Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.320
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612597

RESUMO

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Assuntos
Analgésicos Opioides , Imidazóis , Naftalenos , Nitrocompostos , Sulfóxidos , Traumatismos do Sistema Nervoso , Humanos , Animais , Camundongos , Ratos , Maraviroc , Sistema Nervoso Central , Sistema Nervoso Periférico
2.
Unfallchirurgie (Heidelb) ; 127(4): 313-321, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38443721

RESUMO

The approach for nerve injuries in children in the context of fractures of the upper extremities is inconsistent in the literature. The underlying mostly retrospective studies do not usually consider the potential diagnostics. The frequency of nerve injuries with a clear need for reconstructive surgery is sometimes estimated so differently that precedent-setting errors in these studies must be assumed; however, as 10-20% of pediatric fractures near the elbow show primary or secondary nerve lesions, timely and appropriate further treatment is necessary. An overview concerning diagnostic tools with an explanation of potential results and an algorithm with a timeline for diagnostic and therapeutic management are presented. Good results after nerve lesions can only be achieved when timely diagnostics without delay and correct detection of axonal lesions which benefit from surgical treatment are carried out.


Assuntos
Fraturas Ósseas , Traumatismos do Sistema Nervoso , Criança , Humanos , Fraturas Ósseas/diagnóstico , Estudos Retrospectivos , Extremidade Superior/lesões
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339048

RESUMO

Neuropathic pain, which is initiated by a malfunction of the somatosensory cortex system, elicits inflammation and simultaneously activates glial cells that initiate neuroinflammation. Electroacupuncture (EA) has been shown to have therapeutic effects for neuropathic pain, although with uncertain mechanisms. We suggest that EA can reliably cure neuropathic disease through anti-inflammation and transient receptor potential V1 (TRPV1) signaling pathways from the peripheral to the central nervous system. To explore this, we used EA to treat the mice spared nerve injury (SNI) model and explore the underlying molecular mechanisms through novel chemogenetics techniques. Both mechanical and thermal pain were found in SNI mice at four weeks (mechanical: 3.23 ± 0.29 g; thermal: 4.9 ± 0.14 s). Mechanical hyperalgesia was partially attenuated by 2 Hz EA (mechanical: 4.05 ± 0.19 g), and thermal hyperalgesia was fully reduced (thermal: 6.22 ± 0.26 s) but not with sham EA (mechanical: 3.13 ± 0.23 g; thermal: 4.58 ± 0.37 s), suggesting EA's specificity. In addition, animals with Trpv1 deletion showed partial mechanical hyperalgesia and no significant induction of thermal hyperalgesia in neuropathic pain mice (mechanical: 4.43 ± 0.26 g; thermal: 6.24 ± 0.09 s). Moreover, we found increased levels of inflammatory factors such as interleukin-1 beta (IL1-ß), IL-3, IL-6, IL-12, IL-17, tumor necrosis factor alpha, and interferon gamma after SNI modeling, which decreased in the EA and Trpv1-/- groups rather than the sham group. Western blot and immunofluorescence analysis showed similar tendencies in the dorsal root ganglion, spinal cord dorsal horn, somatosensory cortex (SSC), and anterior cingulate cortex (ACC). In addition, a novel chemogenetics method was used to precisely inhibit SSC to ACC activity, which showed an analgesic effect through the TRPV1 pathway. In summary, our findings indicate a novel mechanism underlying neuropathic pain as a beneficial target for neuropathic pain.


Assuntos
Eletroacupuntura , Neuralgia , Traumatismos do Sistema Nervoso , Ratos , Camundongos , Animais , Hiperalgesia/etiologia , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Eletroacupuntura/métodos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Neuralgia/etiologia , Neuralgia/terapia , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Transdução de Sinais , Traumatismos do Sistema Nervoso/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
4.
Sci Rep ; 14(1): 4497, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402335

