Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.028
Filtrar
1.
Sci Rep ; 14(1): 440, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172222

RESUMO

Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene, and female carriers are usually asymptomatic. We describe a 7-month-old female patient with severe intellectual disability, epilepsy, and low levels of serum copper and ceruloplasmin. While heterozygous deletion of exons 16 and 17 of the ATP7A gene was detected in the proband, her mother, and her grandmother, only the proband suffered from Menkes disease clinically. Intriguingly, X chromosome inactivation (XCI) analysis demonstrated that the grandmother and the mother showed skewing of XCI toward the allele with the ATP7A deletion and that the proband had extremely skewed XCI toward the normal allele, resulting in exclusive expression of the pathogenic ATP7A mRNA transcripts. Expression bias analysis and recombination mapping of the X chromosome by the combination of whole genome and RNA sequencing demonstrated that meiotic recombination occurred at Xp21-p22 and Xq26-q28. Assuming that a genetic factor on the X chromosome enhanced or suppressed XCI of its allele, the factor must be on either of the two distal regions derived from her grandfather. Although we were unable to fully uncover the molecular mechanism, we concluded that unfavorable switching of skewed XCI caused Menkes disease in the proband.


Assuntos
Síndrome dos Cabelos Torcidos , Humanos , Lactente , Feminino , Síndrome dos Cabelos Torcidos/genética , Inativação do Cromossomo X/genética , Cobre/metabolismo , Cromossomos Humanos X/genética , Mutação
2.
Biomolecules ; 13(12)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136617

RESUMO

Menkes' disease (MD) and Wilson's disease (WD) are two major copper (Cu) metabolism-related disorders caused by mutations of the ATP7A and ATP7B ATPase gene, respectively. While Cu is involved in DNA strand breaks signaling and repair, the response of cells from both diseases to ionizing radiation, a common DNA strand breaks inducer, has not been investigated yet. To this aim, three MD and two WD skin fibroblasts lines were irradiated at two Gy X-rays and clonogenic cell survival, micronuclei, anti-γH2AX, -pATM, and -MRE11 immunofluorescence assays were applied to evaluate the DNA double-strand breaks (DSB) recognition and repair. MD and WD cells appeared moderately radiosensitive with a delay in the radiation-induced ATM nucleo-shuttling (RIANS) associated with impairments in the DSB recognition. Such delayed RIANS was notably caused in both MD and WD cells by a highly expressed ATP7B protein that forms complexes with ATM monomers in cytoplasm. Interestingly, a Cu pre-treatment of cells may influence the activity of the MRE11 nuclease and modulate the radiobiological phenotype. Lastly, some high-passage MD cells cultured in routine may transform spontaneously becoming immortalized. Altogether, our findings suggest that exposure to ionizing radiation may impact on clinical features of MD and WD, which requires cautiousness when affected patients are submitted to radiodiagnosis and, eventually, radiotherapy.


Assuntos
Degeneração Hepatolenticular , Síndrome dos Cabelos Torcidos , Humanos , Cobre/metabolismo , Proteínas Quinases/metabolismo , Radiação Ionizante , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Degeneração Hepatolenticular/genética , Fibroblastos/metabolismo , DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1504-1507, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994131

RESUMO

OBJECTIVE: To explore the clinical characteristics and variants of ATP7A gene in a child with Menkes disease. METHODS: A child with Menkes disease diagnosed at the West China Second Hospital of Sichuan University and its family members in March 2022 was selected as the study subjects. Clinical manifestations and results of laboratory tests and genetic testing were summarized. RESULTS: The main manifestations of the child included seizures, global development delay, facial dysmorphism, sparse and curly hair, increased lactate and pyruvate, and significantly decreased cuprin. EEG showed frequent issuance of multifocal spikes, spines, polyspines (slow) and polymorphic slow waves. Multiple tortuous vascular shadows were observed on cranial MRI. Whole exome sequencing revealed that the child has harbored a hemizygous c.3076delA (p.ile1026*) variant of the ATP7A gene, which was inherited from his mother. The variant may lead to premature termination of protein translation. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as pathogenic (PVS1+PM2+PP4). CONCLUSION: The c.3076delA (p.Ile1026*) variant of the ATP7A gene probably underlay the Menkes disease in this child. Above finding has provided evidence for clinical diagnosis. The significantly increased lactic acid and pyruvate can be used as a reference for the diagnosis and management of Menkes disease. Microscopic abnormalities in the hair of the carriers may also facilitate their diagnosis.


