Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Fish Shellfish Immunol ; 153: 109858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187140

RESUMO

Rock bream (Oplegnathus fasciatus) is one of the highly priced cultured marine fish in Korea. Rock bream iridovirus (RBIV) outbreaks in aquaculture farms may involve environmental factors, co-infection with other pathogenic microorganisms and grounded (raw) fish feed. This study evaluated the effects of RBIV-containing tissue intake on mortality and oral transmission in rock bream. Virus-containing tissues administered to rock bream [50 mg (1.53 × 108/major capsid protein, MCP gene copies) to 2400 mg (7.34 × 109)] held at 23 °C lead to 100 % mortality by 27 days post administration. Interestingly, the mortality rates were not viral dose- or concentration dependent. Further, high MCP gene copy numbers were observed in the gill, liver, intestine, stomach, spleen, heart, kidney, brain and muscle tissues (viral load range of 3.03 × 106 to 4.01 × 107/mg, average viral load 1.70 × 107/mg) of dead rock bream. Moreover, a high viral load was detected in the intestine and stomach, where the virus was directly administered. This indicated that the intake of RBIV-containing tissue feed weakens the intestinal mucosal immunity and increases viral load in the intestine. Moreover, the levels of complete blood cell count (CBC) indicators, such as red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) significantly decreased from 15 dpi with red blood cell distribution width (RDW), and white blood cells (lymphocyte, monocyte and granulocyte) significantly increased from the initial to later stage of infection. These results highlight the significance of blood-mediated indicators against RBIV infection in rock bream. We demonstrate the existence of an oral transmission route for RBIV in rock bream. Our findings indicate that pathogen-containing feed is an important risk factor for disease outbreaks in rock bream.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Animais , Perciformes/imunologia , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Iridovirus/fisiologia , Ração Animal/análise , Carga Viral , Dieta/veterinária
2.
J Mol Model ; 30(8): 256, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972935

RESUMO

CONTEXT: Iridoviruses, a group of double-stranded DNA viruses, pose a significant threat to various aquatic animals, causing substantial economic losses in aquaculture and impacting ecosystem health. Early and accurate detection of these viruses is crucial for effective disease management and control. Conventional diagnostic methods, including polymerase chain reaction (PCR) and virus isolation, often require specialized laboratories, skilled personnel, and considerable time. This highlights the need for rapid, sensitive, and cost-effective diagnostic tools for iridovirus detection. Single-layer graphene, a two-dimensional material with unique properties like high surface area, excellent electrical conductivity, and chemical stability, has emerged as a versatile platform for biosensing applications. This paper explores the potential of employing single-layer graphene in the development of a bionanosensor for the sensitive and rapid detection of iridoviruses. The aim of the present investigation is to develop a sensor by analyzing the vibrational responses of single-layer graphene sheets (SLGS) with attached microorganisms. Graphene-based virus sensors typically rely on the interaction between the virus and the graphene surface, which lead to changes in the frequency response of graphene. This change is measured and used to detect the presence of the virus. Its high surface-to-volume ratio and sensitivity to changes in its frequency make it a highly sensitive platform for virus detection. METHODS: We employ finite element method (FEM) analysis to model the sensor's performance and optimize its design parameters. The simulation results highlight the sensor's potential for achieving high sensitivity and rapid detection of iridovirus. Bridged and simply supported with roller support boundary conditions applied at the ends of SLG structure. Simulations have been performed to see how SLG behaves when used as sensors. A single-layer graphene armchair SLG (5,5) with 50-nm length exhibits its highest frequency vibration at 8.66 × 106 Hz, with a mass of 1.2786 Zg. In contrast, a zigzag-SLG with a (18,0) configuration has its lowest frequency vibration at 2.82 × 105 Hz. This aids in comprehending the thresholds of detection and the influence of factors such as size, and boundary conditions on sensor effectiveness. These biosensors can be especially helpful in biological sciences and the medical field since they can considerably improve the treatment of patients, cancer early diagnosis, and pathogen identification when used in clinical environments.