RESUMO

Neuropathic pain (NeP) is intractable for which many therapies are ineffective. High-voltage pulsed radiofrequency (HVPRF) on dorsal root ganglion (DRG) is considered an effective treatment for NeP. The aim of this study is to explore the therapeutic voltage for the optimal efficacy of PRF and the underlying mechanisms. The radiofrequency electrode was placed close to the L5 DRG of rats with spared nerve injury (SNI) and emitted current by the corresponding voltage in different groups. Four different voltages (45 V, 65 V, 85 V, and 100 V) of PRF on DRG significantly alleviated the SNI-induced NeP, reduced the levels of activating transcription factor 3 (ATF3) in DRG, improved the ultrastructure of DRG, and promoted autophagy in spinal microglia to varying degrees and partially reversed the increased expression of TNF-α and the reduced expression of IL-10 in spinal cord dorsal horn (SCDH). The beneficial effect of 85V-PRF was superior to those of other three PRF treatments. The underlying mechanisms may be related to repairing the DRG damage and improving the DRG ultrastructure while regulating spinal microglial autophagy and thereby alleviating neuroinflammation.


Assuntos
Neuralgia , Tratamento por Radiofrequência Pulsada , Traumatismos do Sistema Nervoso , Ratos , Animais , Ratos Sprague-Dawley , Microglia/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Traumatismos do Sistema Nervoso/metabolismo , Hiperalgesia/metabolismo
5.
J Neurotrauma ; 41(5-6): 541-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975282

RESUMO

Naturally occurring life stages in women are associated with changes in the milieu of endogenous ovarian hormones. Women of childbearing age may be exposed to exogenous ovarian hormone(s) because of their use of varying combinations of estrogen and progesterone hormones-containing oral contraceptives (OC; also known as "the pill"). If women have central nervous system (CNS) injury such as spinal cord injury (SCI) and traumatic brain injury (TBI) during their childbearing age, they are likely to retain their reproductive capabilities and may use OC. Many deleterious side effects of long-term OC use have been reported, such as aberrant blood clotting and endothelial dysfunction that consequently increase the risk of myocardial infarction, venous thromboembolism, and ischemic brain injury. Although controversial, studies have suggested that OC use is associated with neuropsychiatric ramifications, including uncontrollable mood swings and poorer cognitive performance. Our understanding about how the combination of endogenous hormones and OC-conferred exogenous hormones affect outcomes after CNS injuries remains limited. Therefore, understanding the impact of OC use on CNS injury outcomes needs further investigation to reveal underlying mechanisms, promote reporting in clinical or epidemiological studies, and raise awareness of possible compounded consequences. The goal of the current review is to discuss the impacts of CNS injury on endogenous ovarian hormones and vice-versa, as well as the putative consequences of exogenous ovarian hormones (OC) on the CNS to identify potential gaps in our knowledge to consider for future laboratory, epidemiological, and clinical studies.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos do Sistema Nervoso , Feminino , Humanos , Contracepção Hormonal , Sistema Nervoso Central , Estrogênios
6.
J Pediatr Orthop ; 44(2): e197-e202, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728105

RESUMO

BACKGROUND: Patients with certain spinal anomalies are at risk for rare but devastating spinal cord injuries under anesthesia. We created a Spine at Risk (SAR) program to evaluate and recommend precautions for such patients, including intraoperative neuromonitoring (IONM) use for the highest-risk patients. We aimed to review all monitored nonspine procedures to determine rate of potential spinal cord injuries avoided in those who would otherwise have been unmonitored. METHODS: We performed a retrospective review of our institutional SAR program from 2011 to 2019 to analyze the number of nonspine anesthetized procedures that were done under IONM, the characteristics of those that had an IONM alert; and the clinical outcomes. RESULTS: Of the 3,453 patients flagged for SAR review, 1121 (33%) received a precaution recommendation, and 359 (10% of all flagged) were given IONM recommendations. Of those, 57 patients (16% of recommendations, 2% of all flagged) had a total of 102 nonspine anesthetized procedures done under IONM. Seven patients had a total of 10 cases with IONM alerts. Two cases were aborted when improved signals could not be obtained after working through a checklist; one of these patients woke with transient neurological deficits. Signals improved to baseline in 7 cases by working through a signal loss checklist. One case was aborted preoperatively when monitorable baseline signals could not be obtained. CONCLUSIONS: In the highest-risk spinal anomaly patients, we monitored an average of 11.7 nonspine cases per year, with a 10% rate of IONM alerts, and no permanent neurological deficits. Although the majority of patients remain safe during procedures, in the most critical patients IONM allowed the team to identify and react to alerts that may have otherwise led to permanent neurological injury. This is the largest series of spinal cord-monitored nonspine pediatric cases. It is important for pediatric orthopedic surgeons to evaluate at-risk patients and recommend IONM where appropriate, to protect both patients and our procedural colleagues. LEVEL OF EVIDENCE: Case series, level IV.