Assuntos
Síndrome dos Cabelos Torcidos , Criança , Humanos , ATPases Transportadoras de Cobre/genética , População do Leste Asiático , Síndrome dos Cabelos Torcidos/genética , Mutação , Linhagem , Fragmentos de Peptídeos , Ácido Pirúvico
5.
Mol Genet Genomic Med ; 11(9): e2219, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353886

RESUMO

INTRODUCTION: CREBBP truncating mutations and deletions are responsible for the well-known Rubinstein-Taybi syndrome. Recently, a new, distinct CREBBP-linked syndrome has been described: missense mutations located at the 3' end of exon 30 and the 5' portion of exon 31 induce Menke-Hennekam syndrome. Patients with this syndrome present a recognizable facial dysmorphism, intellectual disability of variable severity, microcephaly, short stature, autism, epilepsy, visual and hearing impairments, feeding problems, upper airway infections, scoliosis, and/or kyphosis. To date, all diagnoses were made postnatally. METHOD AND CASE REPORT: Trio-whole exome sequencing (WES) was performed in a fetus showing increased nuchal translucency persistence and aorta abnormalities at 28 weeks of gestation (WG). RESULTS: WES revealed a CREBBP de novo missense mutation (c.5602C>T; p.Arg1868Trp) in exon 31, previously reported as the cause of Menke-Hennekam syndrome. Termination of pregnancy was performed at 32 WG. We further reviewed the prenatal signs of Menke-Hennekam syndrome already reported. Among the 35 patients reported and diagnosed postnatally up to this day, 15 presented recognizable prenatal signs, the most frequent being intra-uterine growth retardation, brain, and cardiovascular anomalies. CONCLUSION: Menke-Hennekam is a rare syndrome with unspecific, heterogeneous, and inconstant prenatal symptoms occurring most frequently with the c.5602C>T, p.(Arg1868Trp) mutation. Therefore, the prenatal diagnosis of Menke-Hennekam syndrome is only possible by molecular investigation. Moreover, this case report and review reinforce the importance of performing prenatal WES when unspecific signs are present on imaging.


Assuntos
Síndrome dos Cabelos Torcidos , Síndrome de Rubinstein-Taybi , Gravidez , Feminino , Humanos , Fenótipo , Sequenciamento do Exoma , Mutação , Síndrome de Rubinstein-Taybi/genética , Mutação de Sentido Incorreto
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(6): 668-673, 2023 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-37212000

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic etiology of three children with Menkes disease. METHODS: Three children who had presented at the Children's Medical Center, the Affiliated Hospital of Guangdong Medical University from January 2020 to July 2022 were selected as the study subjects. Clinical data of the children were reviewed. Genomic DNA was extracted from peripheral blood samples of the children, their parents and sister of child 1. Whole exome sequencing (WES) was carried out. Candidate variants were verified by Sanger sequencing, copy number variation sequencing (CNV-seq), and bioinformatic analysis. RESULTS: Child 1 was a 1-year-and-4-month male, and children 2 and 3 were monozygotic twin males aged 1-year-and-10-month. The clinical manifestations of the three children have included developmental delay and seizures. WES showed that child 1 has harbored a c.3294+1G>A variant of the ATP7A gene. Sanger sequencing confirmed that his parents and sister did not carry the same variant, suggesting that it was de novo. Children 2 and 3 had carried a c.77266650_77267178del copy number variation. CNV-seq results showed that their mother has carried the same variant. By searching the HGMD, OMIM and ClinVar databases, the c.3294+1G>A was known to be pathogenic. No carrier frequency has been recorded in the 1000 Genomes, ESP, ExAC and gnomAD databases. Based on the Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG), the ATP7A gene c.3294+1G>A variant was predicted to be pathogenic. The c.77266650_77267178del variant has involved exons 8 to 9 of the ATP7A gene. ClinGen online system score for it was 1.8, which was also considered to be pathogenic. CONCLUSION: The c.3294+1G>A and c.77266650_ 77267178del variants of the ATP7A gene probably underlay the Menkes disease in the three children. Above finding has enriched the mutational spectrum of Menkes disease and provided a basis for clinical diagnosis and genetic counseling.