Assuntos
Técnicas Biossensoriais , Grafite , Iridovirus , Grafite/química , Técnicas Biossensoriais/métodos
3.
Virus Genes ; 60(5): 549-558, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38922563

RESUMO

Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic insect virus and a member of the family Iridoviridae. The IIV6 genome consists of 212,482 bp of linear dsDNA with 215 non-overlapping and putative protein-encoding ORFs. The IIV6 118L ORF is conserved in all sequenced members of the Iridoviridae and encodes a 515 amino acid protein with three predicted transmembrane domains and several N-glycosylation/N-myristoylation sites. In this study, we characterized the 118L ORF by both deleting it from the viral genome and silencing its expression with dsRNA in infected insect cells. The homologous recombination method was used to replace 118L ORF with the green fluorescent protein (gfp) gene. Virus mutants in which the 118L gene sequence had been replaced with gfp were identified by fluorescence microscopy but could not be propagated separately from the wild-type virus in insect cells. Unsuccessful attempts to isolate the mutant virus with the 118L gene deletion suggested that the protein is essential for virus replication. To support this result, we used dsRNA to target the 118L gene and showed that treatment resulted in a 99% reduction in virus titer. Subsequently, we demonstrated that 118L-specific antibodies produced against the 118L protein expressed in the baculovirus vector system were able to neutralize the virus infection. All these results indicate that 118L is a viral envelope protein that is required for the initiation of virus replication.


Assuntos
Proteínas do Envelope Viral , Animais , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Fases de Leitura Aberta/genética , Replicação Viral/genética , Iridovirus/genética , Linhagem Celular , Células Sf9 , Genoma Viral/genética , Spodoptera/virologia
4.
Fish Shellfish Immunol ; 151: 109684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852788

RESUMO

Singapore grouper iridovirus (SGIV) is a large double-stranded DNA virus that has caused significant economic losses to the grouper aquaculture industry. So far, the structure and function of SGIV proteins have been successively reported. In the present paper, the protein of SGIV VP146 was cloned and identified. VP146 was whole-cell distributed in GS cells. VP146 promoted SGIV replication and inhibited the transcription of interferon-related genes as well as pro-inflammatory cytokines in GS cells. In addition, VP146 was involved in the regulation of the cGAS-STING signaling pathway, and decreased cGAS-STING induced the promoter of ISRE and NF-κB. VP146 interacted with the proteins of cGAS, STING, TBK1, and IRF3 from grouper, but did not affect the binding of grouper STING to grouper TBK1 and grouper IRF3. Interestingly, grouper STING was able to affect the intracellular localization of VP146. Four segment structural domains of grouper STING were constructed, and grouper STING-CTT could affect the intracellular localization of VP146. VP146 had no effect on the self-binding of EcSITNG, nor on the binding of EcSTING to EcTBK1 and EcIRF3. Together, the results demonstrated that SGIV VP146 modulated the cGAS-STING signaling pathway to escape the interferon immune response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Bass , Iridovirus , Nucleotidiltransferases , Transdução de Sinais , Iridovirus/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transdução de Sinais/imunologia , Bass/genética , Bass/imunologia , Bass/virologia , Linhagem Celular , Baço/citologia , Regulação da Expressão Gênica/imunologia , Replicação Viral/imunologia , Interferons/genética , Interferons/imunologia , Proteínas de Peixes/imunologia , Animais
5.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570120

RESUMO

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Assuntos
Bass , Infecções por Vírus de DNA , Elongases de Ácidos Graxos , Doenças dos Peixes , Proteínas de Peixes , Metabolismo dos Lipídeos , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Bass/imunologia , Bass/genética , Elongases de Ácidos Graxos/genética , Nodaviridae/fisiologia , Regulação da Expressão Gênica , Acetiltransferases/genética , Acetiltransferases/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Iridovirus/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Reprogramação Metabólica
6.
Zool Res ; 45(3): 520-534, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682434

RESUMO

Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.


