are both essential and sufficient for cell entry. The successful generation of an EHV-1 PV permitted development of a PV neutralisation assay (PVNA). The efficacy of the PVNA was tested by measuring the level of neutralising serum antibodies from EHV-1 experimentally infected horses (n = 52) sampled in a longitudinal manner. The same sera were assessed using a conventional EHV-1 virus neutralisation (VN) assay, exhibiting a strong correlation (r = 0.82) between the two assays. Furthermore, PVs routinely require -80 °C for long term storage and a dry ice cold-chain during transport, which can impede dissemination and utilisation in other stakeholder laboratories. Consequently, lyophilisation of EHV-1 PVs was conducted to address this issue. PVs were lyophilised and pellets either reconstituted immediately or stored under various temperature conditions for different time periods. The recovery and functionality of these lyophilised PVs was compared with standard frozen aliquots in titration and neutralisation tests. Results indicated that lyophilisation could be used to stably preserve such complex herpesvirus pseudotypes, even after weeks of storage at room temperature, and that reconstituted EHV-1 PVs could be successfully employed in antibody neutralisation tests.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Humanos , Animais , Cavalos , Herpesvirus Equídeo 1/genética , Células HEK293 , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecções por Herpesviridae/veterinária , Glicoproteínas , Herpesvirus Equídeo 4/genética
3.
J Virol Methods ; 310: 114615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087793

RESUMO

Equid gammaherpesvirus 2 (EHV-2) and 5 (EHV-5) are widely distributed in the equines. Although their pathogenic potential is not yet fully understood, they appear to play a role in disease patterns like equine multinodular pulmonary fibrosis. In this study, a multiplex real-time PCR (rtPCR) was designed to detect DNA of the glycoprotein H (EHV-2) and E11 gene (EHV-5). Analytical specificity was determined by testing DNA of other herpesviruses by SYBR Green rtPCR and melting curve analysis, as well as Sanger sequencing of positive field samples. Analytical sensitivity was assessed by standard curve generation of serial plasmid dilutions containing the respective target gene. Melting curves and BLAST analysis of the sequences indicated specific detection of the viruses. The lower limit of detection of the singleplex rtPCR was 40 and 29 DNA copies per reaction for EHV-2 and EHV-5, respectively. Comparison of the Ct values of a selection of positive field samples showed only minimal differences between the singleplex and the multiplex assay. The here described multiplex rtPCR protocol allows sensitive and specific detection of EHV-2 and EHV-5. It represents a convenient and rapid tool for future studies to investigate the clinical relevance of EHV-2 and EHV-5 in more detail.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Cavalos , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/veterinária , Doenças dos Cavalos/diagnóstico , DNA Viral/genética , Herpesviridae/genética , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/genética
4.
J Equine Vet Sci ; 117: 104089, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908600

RESUMO

The objective of this study was to determine detection frequency of respiratory viruses (equine influenza virus [EIV], equine herpesvirus-1 [EHV-1], EHV-2, EHV-4, EHV-5, equine rhinitis A virus [ERAV], ERBV) and bacteria (Streptococcus equi ss. equi[S. equi], S. equi ss. zooepidemicus[S. zooepidemicus]) in 162 nasal secretions and 149 stall swabs from healthy sport horses attending a spring show in California. Nasal and stall swabs were collected at a single time point and analyzed using qPCR. The detection frequency of respiratory pathogens in nasal secretions was 38.9% for EHV-2, 36.4% for EHV-5, 19.7% for S. zooepidemicus, 1.2% for ERBV, 0.6% for S. equi and 0% for EIV, EHV-1, EHV-4 and ERAV. The detection frequency of respiratory pathogens in stall swabs was 65.8% for S. zooepidemicus, 33.5% for EHV-2, 27.5% for EHV-5, 3.3% for EHV-1, 1.3% for EHV-4 and 0% for EIV, ERAV, ERBV and S. equi. Commensal viruses and bacteria were frequently detected in nasal secretions and stall swabs from healthy sport horses. This was in sharp contrast to the subclinical shedding of well-characterized respiratory pathogens. Of interest was the clustering of five EHV-1 qPCR-positive stalls from apparently healthy horses with no evidence of clinical spread. The results highlight the role of subclinical shedders in introducing respiratory pathogens to shows and their role in environmental contamination. The results also highlight the need to improve cleanliness and disinfection of stalls utilized by performance horses during show events.