Assuntos
Monitorização Neurofisiológica Intraoperatória , Traumatismos da Medula Espinal , Traumatismos do Sistema Nervoso , Humanos , Criança , Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória/métodos , Traumatismos da Medula Espinal/prevenção & controle , Traumatismos da Medula Espinal/etiologia , Traumatismos do Sistema Nervoso/etiologia , Procedimentos Neurocirúrgicos/efeitos adversos , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos
7.
Photobiomodul Photomed Laser Surg ; 42(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38109199

RESUMO

Background: Peripheral nerve injuries pose a significant clinical issue for patients, especially in the most severe cases wherein complete transection (neurotmesis) results in total loss of sensory/motor function. Nerve guidance conduits (NGCs) are a common treatment option that protects and guides regenerating axons during recovery. However, treatment outcomes remain limited and often fail to achieve full reinnervation, especially in critically sized defects (>3 cm) where a lack of vascularization leads to neural necrosis. Conclusions: A multitreatment approach is, therefore, necessary to improve the efficacy of NGCs. Stimulating angiogenesis within NGCs can help alleviate oxygen deficiency through rapid inosculation with the host vasculature, whereas photobiomodulation therapy (PBMT) has demonstrated beneficial therapeutic effects on regenerating nerve cells and neovascularization. In this review, we discuss the current trends of NGCs, vascularization, and PBMT as treatments for peripheral nerve neurotmesis and highlight the need for a combinatorial approach to improve functional and clinical outcomes.


Assuntos
Terapia com Luz de Baixa Intensidade , Traumatismos do Sistema Nervoso , Humanos , Nervos Periféricos/fisiologia
8.
Neurobiol Dis ; 190: 106381, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114049

RESUMO

While neural oscillations play a critical role in sensory perception, it remains unclear how these rhythms function under conditions of neuropathic allodynia. Recent studies demonstrated that the anterior cingulate cortex (ACC) is associated with the affective-aversive component of pain, and plasticity changes in this region are closely linked to abnormal allodynic sensations. Here, to study the mechanisms of allodynia, we recorded local field potentials (LFPs) in the bilateral ACC of awake-behaving rats and compared the spectral power and center frequency of brain oscillations between healthy and CCI (chronic constriction injury) induced neuropathic pain conditions. Our results indicated that activation of the ACC occurs bilaterally in the presence of neuropathic pain, similar to the healthy condition. Furthermore, CCI affects both spontaneous and stimulus-induced activity of ACC neurons. Specifically, we observed an increase in spontaneous beta activity after nerve injury compared to the healthy condition. By stimulating operated or unoperated paws, we found more intense event-related desynchronization (ERD) responses in the theta, alpha, and beta frequency bands and faster alpha center frequency after CCI compared to before CCI. Although the behavioral manifestation of allodynia was more pronounced in the operated paw than the unoperated paw following CCI, there was no significant difference in the center frequency and ERD responses observed in the ACC between stimulation of the operated and unoperated limbs. Our findings offer evidence supporting the notion that aberrancies in ACC oscillations may contribute to the maintenance and development of neuropathic allodynia.


Assuntos
Neuralgia , Traumatismos do Sistema Nervoso , Ratos , Animais , Hiperalgesia , Giro do Cíngulo , Ratos Sprague-Dawley , Neurônios/fisiologia
9.
Acta Neurochir (Wien) ; 165(12): 3993-4002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907766