Assuntos
ATPases Transportadoras de Cobre , Síndrome dos Cabelos Torcidos , Humanos , Masculino , Biologia Computacional , ATPases Transportadoras de Cobre/genética , Variações do Número de Cópias de DNA , Éxons , Síndrome dos Cabelos Torcidos/genética , Mutação , Fragmentos de Peptídeos , Convulsões , Lactente
7.
J Assist Reprod Genet ; 40(4): 811-816, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995557

RESUMO

Assisted reproductive technology (ART) has experienced dramatic progress over the last 30 years, and gamete donation is routine in fertility clinics. Major advances in genetic diagnostics are part of this development due to the ability to analyze multiple genes or whole genomes fast and to an affordable prize. This requires knowledge and capability to evaluate genetic variants correctly in a clinical setting. Here we report a Menkes disease case, born after ART, where genetic screening and variant scoring failed to identify an egg donor as carrier of this fatal X-linked disorder. The gene variant is a deletion of a single base pair leading to a frameshift and premature termination of the protein, predicted to result in no or severely diminished function. The variant would be classified as likely pathogenic (class 4) and should be readily detectable by molecular genetic screening techniques. We wish to highlight this case to prevent future similar cases. IVI Igenomix has developed and embarked on an ambitious screening program to detect and prevent a large number of inherited severe childhood disorders in ART pregnancies. The company has recently achieved ISO 15189 certification with competence to evaluate and deliver timely, accurate, and reliable results. Failure to identify a pathogenic variant in the ATP7A gene leading to birth of two boys with Menkes disease invokes the required procedures to screen and detect disease-causing gene variants. This calls for ethical and legal considerations in ART diagnostics to prevent fatal errors like the present.


Assuntos
Síndrome dos Cabelos Torcidos , Síndrome dos Cabelos Torcidos/genética , Cromossomos Humanos X , Técnicas de Reprodução Assistida , Humanos , Masculino , Feminino , Gravidez , Pessoa de Meia-Idade , Resultado da Gravidez
8.
J Inherit Metab Dis ; 46(2): 163-173, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36692329

RESUMO

In patients with ATP7A-related disorders, counseling is challenging due to clinical overlap between the entities, the absence of predictive biomarkers and a clear genotype-phenotype correlation. We performed a systematic literature review by querying the MEDLINE and Embase databases identifying 143 relevant papers. We recorded data on the phenotype and genotype in 162 individuals with a molecularly confirmed ATP7A-related disorder in order to identify differentiating clinical criteria, evaluate genotype-phenotype correlations and propose management guidelines. Early seizures are specific for classical Menkes disease (CMD), that is characterized by early-onset neurodegenerative disease with high mortality rates. Ataxia is an independent indicator for atypical Menkes disease, that shows better survival rates than CMD. Bony exostoses, radial head dislocations, herniations and dental abnormalities are specific for occipital horn syndrome (OHS) that may further present with developmental delay and connective tissue manifestations. Intracranial tortuosity and bladder diverticula, both with high risk of complications, are common among all subtypes. Low ceruloplasmin is a more sensitive and discriminating biomarker for ATP7A-related disorders than serum copper. Truncating mutations are frequently associated with CMD, in contrast with splice site and intronic mutations which are more prevalent in OHS.