Assuntos
Aphthovirus , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Rhadinovirus , Streptococcus equi , Vírus , Animais , California/epidemiologia , Doenças dos Cavalos/diagnóstico , Cavalos
5.
J Equine Vet Sci ; 116: 104051, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753636

RESUMO

Protection against infectious diseases can be obtained with vaccines generating immunogenic response through a combination of humoral and cellular immunity. In this study haematological and serum protein electrophoretic profiles of horses vaccinated against herpesvirus 1 (EHV-1) and 4 (EHV-4) were evaluated. Blood samples were collected from 16 horses before (T0), after 24h, 48h, 72h, 1st week, 2nd week and 3rd week (T1I, T2I, T3I, T7I, T14I and T21I) from the first EHV vaccine-dose administration as well as before (TPREII), and after 24h, 48h, 72h, 1st week, 2nd week, 3rd week and 4th week (T1II, T2II, T3II, T7II, T14II, T21II and T28II) from the EHV vaccine-booster. Total leukocyte values increased at T1I, T1II, T3II and T28II compared to T0 (P < .01). Higher lymphocytes and lower neutrophils values were found after first vaccine-dose and vaccine-booster administration compared to the T0 (P < .01). Monocytes showed higher values at T14II than T0 (P < .01). Higher serum values of total proteins, α1-, α-2-, ß1-, ß2- and γ-globulins were found in horses after first vaccine-dose and vaccine-booster administration (P < .01). Gathered results suggest that horses vaccinated against EHV1 and EHV-4 exhibited a dynamic change of WBC, lymphocytes, neutrophils and monocytes. Moreover, the analysis of serum electrophoresis pattern suggested that EHV vaccination induced the development of inflammation and antibody response in vaccinated horses as highlighted by the increase of α-, ß- and γ-globulin fractions. These changes probably reflect the systemic immunological adaptation of animals to EHV vaccine.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Vacinas contra Herpesvirus , Doenças dos Cavalos , Animais , Anticorpos Antivirais , Eletroforese/veterinária , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Doenças dos Cavalos/prevenção & controle , Cavalos , Leucócitos
6.
Viruses ; 14(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35458443

RESUMO

Equid herpesvirus 2 (EHV-2) and 5 (EHV-5) are two γ-herpesviruses that are commonly detected from horses worldwide, based on several cross-sectional molecular surveys. Comparatively few studies examined the dynamics of γ-herpesvirus infection over time in a group of horses. The aim of the current study was to investigate the dynamics of EHV-2/5 infections among mares and their foals at three Polish national studs with different breeds of horses: Arabians, Thoroughbreds and Polish Konik horses. Nasal swabs were collected from each of 38 mare-foal pairs monthly for a period of 6 to 8 months. Virus-specific quantitative PCR assays were used to determine the viral load of EHV-2 and EHV-5 in each sample. All 76 horses sampled were positive for EHV-2 or EHV-5 on at least one sampling occasion. The majority (73/76, 96%) were infected with both EHV-2 and EHV-5. In general, the mean load of viral DNA was higher in samples from foals than from mares, but similar for EHV-2 and EHV-5 at most sampling occasions. There was, however, a considerable variability in the viral DNA load between samples collected at different times from the same foal, as well as between samples from different foals. The latter was more apparent for EHV-2 than for EHV-5. All foals became infected with both viruses early in life, before weaning, and remained positive on all, or most, subsequent samplings. The virus shedding by mares was more intermittent, indicating the existence of age-related differences. Overall, the data presented extend our knowledge of EHV-2/5 epidemiology among mares and foals.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Rhadinovirus , Animais , Estudos Transversais , DNA Viral/genética , Feminino , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/genética , Cavalos , Cinética , Polônia/epidemiologia , Rhadinovirus/genética
7.
BMC Vet Res ; 18(1): 83, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232435