RESUMO

PURPOSE: Polyethylene glycol is known to improve recovery following its use in repair of acute peripheral nerve injury. The duration till which PEG works remains a subject of intense research. We studied the effect of PEG with augmentation of 20Htz of electrical stimulation (ES) following neurorrhaphy at 48 h in a rodent sciatic nerve neurotmesis model. METHOD: Twenty-four Sprague Dawley rats were divided into 4 groups. In group I, the sciatic nerve was transected and repaired immediately. In group II, PEG fusion was done additionally after acute repair. In group III, repair and PEG fusion were done at 48 h. In group IV, ES of 20Htz at 2 mA for 1 h was added to the steps followed for group III. Weekly assessment of sciatic functional index (SFI), pinprick, and cold allodynia tests were done at 3 weeks and euthanized. Sciatic nerve axonal count and muscle weight were done. RESULTS: Groups II, III, and IV showed significantly better recovery of SFI (II: 70.10 ± 1.24/III: 84.00 ± 2.59/IV: 74.40 ± 1.71 vs I: 90.00 ± 1.38) (p < 0.001) and axonal counts (II: 4040 ± 270/III: 2121 ± 450/IV:2380 ± 158 vs I: 1024 ± 094) (p < 0.001) at 3 weeks. The experimental groups showed earlier recovery of sensation in comparison to the controls as demonstrated by pinprick and cold allodynia tests and improved muscle weights. Addition of electrical stimulation helped in better score with SFI (III: 84.00 ± 2.59 vs IV: 74.40 ± 1.71) (p < 0.001) and muscle weight (plantar flexors) (III: 0.49 ± 0.02 vs IV: 0.55 ± 0.01) (p < 0.001) in delayed repair and PEG fusions. CONCLUSION: This study shows that PEG fusion of peripheral nerve repair in augmentation with ES results in better outcomes, and this benefit can be demonstrated up to a window period of 48 h after injury.


Assuntos
Traumatismos dos Nervos Periféricos , Traumatismos do Sistema Nervoso , Ratos , Animais , Ratos Sprague-Dawley , Polietilenoglicóis/uso terapêutico , Hiperalgesia , Modelos Animais de Doenças , Nervo Isquiático/cirurgia , Estimulação Elétrica , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica
10.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958541

RESUMO

Satellite glial cells (SGCs), enveloping primary sensory neurons' somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed the hGFAP-CFP transgenic mouse line, designed for astrocyte studies, to explore its expression within the peripheral nervous system (PNS) after spared nerve injury (SNI). We used diverse immunostaining techniques, Western blot analysis, and electrophysiology to evaluate GFAP+ cell changes. Post-SNI, GFAP+ cell numbers increased without proliferation, and were found near injured ATF3+ neurons. GFAP+ FABP7+ SGCs increased, yet 75.5% of DRG GFAP+ cells lacked FABP7 expression. This suggests a significant subset of GFAP+ cells are non-myelinating Schwann cells (nmSC), indicated by their presence in the dorsal root but not in the ventral root which lacks unmyelinated fibres. Additionally, patch clamp recordings from GFAP+ FABP7-cells lacked SGC-specific Kir4.1 currents, instead displaying outward Kv currents expressing Kv1.1 and Kv1.6 channels specific to nmSCs. In conclusion, this study demonstrates increased GFAP expression in two DRG glial cell subpopulations post-SNI: GFAP+ FABP7+ SGCs and GFAP+ FABP7- nmSCs, shedding light on GFAP's specificity as an SGC marker after SNI.


Assuntos
Neuralgia , Traumatismos do Sistema Nervoso , Animais , Camundongos , Gânglios Espinais/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Células Satélites Perineuronais/metabolismo , Neuralgia/metabolismo , Traumatismos do Sistema Nervoso/metabolismo
11.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958901

RESUMO

Activation of mammalian target of rapamycin (mTOR) has been known as one of the contributing factors in nociceptive sensitization after peripheral injury. Its activation followed by the phosphorylation of downstream effectors causes hyperexcitability of primary sensory neurons in the dorsal root ganglion. We investigated whether a single injection of rAAV-shmTOR would effectively downregulate both complexes of mTOR in the long-term and glial activation as well. Male SD rats were categorized into shmTOR (n = 29), shCON (n = 23), SNI (n = 13), and Normal (n = 8) groups. Treatment groups were injected with rAAV-shmTOR or rAAV-shCON, respectively. DRG tissues and sciatic nerve were harvested for Western blot and immunohistochemical analyses. Peripheral sensitization was gradually attenuated in the shmTOR group, and it reached a peak on PID 21. Western blot analysis showed that both p-mTORC1 and p-mTORC2 were downregulated in the DRG compared to shCON and SNI groups. We also found decreased expression of phosphorylated p38 and microglial activation in the DRG. We first attempted a therapeutic strategy for neuropathic pain with a low dose of AAV injection by interfering with the mTOR signaling pathway, suggesting its potential application in pain treatment.