Assuntos
Doenças dos Peixes , Iridovirus , Fígado , Ácido alfa-Linolênico , Animais , Ácido alfa-Linolênico/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Fígado/metabolismo , Fígado/virologia , Iridovirus/fisiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Metabolômica , Antivirais/farmacologia , Transcriptoma , Reprogramação Metabólica , Multiômica
7.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661138

RESUMO

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Assuntos
Aquicultura , Infecções por Vírus de DNA , Surtos de Doenças , Doenças dos Peixes , Iridovirus , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Surtos de Doenças/veterinária , Iridovirus/genética , Dourada/virologia , Peixes , Medição de Risco , Japão/epidemiologia , Animais Selvagens
8.
Fish Shellfish Immunol ; 148: 109480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452958

RESUMO

Stimulator of interferon gene (STING) plays a crucial role in the innate immune response against viral and bacterial pathogens. However, its function in largemouth bass iridovirus (LMBV) infection remains uncertain. Here, a STING homolog (MsSTING) from largemouth bass (Micropterus salmoides) was cloned and characterized. MsSTING encoded a 407-amino-acid polypeptide, which shared 84.08% and 41.45% identity with golden perch (Perca flavescens) and human (Homo sapiens) homologs, respectively. MsSTING contained four transmembrane domains and a conserved C-terminal domain. The mRNA level of MsSTING was significantly increased in response to LMBV infection in vitro. Subcellular localization observation indicated that MsSTING encoded a cytoplasmic protein, which co-localized predominantly with endoplasmic reticulum (ER) and partially with mitochondria. Moreover, its accurate localization was dependent on the N-terminal transmembrane motif (TM) domains. MsSTING was able to activate interferon (IFN) response, evidenced by the activation of IFN1, IFN3 and ISRE promoters by its overexpression in vitro. Mutant analysis showed that both the N-terminal and C-terminal domain of MsSTING were essential for its activation on IFN response. In addition, overexpression of MsSTING inhibited the transcription and protein levels of viral core genes, indicating that MsSTING exerted antiviral action against LMBV. Consistently, the inhibitory effects were significantly attenuated when the N-terminal or C-terminal domains of MsSTING was deleted. Furthermore, MsSTING overexpression upregulated the transcriptions of interferon-related genes and pro-inflammatory factors, including TANK-binding kinase 1(TBK1), interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), interferon stimulated exonuclease gene 20 (ISG20), interferon-induced transmembrane protein 1(IFITM1), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6). Together, MsSTING exerted antiviral action upon LMBV infection through positive regulation the innate immune response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Humanos , Animais , Sequência de Aminoácidos , Proteínas de Peixes/química , Imunidade Inata/genética , Interferon gama , Antivirais , Ranavirus/fisiologia
9.
Viruses ; 16(3)2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543830

RESUMO

Sturgeon farming is rapidly expanding in Europe, where Italy ranks first in farmed caviar production. A major threat to sturgeon health in captivity is infection with Acipenser European Iridovirus (AcIV-E), a viral disease definitively identified in 2016. Here we present data on the occurrence of AcIV-E in 482 sturgeons (age ≤ 12 months, species of the genus Acipenser and the species Huso huso) collected from sturgeon farms in northern Italy between January 2021 and December 2023. The health status of each specimen was determined by necroscopy and virological assay. Virological analysis was performed on gill samples and real-time PCR specific to the MCP gene of the iridovirus viral capsid. Molecular analysis revealed positivity to the virus in 204 samples (42.68% of the total), while anatomopathological examination of nearly all fish with positive real-time PCR disclosed swollen abdomen, hepatic steatosis, splenomegaly, and increased gill volume. Two challenges to timely diagnosis are the absence of pathognomonic symptoms and the inability to isolate the virus on cell monolayers. Continuous and widespread health monitoring is therefore crucial for disease management and to effectively control spread of the virus.


Assuntos
Doenças dos Peixes , Iridovirus , Viroses , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Itália/epidemiologia , Europa (Continente) , Peixes
10.
Virology ; 593: 110030, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38402641

RESUMO

Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.