RESUMO

BACKGROUND: EHV-1 is one of the most serious viral pathogens that frequently cause abortion in horses around the world. However, so far, relatively little information is available on EHV-1 infections as they occur in China. In January 2021, during an abortion storm which occurred in Yili horses at the Chinese State Studs of Zhaosu (North Xinjiang, China), 43 out of 800 pregnant mares aborted. RESULTS: PCR detection revealed the presence of EHV-1 in all samples as the possible cause of all abortions, although EHV-4, EHV-2 and EHV-5 were also found to circulate in the aborted fetuses. Furthermore, the partial ORF33 sequences of the 43 EHV-1 shared 99.3-100% and 99.0-100% similarity in nucleotide and amino acid sequences respectively. These sequences not only indicated a highly conserved region but also allowed the strains to group into six clusters. In addition, based on the predicted ORF30 nucleotide sequence, it was found that all the strains carried a guanine at the 2254 nucleotide position (aspartic acid at position 752 of the viral DNA polymerase) and were, therefore, identified as neuropathogenic strains. CONCLUSION: This study is the first one that establishes EHV-1 as the cause of abortions in Yili horses, of China. Further characterization of the ORF30 sequences revealed that all the EHV-1 strains from the study carried the neuropathogenic genotype. Totally, neuropathogenic EHV-1 infection in China's horse population should be concerned although the virus only detected in Yili horse abortions.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Aborto Animal/epidemiologia , Animais , Feminino , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/genética , Doenças dos Cavalos/epidemiologia , Cavalos , Gravidez
8.
Res Vet Sci ; 141: 76-80, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700147

RESUMO

Equid herpesvirus 1 (EHV-1) outbreaks occur when virus spreads from infected horses to in-contact horses, primarily via nasal shedding. This study evaluated the efficacy of factors secreted by equine peripheral blood derived mesenchymal stromal cells (PB-MSCs), collectively named the secretome, to inhibit the growth of EHV-1 in (i) 2D epithelial cell cultures (RK-13) in vitro, (ii) 3D equine nasal explants in vitro and (iii) an EHV-1 infection mouse model in vivo. The PB-MSC secretome was found to inhibit EHV-1 in RK-13 cells as well as in the epithelium of equine nasal explants. Although the PB-MSC secretome did not decrease overall severity of EHV-1 infection in mice, as determined by weight loss and viral titers in lungs, histological analyses indicated local reduction of EHV-1 infection in nasal epithelium. These results indicate that the PB-MSC secretome inhibits EHV-1 in epithelial cells in a context-dependent manner.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos , Células-Tronco Mesenquimais , Doenças dos Roedores , Animais , Células Epiteliais , Infecções por Herpesviridae/veterinária , Cavalos , Camundongos , Mucosa Nasal , Secretoma
9.
Lab Chip ; 20(9): 1621-1627, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32334422

RESUMO

Rapid, sensitive and specific detection and reporting of infectious pathogens is important for patient management and epidemic surveillance. We demonstrated a point-of-care system integrated with a smartphone for detecting live virus from nasal swab media, using a panel of equine respiratory infectious diseases as a model system for corresponding human diseases such as COVID-19. Specific nucleic acid sequences of five pathogens were amplified by loop-mediated isothermal amplification on a microfluidic chip and detected at the end of reactions by the smartphone. Pathogen-spiked horse nasal swab samples were correctly diagnosed using our system, with a limit of detection comparable to that of the traditional lab-based test, polymerase chain reaction, with results achieved in ∼30 minutes.


Assuntos
Doenças dos Cavalos/diagnóstico , Dispositivos Lab-On-A-Chip , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Transtornos Respiratórios/veterinária , Smartphone , Animais , Betacoronavirus/isolamento & purificação , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Herpesvirus Equídeo 1/isolamento & purificação , Herpesvirus Equídeo 4/isolamento & purificação , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Aplicativos Móveis , Nariz/microbiologia , Nariz/virologia , Sistemas Automatizados de Assistência Junto ao Leito , Transtornos Respiratórios/diagnóstico , Transtornos Respiratórios/microbiologia , Transtornos Respiratórios/virologia , SARS-CoV-2 , Streptococcus equi/isolamento & purificação
10.
Vet Immunol Immunopathol ; 219: 109971, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31739157

RESUMO

Equine herpesvirus type 4 (EHV-4) is mildly pathogenic but is a common cause of respiratory disease in horses worldwide. We previously demonstrated that unlike EHV-1, EHV-4 is not a potent inducer of type-I IFN and does not suppress that IFN response, especially during late infection, when compared to EHV-1 infection in equine endothelial cells (EECs). Here, we investigated the impact of EHV-4 infection in EECs on type-I IFN signaling molecules at 3, 6, and 12 hpi. Findings from our study revealed that EHV-4 did not induce nor suppress TLR3 and TLR4 expression in EECs at all the studied time points. EHV-4 was able to induce variable amounts of IRF7 and IRF9 in EECs with no evidence of suppressive effect on these important transcription factors of IFN-α/ß induction. Intriguingly, EHV-4 did interfere with the phosphorylation of STAT1/STAT2 at 3 hpi and 6 hpi, less so at 12 hpi. An active EHV-4 viral gene expression was required for the suppressive effect of EHV-4 on STAT1/STAT2 phosphorylation during early infection. One or more early viral genes of EHV-4 are involved in the suppression of STAT1/STAT2 phosphorylation observed during early time points in EHV-4-infected EECs. The inability of EHV-4 to significantly down-regulate key molecules of type-I IFN signaling may be related to the lower severity of pathogenesis when compared with EHV-1. Harnessing this knowledge may prove useful in controlling future outbreaks of the disease.