Assuntos
Neuralgia , Traumatismos do Sistema Nervoso , Ratos , Masculino , Animais , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Neuralgia/etiologia , Neuralgia/terapia , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Traumatismos do Sistema Nervoso/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Gânglios Espinais/metabolismo , Mamíferos
12.
Sci Rep ; 13(1): 19338, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935720

RESUMO

Since endothelial cells rapidly release Angiopoietin-2 (Ang-2) in response to vascular injury and inflammatory stimuli, we aimed to investigate if its serum levels increase in polytraumatized patients. Our cohort study evaluated 28 blunt polytrauma survivors (mean age, 38.4 years; median ISS, 34) who were directly admitted to our level I trauma center in 2018. We assessed the serum Ang-2 level at admission and on days 1, 3, 5, 7, and 10 during hospitalization. Ang-2 was released into the circulation immediately after polytrauma. At admission (day 0), it amounted to 8286 ± 5068 pg/mL, three-and-a-half times the reference value of 2337 ± 650 pg/mL assessed in a healthy control group. Subgroup analysis provided a higher mean Ang-2 level in the CNSI group combining all patients suffering a brain or spinal cord injury compared to the non-CNSI group solely on day 0 [11083 ± 5408 pg/mL versus 3963 ± 2062 pg/mL; p < 0.001]. Whereas the mean Ang-2 level increased only in the non-CNSI group from day 0 to day 3 (p = 0.009), the respective curves showed similar continuous decreases starting with day 3. Multivariate logistic regression analysis revealed an association between the Ang-2 day 0 level and the presence of a CNSI (OR = 1.885; p = 0.048). ROC analysis provided a cutoff level of 5352 pg/mL. In our study group, serum Ang-2 levels assessed at admission differed between polytraumatized patients with and without brain or spinal cord injuries. Based on our findings, we consider serum Ang-2 levels an effective biomarker candidate for indicating CNSI in these patients at admission, worthy of further evaluation in large multicenter studies.


Assuntos
Traumatismo Múltiplo , Traumatismos do Sistema Nervoso , Adulto , Humanos , Angiopoietina-1 , Angiopoietina-2 , Biomarcadores , Estudos de Coortes , Células Endoteliais
13.
ACS Chem Neurosci ; 14(18): 3518-3527, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695072

RESUMO

Understanding the chemical events following trauma to the central nervous system could assist in identifying causative mechanisms and potential interventions to protect neural tissue. Here, we apply a partial optic nerve transection model of injury in rats and use synchrotron X-ray fluorescence microscopy (XFM) to perform elemental mapping of metals (K, Ca, Fe, Cu, Zn) and other related elements (P, S, Cl) in white matter tracts. The partial optic nerve injury model and spatial precision of microscopy allow us to obtain previously unattained resolution in mapping elemental changes in response to a primary injury and subsequent secondary effects. We observed significant elevation of Cu levels at multiple time points following the injury, both at the primary injury site and in neural tissue near the injury site vulnerable to secondary damage, as well as significant changes in Cl, K, P, S, and Ca. Our results suggest widespread metal dyshomeostasis in response to central nervous system trauma and that altered Cu homeostasis may be a specific secondary event in response to white matter injury. The findings highlight metal homeostasis as a potential point of intervention in limiting damage following nervous system injury.


Assuntos
Traumatismos do Sistema Nervoso , Substância Branca , Animais , Ratos , Cobre , Homeostase , Modelos Animais
14.
Sci Total Environ ; 905: 167314, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742979

RESUMO

Indium tin oxide (ITO) is a semiconductor nanomaterial with broad application in liquid crystal displays, solar cells, and electrochemical immune sensors. It is worth noting that, with the gradual increase in worker exposure opportunities, the exposure risk in occupational production cannot be ignored. At present, the toxicity of ITO mainly focuses on respiratory toxicity. ITO inhaled through the upper respiratory tract can cause pathological changes such as interstitial pneumonia and pulmonary fibrosis. Still, extrapulmonary toxicity after nanoscale ITO nanoparticle (ITO NPs) exposure, such as long-term effects on the central nervous system, should also be of concern. Therefore, we set up exposure dose experiments (0 mg·kg-1, 3.6 mg·kg-1, and 36 mg·kg-1) based on occupational exposure limits to treat C57BL/6 mice via nasal drops for 15 weeks. Moreover, we conducted a preliminary assessment of the neurotoxicity of ITO NPs (20-30 nm) in vivo. The results indicated that ITO NPs can cause diffuse inflammatory infiltrates in brain tissue, increased glial cell responsiveness, abnormal neuronal cell lineage transition, neuronal migration disorders, and neuronal apoptosis related to the oxidative stress induced by ITO NPs exposure. Hence, our findings provide useful information for the fuller risk assessment of ITO NPs after occupational exposure.