Assuntos
Uso do Códon , Iridovirus , Animais , Iridovirus/genética , Códon , Invertebrados/genética , Mutação , Seleção Genética , Evolução Molecular
11.
J Virol Methods ; 326: 114901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367823

RESUMO

Red sea bream iridovirus (RSIV) is a highly contagious viral infection that affects various fish species and poses a significant threat to the global aquaculture industry. Thus, accurate and timely diagnosis is paramount for sustainable management of fish health. This study rigorously evaluated the diagnostic efficacy of various polymerase chain reaction (PCR) assays, focusing on those recommended by the World Organization for Animal Health (WOAH) and the assays newly proposed by WOAH's Aquatic Animals Health Standards Commission. Specifically, this study assessed conventional PCR, nested PCR, modified 1-F/1-R, and real-time PCR assays using a 95% limit of detection (LoD95%), as well as diagnostic sensitivity (DSe) and specificity (DSp) tests across different RSIV severity grades (G0-G4). In previous studies, the LoD95% for the 1-F/1-R and 4-F/4-R conventional assays were 225.81 and 328.7 copies/reaction, respectively. The modified 1-F/1-R exhibited a lower LoD95% of 51.32 copies/reaction. Notably, the nested PCR had an LoD95% of 11.23 copies/reaction, and the real-time PCR assay had an LoD95% of 12.02 copies/reaction. The DSe varied across RSIV severity grades, especially in the lower G0-G2 grades. The nested PCR and modified 1-F/1-R assays displayed the highest DSe, making them particularly useful for early-stage screening and detection of asymptomatic carriers. In addition, the PCR assays did not cross-react with any other aquatic pathogens except RSIV. Our findings significantly advanced the diagnostic capabilities of RSIVD by suggesting that nested PCR and modified 1-F/1-R assays are particularly promising for early detection. We propose their inclusion in future WOAH guidelines for a more comprehensive diagnostic framework.


Assuntos
Doenças dos Peixes , Iridovirus , Dourada , Viroses , Animais , Iridovirus/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
12.
J Fish Dis ; 47(6): e13930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38349841

RESUMO

Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Técnicas de Amplificação de Ácido Nucleico , Perciformes , Sensibilidade e Especificidade , Animais , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Iridovirus/isolamento & purificação , Iridovirus/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Viral/genética , Proteínas do Capsídeo/genética
13.
Commun Biol ; 7(1): 237, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413759

RESUMO

Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Viroses , Animais , Iridovirus/genética , Iridoviridae/genética , Infecções por Vírus de DNA/veterinária , Peixes
14.
Fish Shellfish Immunol ; 145: 109349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184183

RESUMO

Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, is a highly pathogenic agent and causes heavy economic losses in the global grouper aquaculture. Recent studies demonstrated that SGIV infection attenuated antiviral immune and inflammatory response induced by poly (I:C) in vitro. However, little was known about the potential functions of the immune regulatory proteins encoded by SGIV. Here, we identified the detailed roles of VP20 and clarified the potential mechanism underlying its immune regulatory function during SGIV infection. Our results showed that VP20 was an IE gene, and partially co-localized with Golgi apparatus and lysosomes in grouper cells. Overexpression of VP20 enhanced SGIV replication, demonstrated by the increase in the transcription levels of viral core genes and the protein synthesis of MCP. Reporter gene assays showed that SGIV VP20 overexpression significantly reduced the IFN promoter activity induced by poly (I:C), grouper stimulator of interferon genes (EcSTING) and TANK-binding kinase 1 (EcTBK1). Consistently, the transcription levels of IFN related genes were significantly decreased in VP20 overexpressing cells compared to those in control cells. Co-IP assay and confocal microscopy observations indicated that VP20 co-localized and interacted with EcTBK1 and EcIRF3, but not EcSTING. In addition, VP20 was able to degrade EcIRF3 and attenuate the antiviral action of EcIRF3, while had no effect on EcTBK1. Together, SGIV VP20 was speculated to promote viral replication through attenuating the IFN response mediated by TBK1-IRF3 in vitro. Our findings provided new insights into the immune regulatory function of SGIV encoded unknown proteins.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Interferons , Ranavirus/fisiologia , Imunidade Inata/genética , Singapura , Sequência de Aminoácidos , Proteínas de Peixes/genética , Alinhamento de Sequência
15.
Int J Biol Macromol ; 256(Pt 1): 128336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013078