Assuntos
Células Endoteliais/imunologia , Herpesvirus Equídeo 4/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata , Interferon Tipo I/imunologia , Animais , Células Cultivadas , Células Endoteliais/virologia , Herpesvirus Equídeo 4/patogenicidade , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/virologia , Cavalos , Fator Gênico 3 Estimulado por Interferon/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Fosforilação , Artéria Pulmonar/citologia , Fator de Transcrição STAT2/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia
11.
BMC Vet Res ; 15(1): 280, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387602

RESUMO

BACKGROUND: Equine herpesvirus type 1 (EHV-1) infection is a major cause of pyrexias in winter among Japanese racehorses. In 2014-2015, the Japan Racing Association (JRA) changed the EHV-1 vaccine from an inactivated vaccine to a live vaccine (both produced by Nisseiken). To evaluate the effect of changing the vaccines, the capacities of these vaccines to induce virus-neutralizing (VN) antibodies were compared, and an epizootiological investigation of EHV-1 was performed at the JRA Ritto Training Center during epizootic periods from 2010-2011 to 2016-2017. RESULTS: Three-year-old horses that received the first dose of live vaccine showed higher geometric mean (GM) VN titers (205 and 220) than those that received inactivated vaccine (83, P < 0.05). The response rates after vaccination with the live vaccine (76 and 90%) were higher than that after vaccination with inactivated vaccine (42%, P < 0.05). Four-year-old horses from 2015 to 2017 that had received the live vaccine in the previous epizootic periods had higher GM titers (205 to 246) than those from 2011 to 2014, which had received the inactivated vaccine (139 to 164, P < 0.05). The estimated numbers of horses infected with EHV-1 or EHV-4, or both, in 2011-2012 (29 [95%CI: 21-37]) and 2013-2014 (37 [95%CI: 27-47]) were higher than those in the other periods (7 [95%CI: 2-12] to 16 [95%CI: 9-23]). Likewise, the seroconversion rates to EHV-1 in horses that stayed at the training center in 2011-2012 (66.0%) and 2013-2014 (52.0%) were higher than those in the other periods (12.0 to 28.6%). CONCLUSIONS: The live EHV-1 vaccine is highly immunogenic and provides greater VN antibody responses than the inactivated vaccine. Unlike the period when the policy was to use inactivated vaccine, there was no detectable epizootic EHV-1 infection at the training center during three consecutive periods after the introduction of the live vaccine. These results suggest that the replacement of inactivated vaccine with live vaccine, together with the achievement of high vaccination coverage, reinforced the herd effect, and contributed to better control of EHV-1 epizootics in the training center.


Assuntos
Anticorpos Antivirais/sangue , Herpesvirus Equídeo 1 , Doenças dos Cavalos/prevenção & controle , Vacinas Virais/imunologia , Animais , Herpesvirus Equídeo 4 , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos , Japão/epidemiologia , Estações do Ano , Testes Sorológicos , Vacinas de Produtos Inativados
13.
J S Afr Vet Assoc ; 90(0): e1-e5, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31170779

RESUMO

Equid herpesvirus type 1 is primarily a respiratory tract virus associated with poor athletic performance that can also cause late gestation abortion, neonatal foal death and encephalomyelopathy. Horizontal transmission is well described, whereas evidence of vertical transmission of equid herpesvirus type 1 associated with the birth of a healthy foal has not been demonstrated. This study sampled a population of Thoroughbred mares (n = 71), and their healthy neonatal foals and foetal membranes, to test for the presence of both equid herpesvirus types 1 and 4 using a quantitative polymerase chain reaction assay. Foetal membrane swabs and tissue samples were taken immediately post-partum, and venous blood samples and nasal swabs were obtained from both mare and foal 8 h after birth. Neither equid herpesvirus type 1 nor equid herpesvirus type 4 nucleic acid was detected in any sample, and it was concluded that there was no active shedding of equid herpesvirus types 1 and 4 at the time of sampling. Consequently, no evidence of vertical transmission of these viruses could be found on this stud farm during the sampling period.