Assuntos
Nanopartículas , Traumatismos do Sistema Nervoso , Camundongos , Animais , Camundongos Endogâmicos C57BL , Compostos de Estanho/toxicidade , Nanopartículas/toxicidade , Encéfalo , Índio
15.
J Sex Med ; 20(11): 1274-1284, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37724695

RESUMO

BACKGROUND: Corpus cavernosum (CC) fibrosis significantly contributes to post-radical prostatectomy erectile dysfunction (pRP-ED). Caveolin-1 scaffolding domain (CSD)-derived peptide has gained significant concern as a potent antagonist of tissue fibrosis. However, applying CSD peptide on bilateral cavernous nerve injury (BCNI)-induced rats remains uninvestigated. AIM: The aim was to explore the therapeutic outcome and underlying mechanism of CSD peptide for preventing ED in BCNI rats according to the hypothesis that CSD peptide may exert beneficial effects on erectile tissue and function following BCNI through limiting collagen synthesis in CC smooth muscle cells (CCSMCs) and CC fibrosis. METHODS: After completing a random assignment of male Sprague Dawley rats (10 weeks of age), BCNI rats received either saline or CSD peptide treatment, as opposed to sham-operated rats. The evaluations of erectile function (EF) and succedent collection and histological and molecular biological examinations of penile tissue were accomplished 3 weeks postoperatively. In addition, the fibrotic model of CCSMCs was used to further explore the mechanism of CSD peptide action in vitro. OUTCOMES: The assessments of EF, SMC/collagen ratio, α-smooth muscle actin, caveolin-1 (CAV1), and profibrotic indicators expressions were conducted. RESULTS: BCNI rats exhibited significant decreases in EF, SMC/collagen ratio, α-SMA, and CAV1 levels, and increases in collagen content together with transforming growth factor (TGF)-ß1/Smad2 activity. However, impaired EF, activated CC fibrosis, and Smad2 signaling were attenuated after 3 weeks of CSD peptide treatment in BCNI rats. In vitro, TGF-ß1-induced CCSMCs underwent fibrogenetic transformation characterized by lower expression of CAV1, higher collagen composition, and phosphorylation of Smad2; then, the delivery of CSD peptide could significantly block CCSMC fibrosis by inactivating Smad2 signaling. CLINICAL IMPLICATIONS: Based on available evidence of CSD peptide in the prevention of ED in BCNI rats, this study can aid in the development and clinical application of CSD peptide targeting pRP-ED. STRENGTHS AND LIMITATIONS: This study provides data to suggest that CSD peptide protects against BCNI-induced deleterious alterations in EF and CC tissues. However, the available evidence still does not fully clarify the detailed mechanism of action of CSD peptide. CONCLUSION: Administration of CSD peptide significantly retarded collagen synthesis in CCSMCs, limited CC fibrosis, and prevented ED via confrontation of TGF-ß1/Smad signaling in BCNI rats.


Assuntos
Disfunção Erétil , Traumatismos do Sistema Nervoso , Humanos , Ratos , Masculino , Animais , Caveolina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Pênis , Ereção Peniana/fisiologia , Fibrose , Colágeno/uso terapêutico , Modelos Animais de Doenças
16.
Front Immunol ; 14: 1185322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614230

