Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Ann Transplant ; 29: e941881, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409779

RESUMO

BACKGROUND Mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE) is an autosomal recessive disease caused by thymidine phosphorylase deficiency leading to progressive gastrointestinal dysmotility, cachexia, ptosis, ophthalmoparesis, peripheral neuropathy and leukoencephalopathy. Although liver transplantation corrects thymidine phosphorylase deficiency, intestinal deficiency of the enzyme persists. Retrospective chart review was carried out to obtain clinical, biochemical, and pathological details. CASE REPORT We present a case of liver and subsequent intestine transplant in a 28-year-old man with MNGIE syndrome with gastrointestinal dysmotility, inability to walk, leukoencephalopathy, ptosis, cachexia, and elevated serum thymidine. To halt progression of neurologic deficit, he first received a left-lobe partial liver transplantation. Although his motor deficit improved, gastrointestinal dysmotility persisted, requiring total parenteral nutrition. After exhaustive intestinal rehabilitation, he was listed for intestine transplantation. Two-and-half years after liver transplantation, he received an intestine transplant. At 4 years after LT and 20 months after the intestine transplant, he remains off parenteral nutrition and is slowly gaining weight. CONCLUSIONS This is the first reported case of mitochondrial neurogastrointestinal encephalomyopathy to undergo successful sequential liver and intestine transplantation.


Assuntos
Pseudo-Obstrução Intestinal , Leucoencefalopatias , Encefalomiopatias Mitocondriais , Distrofia Muscular Oculofaríngea , Oftalmoplegia , Oftalmoplegia/congênito , Masculino , Humanos , Adulto , Caquexia , Estudos Retrospectivos , Encefalomiopatias Mitocondriais/cirurgia , Encefalomiopatias Mitocondriais/patologia , Oftalmoplegia/etiologia , Oftalmoplegia/cirurgia , Intestinos/patologia , Fígado/patologia
2.
HGG Adv ; 5(2): 100269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38213032

RESUMO

Alternative polyadenylation (APA) at the 3' UTR of transcripts contributes to the cell transcriptome. APA is suppressed by the nuclear RNA-binding protein PABPN1. Aging-associated reduced PABPN1 levels in skeletal muscles lead to muscle wasting. Muscle weakness in oculopharyngeal muscular dystrophy (OPMD) is caused by short alanine expansion in PABPN1 exon1. The expanded PABPN1 forms nuclear aggregates, an OPMD hallmark. Whether the expanded PABPN1 affects APA and how it contributes to muscle pathology is unresolved. To investigate these questions, we developed a procedure including RNA library preparation and a simple pipeline calculating the APA-shift ratio as a readout for PABPN1 activity. Comparing APA-shift results to previously published PAS utilization and APA-shift results, we validated this procedure. The procedure was then applied on the OPMD cell model and on RNA from OPMD muscles. APA-shift was genome-wide in the mouse OPMD model, primarily affecting muscle transcripts. In OPMD individuals, APA-shift was enriched with muscle transcripts. In an OPMD cell model APA-shift was not significant. APA-shift correlated with reduced expression levels of a subset of PABPN1 isoforms, whereas the expression of the expanded PABPN1 did not correlate with APA-shift. PABPN1 activity is not affected by the expression of expanded PABPN1, but rather by reduced PABPN1 expression levels. In muscles, PABPN1 activity initially affects muscle transcripts. We suggest that muscle weakness in OPMD is caused by PABPN1 loss-of-function leading to APA-shift that primarily affects in muscle transcripts.


Assuntos
Distrofia Muscular Oculofaríngea , Animais , Camundongos , Modelos Animais de Doenças , Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Oculofaríngea/genética , Poliadenilação/genética , RNA/metabolismo
3.
Neurology ; 102(1): e207833, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165364