Assuntos
Cútis Laxa , Síndrome dos Cabelos Torcidos , Doenças Neurodegenerativas , Humanos , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Cútis Laxa/genética , Mutação , Fragmentos de Peptídeos/genética
9.
PLoS Genet ; 19(1): e1010558, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626371

RESUMO

Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.


Assuntos
Cobre , Síndrome dos Cabelos Torcidos , Camundongos , Animais , ATPases Transportadoras de Cobre , Cobre/metabolismo , Plexo Corióideo/metabolismo , Síndrome dos Cabelos Torcidos/metabolismo , Encéfalo/metabolismo
10.
Clin Genet ; 103(5): 585-589, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36562171

RESUMO

Known hereditary human diseases featuring impaired copper trafficking across cellular membranes involve ATP7A (Menkes disease, occipital horn disease, X-linked spinal muscular atrophy type 3) and ATP7B (Wilson disease). Herein, we report a newborn infant of consanguineous parents with a homozygous pathogenic variant in a highly conserved sequence of SLC31A1, coding for the copper influx transporter 1, CTR1. This missense variant, c.236T > C, was detected by whole exome sequencing. The infant was born with pulmonary hypoplasia and suffered from severe respiratory distress immediately after birth, necessitating aggressive mechanical ventilation. At 2 weeks of age, multifocal brain hemorrhages were diagnosed by cerebral ultrasound and magnetic resonance imaging, together with increased tortuosity of cerebral arteries. Ensuing seizures were only partly controlled by antiepileptic drugs, and the infant became progressively comatose. Laboratory investigations revealed very low serum concentrations of copper and ceruloplasmin. No hair shaft abnormalities were detected by dermatoscopy or light microscopic analyses of embedded hair shafts obtained at 4 weeks of life. The infant died after redirection of care and elective cessation of invasive mechanical ventilation at 1 month of age. This case adds SLC31A1 to the genes implicated in severe hereditary disorders of copper transport in humans.


Assuntos
Transportador de Cobre 1 , Degeneração Hepatolenticular , Síndrome dos Cabelos Torcidos , Humanos , Lactente , Recém-Nascido , Ceruloplasmina/genética , Cobre , Transportador de Cobre 1/genética , ATPases Transportadoras de Cobre/genética , Degeneração Hepatolenticular/genética , Síndrome dos Cabelos Torcidos/genética , Mutação de Sentido Incorreto
11.
Turk J Pediatr ; 64(6): 1086-1105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583891

RESUMO

BACKGROUND: Hair microscopy is a fast and effortless diagnostic method for many diseases affecting hair in daily practice. Many diseases can present with hair shaft disorders in pediatric neurology practice. METHODS: Children with pathological hair findings were included in our study. Microscopic evaluation of the hair was performed under light microscopy. The clinical findings, pathological hair shaft findings, laboratory tests, and final diagnosis of the patients were evaluated. RESULTS: In our study, 16 patients with rare pathological hair findings were identified. Of these 16 patients, nine were diagnosed with giant axonal neuropathy, three with Griscelli syndrome, two with Menkes disease, and two with autosomal recessive woolly hair disease. In hair inspection, curly and tangled hair in patients with giant axonal neuropathy; silvery blond hair in patients with Griscelli syndrome; sparse, coarse, and light-colored hair in patients with Menkes disease; and hypotrichosis in patients with autosomal recessive woolly hair were remarkable findings. Dystrophic hair was detected in most of the patients on light microscopy. In addition, signs of trichorrhexis nodosa, tricoptylosis, and pili torti were found. In particular, pigment deposition in the hair shaft of two patients diagnosed with Griscelli syndrome and pili torti findings in two patients with Menkes disease were the most important findings suggestingthe diagnosis. CONCLUSIONS: Detection of hair findings in the physical examination and performing light microscopic evaluation facilitates the diagnosis of rare diseases accompanied by hair findings. A hair examination should be performed as a part of physical and neurological examinationson eachpatient regardless of thecomplaint.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Neuropatia Axonal Gigante , Doenças do Cabelo , Síndrome dos Cabelos Torcidos , Doenças do Sistema Nervoso , Doenças da Imunodeficiência Primária , Humanos , Criança , Síndrome dos Cabelos Torcidos/diagnóstico , Síndrome dos Cabelos Torcidos/patologia , Cabelo , Doenças do Cabelo/diagnóstico , Doenças do Cabelo/patologia , Doenças do Sistema Nervoso/diagnóstico
12.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
13.
BMJ Case Rep ; 15(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393273