Assuntos
Animais Recém-Nascidos/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/isolamento & purificação , Herpesvirus Equídeo 4/isolamento & purificação , Doenças dos Cavalos/virologia , Animais , Sangue/virologia , Feminino , Infecções por Herpesviridae/transmissão , Doenças dos Cavalos/transmissão , Cavalos , Transmissão Vertical de Doenças Infecciosas/veterinária , Mucosa Nasal/virologia , Placenta/virologia , Reação em Cadeia da Polimerase/veterinária , Gravidez , África do Sul/epidemiologia
14.
Virology ; 526: 105-116, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30388626

RESUMO

Equid alpha-herpesviruses (EHV) are responsible for different diseases in equine population. EHV-1 causes respiratory diseases, abortions and nervous disorders, EHV-4 causes respiratory diseases and sporadic abortion, while EHV-3 is responsible of equine coital exanthema. In view of the lack of efficacy of vaccines against EHV-1 and EHV-4 and in the absence of vaccines against EHV-3, the use of antiviral treatment is of great interest. In this study, we documented the interest of the Real-Time Cell Analysis (RTCA) technology to monitor the cytopathic effects induced by these viruses on equine dermal cells, and established the efficacy of this method to evaluate the antiviral effect of aciclovir (ACV) and ganciclovir (GCV). In addition, the RTCA technology has also been found appropriate for the high-throughput screening of small molecules against EHV, allowing the identification of spironolactone as a novel antiviral against EHV.


Assuntos
Antivirais/farmacologia , Impedância Elétrica , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Animais , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/classificação , Herpesvirus Equídeo 3/efeitos dos fármacos , Herpesvirus Equídeo 4/efeitos dos fármacos , Cavalos , Espironolactona/farmacologia
15.
J Vet Diagn Invest ; 30(6): 924-928, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30239276

RESUMO

We developed a multiplex reverse-transcription real-time PCR (RT-rtPCR) assay for the simultaneous detection of the main equine respiratory viruses: equid alphaherpesviruses 1 and 4 (EHV-1, -4) and equine influenza virus (EIV; species Influenza A virus). The primers and probes amplified only the targeted viruses, and there were no inter-assay cross-amplifications or nonspecific interactions. The multiplex assay efficiencies were 92.5%, 97%, and 90% for EHV-1, EHV-4, and EIV, respectively. The R2 values of the monoplex and multiplex assays were ⩾0.990, and the slopes were -3.37 to -3.59. The performance of the assay was evaluated by analyzing 152 samples from clinically infected horses. EHV-1 DNA was detected in 12 samples, EHV-4 DNA in 9 samples, and both EHV-1 and EHV-4 in 4 samples. The accuracy of the assay was confirmed by comparing these results using commercial rtPCR and RT-rtPCR kits. Our multiplex RT-rtPCR was a sensitive, specific, accurate, and cost-effective method for the detection of the target viruses whether they occur alone or as part of coinfections.


Assuntos
Infecções por Herpesviridae/veterinária , Doenças dos Cavalos/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças Respiratórias/veterinária , Animais , Primers do DNA , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 1/isolamento & purificação , Herpesvirus Equídeo 4/genética , Herpesvirus Equídeo 4/isolamento & purificação , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças Respiratórias/diagnóstico , Doenças Respiratórias/virologia , Sensibilidade e Especificidade
16.
J Vet Intern Med ; 32(4): 1436-1441, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29761571

RESUMO

BACKGROUND: Imported horses that have undergone recent long distance transport might represent a serious risk for spreading infectious respiratory pathogens into populations of horses. OBJECTIVE: To investigate the frequency of shedding of respiratory pathogens in recently imported horses. ANIMALS: All imported horses with signed owner consent (n = 167) entering a USDA quarantine for contagious equine metritis from October 2014 to June 2016 were enrolled in the study. METHODS: Prospective observational study. Enrolled horses had a physical examination performed and nasal secretions collected at the time of entry and subsequently if any horse developed signs of respiratory disease during quarantine. Samples were assayed for equine influenza virus (EIV), equine herpesvirus type-1, -2, -4, and -5 (EHV-1, -2, -4, -5), equine rhinitis virus A (ERAV), and B (ERBV) and Streptococcus equi subspecies equi (S. equi) using quantitative PCR (qPCR). RESULTS: Equine herpesviruses were detected by qPCR in 52% of the study horses including EHV-2 (28.7%), EHV-5 (40.7%), EHV-1 (1.2%), and EHV-4 (3.0%). Clinical signs were not correlated with being qPCR-positive for EHV-4, EHV-2, or EHV-5. None of the samples were qPCR-positive for EIV, ERAV, ERBV, and S. equi. The qPCR assay failed quality control for RNA viruses in 25% (46/167) of samples. CONCLUSIONS AND CLINICAL IMPORTANCE: Clinical signs of respiratory disease were poorly correlated with qPCR positive status for EHV-2, -4, and -5. The importance of γ-herpesviruses (EHV-2 and 5) in respiratory disease is poorly understood. Equine herpesvirus type-1 or 4 (EHV-1 or EHV-4) were detected in 4.2% of horses, which could have serious consequences if shedding animals entered a population of susceptible horses. Biosecurity measures are important when introducing recently imported horses into resident US populations of horses.