RESUMO

BACKGROUND AND OBJECTIVES: Oculopharyngeal muscular dystrophy (OPMD) is a rare progressive neuromuscular disease. MRI is one of the techniques that is used in neuromuscular disorders to evaluate muscle alterations. The aim of this study was to describe the pattern of fatty infiltration of orofacial and leg muscles using quantitative muscle MRI in a large national cohort and to determine whether MRI can be used as an imaging biomarker of disease progression in OPMD. METHODS: Patients with OPMD (18 years or older) were invited from the national neuromuscular database or by their treating physicians and were examined twice with an interval of 20 months, with quantitative MRI of orofacial and leg muscles to assess fatty infiltration which were compared with clinical measures. RESULTS: In 43 patients with genetically confirmed OPMD, the muscles that were affected most severely were the tongue (mean fat fraction: 37.0%, SD 16.6), adductor magnus (31.9%; 27.1), and soleus (27.9%; 21.5) muscles. The rectus femoris and tibialis anterior muscles were least severely affected (mean fat fractions: 6.8%; SD 4.7, 7.5%; 5.9). Eleven of 14 significant correlations were found between fat fraction and a clinical task in the corresponding muscles (r = -0.312 to -0.769, CI = -0.874 to -0.005). At follow-up, fat fractions had increased significantly in 17 of the 26 muscles: mean 1.7% in the upper leg muscles (CI = 0.8-2.4), 1.7% (1.0-2.3) in the lower leg muscles, and 1.9% (0.6-3.3) in the orofacial muscles (p < 0.05). The largest increase was seen for the soleus (3.8%, CI = 2.5-5.1). Correlations were found between disease duration and repeat length vs increased fat fraction in 7 leg muscles (r = 0.323 to -0.412, p < 0.05). DISCUSSION: According to quantitative muscle MRI, the tongue, adductor magnus and soleus show the largest fat infiltration levels in patients with OPMD. Fat fractions increased in several orofacial and leg muscles over 20 months, with the largest fat fraction increase seen in the soleus. This study supports that this technique is sensitive enough to show worsening in fat fractions of orofacial and leg muscles and therefore a responsive biomarker for future clinical trials.


Assuntos
Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/diagnóstico por imagem , Perna (Membro) , Imageamento por Ressonância Magnética , Músculo Quadríceps , Biomarcadores
5.
Neuromuscul Disord ; 34: 27-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052666

RESUMO

Genetic variation at HNRNPA2B1 is associated with inclusion body myopathy, Paget's disease and paediatric onset oculopharyngeal muscular dystrophy. We present a pedigree where a mother and two daughters presented with adolescent to early-adulthood onset of symptoms reminiscent of oculopharyngeal muscular dystrophy or chronic progressive external ophthalmoplegia, with a later limb-girdle pattern of weakness. Creatine Kinase was ∼1000 U/L. Myoimaging identified fatty replacement of sartorius, adductors longus and magnus, biceps femoris, semitendinosus and gastrocnemii. Muscle biopsies showed a variation of fibre size, occasional rimmed vacuoles and increased internalised myonuclei. Cases were heterozygous for a frameshift variant at HNRNPA2B1, consistent with a dominant and fully-penetrant mode of inheritance. Genetic variation at HNRNPA2B1 should be considered in adults with an oculopharyngeal muscular dystrophy-like or chronic progressive external ophthalmoplegia-like myopathy where initial testing fails to identify a cause.


Assuntos
Doenças Musculares , Distrofia Muscular Oculofaríngea , Oftalmoplegia Externa Progressiva Crônica , Adolescente , Adulto , Criança , Humanos , Músculo Esquelético/patologia , Doenças Musculares/genética , Distrofia Muscular Oculofaríngea/diagnóstico , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Oftalmoplegia Externa Progressiva Crônica/patologia , Linhagem , Fenótipo
7.
Neuromuscul Disord ; 33(11): 824-834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926637

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a rare, primarily autosomal dominant, late onset muscular dystrophy commonly presenting with ptosis, dysphagia, and subsequent weakness of proximal muscles. Although OPMD diagnosis can be confirmed with high confidence by genetic testing, the slow progression of OPMD poses a significant challenge to clinical monitoring and a barrier to assessing the efficacy of treatments during clinical trials. Accordingly, there is a pressing need for more sensitive measures of OPMD progression, particularly those which do not require a muscle biopsy. This review provides an overview of progress in OPMD biomarkers from clinical assessment, quantitative imaging, histological assessments, and genomics, as well as hypothesis-generating "omics" approaches. The ongoing search for biomarkers relevant to OPMD progression needs an integrative, longitudinal approach combining validated and experimental approaches which may include clinical, imaging, demographic, and biochemical assessment methods. A multi-omics approach to biochemical biomarker discovery could help provide context for differences found between individuals with varying levels of disease activity and provide insight into pathomechanisms and prognosis of OPMD.