RESUMO

Menkes disease (MD) is an X linked recessive multi-systemic disorder of copper metabolism, resulting from an ATP7A gene mutation. We report a male infant aged 4 months who presented with kinky hair, hypopigmented skin, epilepsy and delayed development. Magnetic resonance imaging (MRI) of brain demonstrated multiple tortuosities of intracranial vessels and brain atrophy. Investigation had showed markedly decreased serum copper and ceruloplasmin. The novel c.2172+1G>T splice-site mutation in the ATP7A gene confirmed MD. He was treated with subcutaneous administration of locally prepared copper-histidine (Cu-His). Following the therapy, hair manifestation was restored and serum ceruloplasmin was normalised 1 month later. Despite the treatment, epilepsy, neurodevelopment and osteoporosis still progressed. He died from severe respiratory tract infection at the age of 9.5 months. These findings suggest that the benefit of Cu-His in our case is limited which might be related to severe presentations and degree of ATP7A mutation.


Assuntos
Proteínas de Transporte de Cátions , Epilepsia , Síndrome dos Cabelos Torcidos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/genética , Ceruloplasmina/análise , Cobre , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Ásia Oriental , Histidina/análogos & derivados , Histidina/genética , Humanos , Lactente , Masculino , Síndrome dos Cabelos Torcidos/tratamento farmacológico , Síndrome dos Cabelos Torcidos/genética , Mutação , Compostos Organometálicos , Fragmentos de Peptídeos/metabolismo
15.
Pharm Res ; 38(8): 1335-1344, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34403032

RESUMO

PURPOSE: Menkes disease is a rare hereditary disease in which systemic deficiency of copper due to mutation of the ATP7A gene causes severe neurodegenerative disorders. The present parenteral drugs have limited efficacy, so there is a need for an efficacious drug that can be administered orally. This study focused on glyoxal-bis (N(4)-methylthiosemicarbazonato)-copper(II (CuGTSM), which has shown efficacy in macular mice, a murine model of Menkes disease, and examined its pharmacokinetics. In addition, nanosized CuGTSM (nCuGTSM) was prepared, and the effects of nanosizing on CuGTSM pharmacokinetics were investigated. METHODS: CuGTSM or nCuGTSM (10 mg/kg) was administered orally to male macular mice or C3H/HeNCrl mice (control), and plasma was obtained by serial blood sampling. Plasma concentrations of CuGTSM and GTSM were measured by LC-MS/MS and pharmacokinetic parameters were calculated. RESULTS: When CuGTSM was administered orally, CuGTSM and GTSM were both detected in the plasma of both mouse strains. When nCuGTSM was administered, the Cmax was markedly higher, and the mean residence time was longer than when CuGTSM was administered for both CuGTSM and GTSM in both mouse strains. With macular mice, the AUC ratio (GTSM/CuGTSM) was markedly higher and the plasma CuGTSM concentration was lower than with C3H/HeNCrl mice when either CuGTSM or nCuGTSM was administered. CONCLUSION: Absorption of orally administered CuGTSM was confirmed in macular mice, and the nano-formulation improved the absorption and retention of CuGTSM in the body. However, the plasma concentration of CuGTSM was lower in macular mice than in control mice, suggesting easier dissociation of CuGTSM.