Assuntos
Doenças dos Cavalos/virologia , Doenças Respiratórias/veterinária , Animais , Feminino , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1 , Herpesvirus Equídeo 4 , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/transmissão , Cavalos/microbiologia , Cavalos/virologia , Masculino , Estudos Prospectivos , Quarentena/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças Respiratórias/microbiologia , Doenças Respiratórias/virologia , Rhadinovirus , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/transmissão , Infecções Estreptocócicas/veterinária , Streptococcus equi , Estados Unidos/epidemiologia , Eliminação de Partículas Virais
17.
BMC Genomics ; 18(1): 887, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157201

RESUMO

BACKGROUND: The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. RESULTS: A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. CONCLUSION: Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.


Assuntos
Varicellovirus/classificação , Varicellovirus/genética , Composição de Bases , Códon , Herpesvirus Bovino 1/classificação , Herpesvirus Bovino 1/genética , Herpesvirus Equídeo 1/classificação , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/classificação , Herpesvirus Equídeo 4/genética , Mutação , Filogenia , Recombinação Genética
18.
Anal Chem ; 89(21): 11219-11226, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28819973

RESUMO

New tools are needed to enable rapid detection, identification, and reporting of infectious viral and microbial pathogens in a wide variety of point-of-care applications that impact human and animal health. We report the design, construction, and characterization of a platform for multiplexed analysis of disease-specific DNA sequences that utilizes a smartphone camera as the sensor in conjunction with a hand-held "cradle" that interfaces the phone with a silicon-based microfluidic chip embedded within a credit-card-sized cartridge. Utilizing specific nucleic acid sequences for four equine respiratory pathogens as representative examples, we demonstrated the ability of the system to utilize a single 15 µL droplet of test sample to perform selective positive/negative determination of target sequences, including integrated experimental controls, in approximately 30 min. Our approach utilizes loop-mediated isothermal amplification (LAMP) reagents predeposited into distinct lanes of the microfluidic chip, which when exposed to target nucleic acid sequences from the test sample, generates fluorescent products that when excited by appropriately selected light emitting diodes (LEDs), are visualized and automatically analyzed by a software application running on the smartphone microprocessor. The system achieves detection limits comparable to those obtained by laboratory-based methods and instruments. Assay information is combined with the information from the cartridge and the patient to populate a cloud-based database for epidemiological reporting of test results.


Assuntos
DNA Bacteriano/análise , DNA Viral/análise , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Smartphone , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/genética , Dispositivos Lab-On-A-Chip , Limite de Detecção , Pneumopatias/diagnóstico , Pneumopatias/veterinária , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Streptococcus equi/genética
20.
J Vet Med Sci ; 79(1): 206-212, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-27840393

RESUMO

Equine herpesvirus type 4 (EHV-4) is one of the most important pathogens in horses. To clarify the key genes of the EHV-4 genome that cause abortion in female horses, we determined the whole genome sequences of a laboratory strain and 7 Japanese EHV-4 isolates that were isolated from 2 aborted fetuses and nasal swabs of 5 horses with respiratory disease. The full genome sequences and predicted amino acid sequences of each gene of these isolates were compared with of the reference EHV-4 strain NS80567 and Australian isolates that were reported in 2015. The EHV-4 isolates clustered in 2 groups which did not reflect their pathogenicity. A comparison of the predicted amino acid sequences of the genes did not reveal any genes that were associated with EHV-4-induced abortion.


Assuntos
Genoma Viral/genética , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 4/genética , Doenças dos Cavalos/virologia , Animais , Feminino , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 4/isolamento & purificação , Doenças dos Cavalos/epidemiologia , Cavalos/virologia , Japão/epidemiologia , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...