Assuntos
Blefaroptose , Transtornos de Deglutição , Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/genética , Biomarcadores , Blefaroptose/genética , Testes Genéticos
8.
Neuromuscul Disord ; 33(11): 856-865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37923656

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a rare late-onset muscle disease associated with progressive dysphagia. As there was no patient-reported outcome measure specific for the assessment of dysphagia in OPMD, the Dysphagiameter was developed. The Food and Drug Administration guidance was followed. In Phase 1, a systematic literature review and an expert consultation were conducted to identify the concepts of interest. It was decided that the instrument should assess difficulty swallowing using pictures of foods of various textures (part A) and impact of dysphagia on activities and participation (part B), as defined by the International Classification of Functioning, Disability and Health. In Phase 2, focus groups (n = 3) and online surveys (n = 55) were conducted to generate the items. Then, the food items for part A were selected and grouped into 17 textures by a panel of registered dietitians. Cognitive interviews were conducted (n = 23) to refine the instrument and assess its clarity and comprehensiveness. The final draft included 82 food items assessing the capacity to swallow foods and drinks (part A) and 10 items assessing the impact of dysphagia on activities and participation (part B). Item reduction and assessment of psychometrics properties, using Rasch analysis, are ongoing as part of Phase 3.


Assuntos
Transtornos de Deglutição , Distrofia Muscular Oculofaríngea , Humanos , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/complicações , Distrofia Muscular Oculofaríngea/complicações , Distrofia Muscular Oculofaríngea/diagnóstico , Medidas de Resultados Relatados pelo Paciente , Psicometria , Inquéritos e Questionários , Revisões Sistemáticas como Assunto
9.
Muscle Nerve ; 68(6): 841-849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37849345

RESUMO

INTRODUCTION/AIMS: Muscle weakness, and its association with mobility limitations, has received little study in oculopharyngeal muscular dystrophy (OPMD) using quantitative and standardized assessments. The objectives of this study were to (1) document upper and lower limb muscle strength, upper limb functions, fatigue, and mobility capacities; (2) compare them with reference values and across participant age groups; and (3) explore associations between muscle strength, fatigue, and mobility capacities among adults with OPMD. METHODS: Thirty-four participants were included in this cross-sectional study. The following variables were assessed: quantitative maximal isometric muscle strength, grip and pinch strength, fatigue, walking speed, walking endurance, sit-to-stand, and stair ascent and descent capacities. RESULTS: Muscle strength was lower for older than younger participants for five muscle groups (P < .05). Walking endurance, sit-to-stand, stairs (ascent and descent), and strength of hip flexion, grip, and pinch were below 80% of reference values in participants ≥56 y old (55.3%-78.2%). Moderate to strong correlations were found between muscle strength and mobility capacities (ρ = 0.42-0.80, P < .05), and between fatigue and either muscle strength or mobility capacities (ρ = 0.42-0.75, P < .05). DISCUSSION: This study highlights the impact of OPMD on strength, endurance, and functional capacity, among others, with patients being well below reference values even before the age of 65 y. In addition to helping health professionals to offer better clinical guidance, these results will improve clinical trial readiness. The next steps will be to assess the metrological properties of outcome measures and continue to document the disease progression rate.


Assuntos
Distrofia Muscular Oculofaríngea , Adulto , Humanos , Estudos Transversais , Força Muscular/fisiologia , Caminhada/fisiologia , Fadiga
10.
J Neurol ; 270(12): 5988-5998, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634163