Assuntos
Complexos de Coordenação/farmacocinética , Síndrome dos Cabelos Torcidos/tratamento farmacológico , Tiossemicarbazonas/farmacocinética , Administração Oral , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C3H , Tamanho da Partícula
16.
Genes (Basel) ; 12(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069220

RESUMO

Menkes disease (MD) is a rare and often lethal X-linked recessive syndrome, characterized by generalized alterations in copper transport and metabolism, linked to mutations in the ATPase copper transporting α (ATP7A) gene. Our objective was to identify genomic alterations and circulating proteomic profiles related to MD assessing their potential roles in the clinical features of the disease. We describe the case of a male patient of 8 months of age with silvery hair, tan skin color, hypotonia, alterations in neurodevelopment, presence of seizures, and low values of plasma ceruloplasmin. Trio-whole-exome sequencing (Trio-WES) analysis, plasma proteome screening, and blood cell migration assays were carried out. Trio-WES revealed a hemizygous change c.4190C > T (p.S1397F) in exon 22 of the ATP7A gene. Compared with his parents and with child controls, 11 plasma proteins were upregulated and 59 downregulated in the patient. According to their biological processes, 42 (71.2%) of downregulated proteins had a participation in cellular transport. The immune system process was represented by 35 (59.3%) downregulated proteins (p = 9.44 × 10-11). Additional studies are necessary to validate these findings as hallmarks of MD.


Assuntos
Movimento Celular/genética , Fenômenos do Sistema Imunitário/genética , Síndrome dos Cabelos Torcidos/genética , Proteoma/genética , Adolescente , Adulto , ATPases Transportadoras de Cobre/genética , Regulação para Baixo/genética , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Proteômica/métodos , Regulação para Cima/genética , Sequenciamento do Exoma/métodos , Adulto Jovem
17.
Clin Neuropathol ; 40(5): 256-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34032205

RESUMO

Menkes disease is a neurodegenerative metabolic disorder. It is an X-lined recessive disorder of copper metabolism. It is characterized by seizures, developmental delay with loss of achieved milestones, along with skin and hair changes. We present such a genetically proven case of Menkes disease in a 17-month-old boy with seizures, cyanosis, and dyspnea. On evaluation, the child had low serum copper and ceruloplasmin. Magnetic resonance imaging revealed diffuse atrophy of the cerebrum, cerebellum with tortuosity of intracranial vessels. Autopsy confirmed the imaging findings along with dense gliosis, myelin loss, and significant loss of neurons in the cortex. Cerebellum showed aberrant dendritic arborization, somal sprouts, and axonal torpedoes within the Purkinje neurons. This report illustrates the classical presentation of in a genetically proven case of Menkes disease at autopsy, which has not been described in the recent literature.


Assuntos
Encéfalo/patologia , Síndrome dos Cabelos Torcidos/patologia , Autopsia , Humanos , Lactente , Masculino
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(2): 108-111, 2021 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-33565059

RESUMO

OBJECTIVE: To explore the genetic basis for three children with Menkes disease. METHODS: The patients were subjected to next-generation sequencing (NGS) to detect potential variants of the ATP7A gene. Suspected variants were verified by Sanger sequencing of their family members and 200 healthy individuals. Multiplex ligation-dependent probe amplification (MLPA) was also carried out to detect potential deletions in their family members and 20 healthy individuals. RESULTS: Variants of the ATP7A gene were detected in all of the three families, including a novel c.1465A>T nonsense variant in family 1, a novel c.3039_3043del frame-shifting variant in family 2, and deletion of exons 3 to 23 in family 3, which was reported previously. Based on the standards and guidelines of American College of Medical Genetics and Genomics, the c.1465A>T and c.3039_3043del variants of ATP7A gene were predicted to be likely pathogenic (PVS1+PM2). CONCLUSION: Variants of the ATP7A gene may underlay the Menkes disease in the three children. Above findings have facilitated clinical diagnosis and enriched the spectrum of genetic variants of Menkes disease.


Assuntos
ATPases Transportadoras de Cobre/genética , Síndrome dos Cabelos Torcidos , Estudos de Casos e Controles , Criança , Éxons , Saúde da Família , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome dos Cabelos Torcidos/genética , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...