RESUMO

Primary sensory neurons regulate inflammatory processes in innervated regions through neuro-immune communication. However, how their immune-modulating functions are regulated in concert remains largely unknown. Here, we show that Neat1 long non-coding RNA (lncRNA) organizes the proinflammatory gene expressions in the dorsal root ganglion (DRG) in chronic intractable neuropathic pain in rats. Neat1 was abundantly expressed in the DRG and was upregulated after peripheral nerve injury. Neat1 overexpression in primary sensory neurons caused mechanical and thermal hypersensitivity, whereas its knockdown alleviated neuropathic pain. Bioinformatics analysis of comprehensive transcriptome changes indicated the inflammatory response was the most relevant function of genes upregulated through Neat1. Consistent with this, upregulation of proinflammatory genes in the DRG following nerve injury was suppressed by Neat1 knockdown. Expression changes of these proinflammatory genes were regulated through Neat1-mRNA interaction-dependent and -independent mechanisms. Notably, Neat1 increased proinflammatory genes by stabilizing its interacting mRNAs in neuropathic pain. Finally, Neat1 in primary sensory neurons contributed to spinal inflammatory processes that mediated peripheral neuropathic pain. These findings demonstrate that Neat1 lncRNA is a key regulator of neuro-immune communication in neuropathic pain.


Assuntos
Neuralgia , RNA Longo não Codificante , Traumatismos do Sistema Nervoso , Animais , Ratos , RNA Longo não Codificante/genética , Gânglios Espinais , Neuralgia/genética , RNA Mensageiro , Transcriptoma
17.
Mol Neurobiol ; 60(12): 6789-6813, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37482599

RESUMO

CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs to the CNS as feasible therapeutic strategies for CNS trauma in the future.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso Central , Vesículas Extracelulares , Traumatismos do Sistema Nervoso , Humanos , Sistema Nervoso Central , Vesículas Extracelulares/metabolismo , Traumatismos do Sistema Nervoso/terapia , Traumatismos do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular
18.
J Bone Joint Surg Am ; 105(14): 1080-1086, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37141456

RESUMO

UPDATE: This article was updated on July 19, 2023, because of a previous error, which was discovered after the preliminary version of the article was posted online. On page 1080, in the last sentence of the Results section of the Abstract, the text that had read "0.05% (4 of 777)" now reads "0.5% (4 of 777)." BACKGROUND: The risk of fracture-related nerve injury associated with forearm fractures in children is unknown. The purposes of the present study were to calculate the risk of fracture-related nerve injury and to report the institutional rate of complications of surgical treatment of pediatric forearm fractures. METHODS: Four thousand, eight hundred and sixty-eight forearm fractures (ICD-10 codes S52.0 to S52.7) that had been treated in our tertiary level pediatric hospital between 2014 and 2021 were identified in our institutional fracture registry. Of these, 3,029 fractures occurred in boys and 53 were open fractures. Sex, age at injury, trauma mechanism and energy, fracture type, treatment method, and cause and type of nerve injury were assessed in 43 patients with 44 registered nerve injuries. Patients with nerve injuries were reevaluated to calculate the recovery time. Univariable and multivariable regression analyses were performed to determine the risk of nerve injury. RESULTS: The risk of a fracture-related nerve injury was 0.7% (33 of 4,868). Only 2 injuries were permanent; thus, the risk of permanent nerve injury associated with a forearm fracture was 0.04% (2 of 4,868). The ulnar nerve was affected in 19 cases; the median nerve, in 8; and the radial nerve, in 7. In cases of open fracture, the risk of nerve injury was 17% (9 of 53). Open fractures had an OR of 33.73 (95% CI, 14.97 to 70.68) on univariate analysis and an OR of 10.73 (95% CI 4.50 to 24.22) on multivariate analysis with adjustment for female sex and both-bone diaphyseal fracture. Both-bone diaphyseal fracture (ICD-10 code S52.4) had an OR of 9.01 (95% CI, 4.86 to 17.37) on univariate analysis and an OR of 9.98 (95% CI 5.32 to 19.47) on multivariate analysis with adjustment for age and female sex. Overall, 777 fractures were internally fixed. The risk of nerve injury as a complication of internal fixation was 1.3% (10 of 777). Four of these iatrogenic injuries (including 2 involving the median nerve, 1 involving the ulnar nerve, and 1 involving the radial nerve) were permanent; thus, the risk of permanent nerve injury as a complication of internal fixation was 0.5% (4 of 777). CONCLUSIONS: Nerve injury following a pediatric forearm fracture is rare and has an excellent potential for spontaneous recovery. In the present study, all of the permanent nerve injuries occurred in association with open fractures or as a complication of internal fixation. LEVEL OF EVIDENCE: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Traumatismos do Antebraço , Fraturas Expostas , Fraturas do Rádio , Traumatismos do Sistema Nervoso , Masculino , Humanos , Criança , Feminino , Fraturas Expostas/cirurgia , Resultado do Tratamento , Antebraço , Estudos Retrospectivos , Traumatismos do Antebraço/complicações , Traumatismos do Antebraço/cirurgia , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Fraturas do Rádio/complicações , Fraturas do Rádio/cirurgia
19.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175506