RESUMO

BACKGROUND AND OBJECTIVES: Oculopharyngodistal myopathy (OPDM) is an autosomal dominant myopathy clinically characterized by distal muscle weakness. Even though the identification of four causative genes, LRP12, GIPC1, NOTCH2NLC and RILPL1, it is unclear whether the myopathy progressed similarly among OPDM subtypes. We aimed to establish diagnostic clues in muscle imaging of OPDM in comparison with clinicopathologically similar oculopharyngeal muscular dystrophy (OPMD). METHODS: Axial muscle CT and/or T1-weighted MRI data from 54 genetically confirmed patients with OPDM (OPDM_LRP12; n = 43, OPDM_GIPC1; n = 6, OPDM_NOTCH2NLC; n = 5) and 57 with OPMD were evaluated. We scored the degree of fat infiltration in each muscle by modified Mercuri score and performed hierarchical clustering analyses to classify the patients and infer the pattern of involvement on progression. RESULTS: All OPDM subtypes showed a similar pattern of distribution in the affected muscles; soleus and medial gastrocnemius involved in the early stage, followed by tibialis anterior and extensor digitorum longus. For differentiating OPDM and OPMD, severely affected gluteus medius/minimus and adductor magnus was indicative of OPMD. DISCUSSION: We identified a diagnostic muscle involvement pattern in OPDM reflecting its natural history. The results of this study will help in the appropriate intervention based on the diagnosis of OPDM, including its stage.


Assuntos
Doenças Musculares , Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/genética , Músculo Esquelético/diagnóstico por imagem , Doenças Musculares/genética , Progressão da Doença
11.
Aging Cell ; 22(10): e13949, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559347

RESUMO

Autophagy is an intracellular degradative process with an important role in cellular homeostasis. Here, we show that the RNA binding protein (RBP), heterogeneous nuclear ribonucleoprotein Q (HNRNPQ)/SYNCRIP is required to stimulate early events in autophagosome biogenesis, in particular the induction of VPS34 kinase by ULK1-mediated beclin 1 phosphorylation. The RBPs HNRNPQ and poly(A) binding protein nuclear 1 (PABPN1) form a regulatory network that controls the turnover of distinct autophagy-related (ATG) proteins. We also show that oculopharyngeal muscular dystrophy (OPMD) mutations engender a switch from autophagosome stimulation to autophagosome inhibition by impairing PABPN1 and HNRNPQ control of the level of ULK1. The overexpression of HNRNPQ in OPMD patient-derived cells rescues the defective autophagy in these cells. Our data reveal a regulatory mechanism of autophagy induction that is compromised by PABPN1 disease mutations, and may thus further contribute to their deleterious effects.


Assuntos
Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Autofagossomos/metabolismo , Mutação/genética , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo
12.
J Biol Chem ; 299(8): 105019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422193

RESUMO

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Assuntos
Distrofia Muscular Oculofaríngea , Poliadenilação , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo
14.
J Neuromuscul Dis ; 10(5): 869-883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182896

RESUMO

INTRODUCTION: MRI of extra-ocular muscles (EOM) in patients with myasthenia gravis (MG) could aid in diagnosis and provide insights in therapy-resistant ophthalmoplegia. We used quantitative MRI to study the EOM in MG, healthy and disease controls, including Graves' ophthalmopathy (GO), oculopharyngeal muscular dystrophy (OPMD) and chronic progressive external ophthalmoplegia (CPEO). METHODS: Twenty recently diagnosed MG (59±19yrs), nineteen chronic MG (51±16yrs), fourteen seronegative MG (57±9yrs) and sixteen healthy controls (54±13yrs) were included. Six CPEO (49±14yrs), OPMD (62±10yrs) and GO patients (44±12yrs) served as disease controls. We quantified muscle fat fraction (FF), T2water and volume. Eye ductions and gaze deviations were assessed by synoptophore and Hess-charting. RESULTS: Chronic, but not recent onset, MG patients showed volume increases (e.g. superior rectus and levator palpebrae [SR+LPS] 985±155 mm3 compared to 884±269 mm3 for healthy controls, p < 0.05). As expected, in CPEO volume was decreased (e.g. SR+LPS 602±193 mm3, p < 0.0001), and in GO volume was increased (e.g. SR+LPS 1419±457 mm3, p < 0.0001). FF was increased in chronic MG (e.g. medial rectus increased 0.017, p < 0.05). In CPEO and OPMD the FF was more severely increased. The severity of ophthalmoplegia did not correlate with EOM volume in MG, but did in CPEO and OPMD. No differences in T2water were found. INTERPRETATION: We observed small increases in EOM volume and FF in chronic MG compared to healthy controls. Surprisingly, we found no atrophy in MG, even in patients with long-term ophthalmoplegia. This implies that even long-term ophthalmoplegia in MG does not lead to secondary structural myopathic changes precluding functional recovery.


Assuntos
Distrofia Muscular Oculofaríngea , Miastenia Gravis , Oftalmoplegia Externa Progressiva Crônica , Oftalmoplegia , Humanos , Lipopolissacarídeos , Músculos Oculomotores/diagnóstico por imagem , Miastenia Gravis/complicações , Miastenia Gravis/diagnóstico por imagem , Distrofia Muscular Oculofaríngea/complicações , Distrofia Muscular Oculofaríngea/diagnóstico por imagem , Oftalmoplegia/diagnóstico por imagem , Oftalmoplegia/etiologia , Imageamento por Ressonância Magnética
15.
Open Biol ; 13(4): 230008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042114

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease characterized by the progressive degeneration of specific muscles. OPMD is due to a mutation in the gene encoding poly(A) binding protein nuclear 1 (PABPN1) leading to a stretch of 11 to 18 alanines at N-terminus of the protein, instead of 10 alanines in the normal protein. This alanine tract extension induces the misfolding and aggregation of PABPN1 in muscle nuclei. Here, using Drosophila OPMD models, we show that the unfolded protein response (UPR) is activated in OPMD upon endoplasmic reticulum stress. Mutations in components of the PERK branch of the UPR reduce muscle degeneration and PABPN1 aggregation characteristic of the disease. We show that oral treatment of OPMD flies with Icerguastat (previously IFB-088), a Guanabenz acetate derivative that shows lower side effects, also decreases muscle degeneration and PABPN1 aggregation. Furthermore, the positive effect of Icerguastat depends on GADD34, a key component of the phosphatase complex in the PERK branch of the UPR. This study reveals a major contribution of the ER stress in OPMD pathogenesis and provides a proof-of-concept for Icerguastat interest in future pharmacological treatments of OPMD.


Assuntos
Distrofia Muscular Oculofaríngea , Animais , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Músculo Esquelético/metabolismo , Resposta a Proteínas não Dobradas , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático , Drosophila
17.
J Neuromuscul Dis ; 10(3): 459-463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36847015

RESUMO

Immediately after the initial methionine codon, the PABPN1 gene encodes a stretch of 10 alanines, 1 glycine, and 2 alanines. Oculopharyngeal muscular dystrophy (OPMD) is caused by the expansion of the first 10 alanine stretches. The only exception is the missense mutation of glycine at the 12th residue into alanine, which elongates the stretch to 13 alanines by connecting the first and second stretch with the addition of one alanine in between, indicating that the expansion or elongation of the alanine stretch results in OPMD. We report a 77-year-old man with the novel missense mutation c.34G > T (p.Gly12Trp) in PABPN1 gene whose clinicopathological findings were compatible with OPMD. He presented with slowly progressive bilateral ptosis, dysphagia, and symmetrical proximal dominant muscle weakness. Magnetic resonance imaging revealed selective fat replacement of the tongue, bilateral adductor magnus, and soleus muscles. Immunohistochemistry studies of the muscle biopsy sample revealed PABPN1-posibive aggregates in the myonuclei which have been reported to be specific to OPMD. This is the first OPMD case caused by neither the expansion nor the elongation of alanine stretch. The present case suggests that OPMD may be caused not only by triplet repeats but also by point mutations.


Assuntos
Distrofia Muscular Oculofaríngea , Masculino , Humanos , Idoso , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Mutação Puntual , Alanina/genética , Glicina/genética , Proteína I de Ligação a Poli(A)/genética
18.
Ann Clin Transl Neurol ; 10(3): 426-439, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691350