RESUMO

Iridoviruses are large DNA viruses that infect a wide range of invertebrates and lower vertebrates, causing serious threats to ecological security and aquaculture industry worldwide. However, the mechanisms underlying intracellular transport of iridovirus remain unknown. In this study, the transport of Singapore grouper iridovirus (SGIV) in early endosomes (EEs) and late endosomes (LEs) was explored by single-particle tracking technology. SGIV employs EEs to move rapidly from the cell membrane to the nucleus, and this long-range transport is divided into "slow-fast-slow" stages. SGIV within LEs mainly underwent oscillatory movements near the nucleus. Furthermore, SGIV entered newly formed EEs and LEs, respectively, possibly based on the interaction between the viral major capsid protein and Rab5/Rab7. Importantly, interruption of EEs and LEs by the dominant negative mutants of Rab5 and Rab7 significantly inhibited the movement of SGIV, suggesting the important roles of Rab5 and Rab7 in virus transport. In addition, it seems that SGIV needs to enter clathrin-coated vesicles to move from actin to microtubules before EEs carry the virus moving along microtubules. Together, our results for the first time provide a model whereby iridovirus transport depending on EEs and LEs, helping to clarify the mechanism underlying iridovirus infection, and provide a convenient tactic to investigate the dynamic infection of large DNA virus.


Assuntos
Bass , Doenças dos Peixes , Iridovirus , Animais , Iridovirus/genética , Singapura , Endossomos/metabolismo , Membrana Celular , Doenças dos Peixes/metabolismo
16.
Fish Shellfish Immunol ; 144: 109218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977543

RESUMO

Grouper is one of the most important and valuable mariculture fish in China, with a high economic value. As the production of grouper has increased, massive outbreaks of epidemic diseases have limited the development of the industry. Singapore grouper iridovirus (SGIV) is one of the most serious infectious viral pathogens and has caused huge economic losses to grouper farming worldwide due to its rapid spread and high lethality. To find new strategies for the effective prevention and control of SGIV, we constructed two chimeric DNA vaccines using Lysosome-associated membrane protein 1 (LAMP1) fused with major capsid proteins (MCP) against SGIV. In addition, we evaluated the immune protective effects of vaccines including pcDNA3.1-3HA, pcDNA3.1-MCP, pcDNA3.1-LAMP1, chimeric DNA vaccine pcDNA3.1-MLAMP and pcDNA3.1-LAMCP by intramuscular injection. Our results showed that compared with groups injected with PBS, pcDNA3.1-3HA, pcDNA3.1-LAMP1 or pcDNA3.1-MCP, the antibody titer significantly increased in the chimeric vaccine groups. Moreover, the mRNA levels of immune-related factors in groupers, including IRF3, MHC-I, TNF-α, and CD8, showed the same trend. However, MHC-II and CD4 were significantly increased only in the chimeric vaccine groups. After 28 days of vaccination, groupers were challenged with SGIV, and mortality was documented for each group within 14 days. The data showed that two chimeric DNA vaccines provided 87 % and 91 % immune protection for groupers which were significantly higher than the 52 % protection rate of pcDNA3.1-MCP group, indicating that both forms of LAMP1 chimeric vaccines possessed higher immune protection against SGIV, providing the theoretical foundation for the creation of novel DNA vaccines for fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Vacinas de DNA , Animais , Singapura , Fatores de Transcrição , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/genética , Proteínas de Peixes/genética
17.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128678

RESUMO

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/genética , Iridovirus/fisiologia , Singapura , Clonagem Molecular , Apoptose , Fosfatases de Especificidade Dupla/genética , Proteínas de Peixes/genética , Filogenia
18.
Virus Res ; 339: 199278, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984754