RESUMO

Cell-therapy-based nerve repair strategies hold great promise. In the field, there is an extensive amount of evidence for better regenerative outcomes when using tissue-engineered nerve grafts for bridging severe gap injuries. Although a massive number of studies have been performed using rodents, only a limited number involving nerve injury models of large animals were reported. Nerve injury models mirroring the human nerve size and injury complexity are crucial to direct the further clinical development of advanced therapeutic interventions. Thus, there is a great need for the advancement of research using large animals, which will closely reflect human nerve repair outcomes. Within this context, this review highlights various stem cell-based nerve repair strategies involving large animal models such as pigs, rabbits, dogs, and monkeys, with an emphasis on the limitations and strengths of therapeutic strategy and outcome measurements. Finally, future directions in the field of nerve repair are discussed. Thus, the present review provides valuable knowledge, as well as the current state of information and insights into nerve repair strategies using cell therapies in large animals.


Assuntos
Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Doenças do Sistema Nervoso Periférico , Traumatismos do Sistema Nervoso , Humanos , Animais , Coelhos , Cães , Suínos , Engenharia Tecidual , Células de Schwann/fisiologia , Células-Tronco , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/lesões
20.
J Pediatr Orthop ; 43(7): 407-413, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193652

RESUMO

BACKGROUND: Management of supracondylar humerus fractures (SCHF) with coexisting median nerve injury is controversial. Although many nerve injuries improve with the reduction and stabilization of the fracture, the speed and completeness of recovery are unclear. This study investigates median nerve recovery time using the serial examination. METHODS: A prospectively maintained database of SCHF-related nerve injuries referred to a tertiary hand therapy unit between 2017 and 2021 was interrogated. Factors related to the injury (vascularity, Gartland grade, open vs. closed fracture) and treatment (fixation modality, adequacy, timing of reduction, vascular and nerve intervention, and secondary procedures) were assessed.Primary outcomes were the motor recovery of Medical Research Council (MRC) grade 4 or 5 in flexor pollicis longus or flexor digitorum profundus (index) and detection of the 2.83 Semmes Weinstein monofilament.A retrospective clinical note review of all SCHF presenting during the same period was also conducted. RESULTS: Of 1096 SCHF, 74 (7%) had an associated median nerve palsy. Twenty-one patients [mean age 7 years (SD 1.6)] with SCHF-related median nerve injuries underwent serial examination. Nineteen (90%) were modified Gartland III or IV, and 10 (48%) were pulseless on presentation. The mean follow-up was 324 days.The mean motor recovery time was 120 days (SD 71). Four (27%) and 2 (13%) patients had not achieved MRC grade 4 by 6 months and 2 years, respectively. Only 50% attained MRC grade 5 at 2 years.When compared with closed reduction, those who underwent open reduction recovered motor function 80 days faster (mean 71 vs. 151 d, P =0.03) and sensory function 110 days faster (52 vs. 162, P =0.02). Fewer patients recovered after closed reduction (8 of 10) than open (5 of 5).Modified Gartland grade, vascular status, adequacy of reduction, and secondary surgery were not associated with recovery time. CONCLUSIONS: Median nerve recovery seems to occur slower than previously thought, is often incomplete, and is affected by treatment decisions (open vs. closed reduction). Retrospective reporting methods may overestimate median nerve recovery. LEVEL OF EVIDENCE: Level III-therapeutic.


Assuntos
Fraturas do Úmero , Neuropatia Mediana , Traumatismos do Sistema Nervoso , Criança , Humanos , Estudos Retrospectivos , Nervo Mediano/lesões , Úmero/cirurgia , Fraturas do Úmero/complicações , Fraturas do Úmero/cirurgia , Traumatismos do Sistema Nervoso/complicações , Paralisia/complicações , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...