RESUMO

OBJECTIVE: Oculopharyngeal muscular dystrophy (OPMD) is a late-onset inherited neuromuscular disorder, with progressive ptosis and dysphagia as common manifestations. To date, OPMD has rarely been reported among East Asians. The present study summarizes the phenotypic and genotypic features of Chinese patients with OPMD. METHODS: Twenty-one patients with molecularly confirmed OPMD from 9 unrelated families were identified by direct sequencing of the polyadenlyate binding protein nuclear-1 (PABPN1) gene. Immunofluorescence staining of muscle biopsies was conducted to identify the components of protein degradation pathways involved in OPMD. RESULTS: In our cohort, the genetically confirmed OPMD group had a mean age at onset of 50.6 ± 4.2 years (range 45-60 years). Ptosis (42.9%) was the most common initial symptom; patients with ptosis as the first symptom subsequently developed dysphagia within a median time of 5.5 years (range 1-19 years). Evidence of external ophthalmoplegia was found in 38.1% of patients. A total of 33.3% of the patients developed muscle weakness at a median age at onset of 66 years (range 50-70 years), with neck flexor involvement in all patients. Five genotypes were observed in our cohort, including classical (GCG)9-11 repeats in 7 families and non-GCG elongations with additional GCA expansions in 2 families. OPMD muscle biopsies revealed rimmed vacuoles and intranuclear filamentous inclusions. The PABPN1 protein showed substantial accumulation in the nuclei of muscle fiber aggregates and closely colocalized with p62, LC3B and FK2. INTERPRETATION: Our findings indicate wide genetic heterogeneity in OPMD in the Chinese population and demonstrate abnormalities in protein degradation pathways in this disease.


Assuntos
Transtornos de Deglutição , Distrofia Muscular Oculofaríngea , Humanos , Pessoa de Meia-Idade , Idoso , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , População do Leste Asiático , Genótipo , Proteína II de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/genética
19.
Neuromuscul Disord ; 33(1): 24-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462961

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a genetic muscle disease causing ptosis, severe swallowing difficulties and progressive limb weakness, although atypical presentations may be difficult to diagnose. Sensitive biomarkers of disease progression in OPMD are needed to enable more effective clinical trials. This study was designed to test the feasibility of using MRI to aid OPMD diagnosis and monitor OPMD progression. Twenty-five subjects with Dixon whole-body muscle MRI were enrolled: 10 patients with genetically confirmed OPMD, 10 patients with non-OPMD muscular dystrophies, and 5 controls. Using the MRI Dixon technique, muscle fat replacement was evaluated in the tongue, serratus anterior, lumbar paraspinal, adductor magnus, and soleus muscles using quantitative and semi-quantitative rating methods. Changes were compared with muscle strength testing, dysphagia severity, use of gait aids, and presence of dysarthria. Quantitative MRI scores of muscle fat replacement in the tongue could differentiate OPMD from other muscular dystrophies and from controls. Moreover, fat fraction in the tongue correlated with clinical severity of dysphagia. This study provides preliminary support for the use of Dixon-based quantitative MRI images as outcome measures for monitoring disease progression in clinical trials and provides rationale for future prospective studies aimed at methodological refinement and covariate identification.


Assuntos
Transtornos de Deglutição , Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/diagnóstico , Transtornos de Deglutição/diagnóstico por imagem , Transtornos de Deglutição/etiologia , Estudos Prospectivos , Músculo Esquelético/diagnóstico por imagem , Imageamento por Ressonância Magnética , Biomarcadores , Progressão da Doença
20.
Methods Mol Biol ; 2587: 557-568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401050

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset rare muscle disease affecting approximately 1 in 80,000 individuals worldwide. However, it can affect as much as 1:600 individuals in some populations due to a strong founder effect. The muscle pathology is characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and limb weakness at later stages of disease progression. The genetic defect is associated with significant fibrotic deposition and atrophy in affected muscles. No treatments are available to cure the disease. Only surgical techniques to correct ptosis and swallowing are currently possible, though they carry a risk of recurrence. Myostatin is a negative regulator of muscle growth, and several strategies to downregulate its expression have been developed with the aim of improving muscle mass and strength in muscular pathologies. We recently showed that weekly systemic treatment of the A17 murine model of OPMD with a monoclonal antibody for myostatin improves body and muscle mass, increases muscle strength, and reduces muscle fibrosis. Here, we describe the methodology for repeated intraperitoneal delivery of myostatin antibody in the murine model. Furthermore, we detail the most relevant analyses to assess histopathological and functional improvements of this treatment in this mouse model.


Assuntos
Distrofia Muscular Oculofaríngea , Camundongos , Animais , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Miostatina , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...