RESUMO

Rock bream iridovirus (RBIV), belonging to Megalocytivirus, causes severe mortality in rock bream. Almost all deaths associated with RBIV are accompanied by splenic enlargement and anemia. Although red blood cells (RBCs) are involved in the immune response against viral infections, their involvement in rock bream has not yet been studied in terms of the immune response against RBIV. In this study, the viral replication patterns, blood characteristics and anemia-related factors were evaluated in rock bream post RBIV infection. The virus-infected RBCs of rock bream demonstrated similarities in the expression levels of hemoglobins (HGB) (α and ß), cytokine-dependent hematopoietic cell linker (CLNK) and hematopoietic transcription factor GATA (GATA), with significantly decreasing levels from 4 days post infection (dpi) to 17 (dpi), when the viral replication was at its peak. This suggests that the expression of blood-related genes is inadequate for HGB synthesis and RBC production, thereby causing anemia leading to death. Moreover, the levels of complete blood cell count (CBC) indicators, such as RBCs, HGB and hematocrit (HCT), significantly decreased from 10 to 17 dpi. This phenomenon suggests that blood-related gene expression and/or RBC-, HGB- and HCT-related levels are critical factors in RBIV-induced anemia and disease progression. These results highlight the significance of blood-mediated immune responses against RBIV infection in rock bream. Understanding blood-related gene levels to identify blood-related immune response interactions in rock bream will be useful for development of future strategies in controlling RBIV diseases in rock bream.


Assuntos
Anemia , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Animais , Iridovirus/genética , Infecções por Vírus de DNA/veterinária , Iridoviridae/fisiologia , Eritrócitos/metabolismo , Filogenia
19.
Int J Biol Macromol ; 258(Pt 2): 128860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123030

RESUMO

Attributable to the rapid dissemination and high lethality of Singapore grouper iridovirus (SGIV), it has caused significant economic losses for marine fish aquaculture in China and Southeast Asian nations. Hence, there is an urgent need to find antiviral drugs that are both safe and effective. In this study, a novel heteropolysaccharide named Spirulina platensis polysaccharides (SPP) was purified and characterized from S. platensis. The molecular weight of SPP is 276 kDa and it mainly consists of Glc and Rha, followed by minor components such as Gal, Xyl, and Fuc. The backbone of SPP was determined to be →2) -ß-Rhap-(1 â†’ 4) -α-Fucp-(1 â†’ [2) -α-Rhap-(1] 2[→6)-α-Glcp-(1] 4[→ 4) -α-Glcp-(1] 8[→ 4) -ß-Glcp-(1]2→, with branches of ß-Galp, α-Xylp and α-Glcp. SPP significantly inhibited SGIV-induced cytopathic effects (CPEs), viral gene replication and viral protein expression. The antiviral mechanism of SPP was associated with the disruption of SGIV entry to host cells. Furthermore, it was not observed that SPP made statistically significant impact on the expression of interferon-related cytokines. Our results offered novel insights into the potential utilization of spirulina polysaccharides for combating aquatic animal viruses.


Assuntos
Bass , Doenças dos Peixes , Iridovirus , Spirulina , Animais , Iridovirus/genética , Singapura , Vírion , Proteínas de Peixes/farmacologia
20.
An Acad Bras Cienc ; 95(4): e20200558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055608

RESUMO

Iridovirus in Culex pipiens was reported for the first time in 2012. Later studies of horizontal transmission were performed, in which an interaction with the parasite Strelkovimermis spiculatus acting as viral vector was recognized. In the present study, we observed aspects of the pathology produced by an invertebrate iridescent virus in laboratory infected immature Cx. pipiens as well as in infected immature Cx. pipiens in the field. In the laboratory infected larvae, the infection and mortality were asynchronous. Signs of infection in larvae exposed to the virus were observed between the second and the fourth days post-exposure in 99% of the cases, while the highest daily record of visible infected larvae (52%) was observed on the third day post exposure. Moreover, 79% of confirmed virus infected larvae died in the first 10 days after exposure. The Median Lethal Time was eight days. Several tissues were found to be infected and the common sites of replication were the fat body, epidermis and epithelial derivatives, such as the imaginal discs and the tracheal epithelium. Moreover, infection in the salivary glands, gastric ceca and posterior gut have not been previously documented on other mosquito iridescent viruses.


Assuntos
Culex , Culicidae , Iridovirus , Animais , Mosquitos Vetores , Culex/parasitologia , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA