Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.876
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612616

RESUMO

Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Proteostase , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Dobramento de Proteína , Proteólise
2.
Orphanet J Rare Dis ; 19(1): 158, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610004

RESUMO

BACKGROUND: Mucopolysaccharidosis II (MPS II) is a rare lysosomal storage disease characterized by iduronate-2-sulfatase gene (IDS) deficiency and downstream glycosaminoglycan accumulation. Two-thirds of patients present with neuronopathic disease and evaluating cognitive function in these patients is challenging owing to limitations of currently available tests. During the clinical development of intrathecal idursulfase (idursulfase-IT), regulatory authorities requested qualitative data to further understand the neurocognitive changes observed by the investigators through the clinical trials. RESULTS: This qualitative study consisted of semi-structured interviews with all nine of the principal investigators who participated in the idursulfase-IT phase 2/3 (NCT02055118) and extension (NCT02412787) trials. These investigators enrolled the 56 patients with neuronopathic MPS II who qualified for the extension phase of the trial. The investigators were asked to rate the disease status of their patients. Of the 56 patients, 49 (88%) were rated as having disease that was improved/improving, stabilized or slowing progression compared with the expected outcomes with no treatment. Three patients were rated as worsening, while the remaining four patients were considered to have slowing progression or worsening disease. Similar results were demonstrated for patients aged from 3 to under 6 years at baseline, with 33 of 39 patients (85%) rated as having disease that was improved/improving, stabilized or slowing progression. Of the seven patients rated with slowing progression/worsening or worsening disease, five of them had an IDS variant other than missense, while two had a missense class variant. All the assigned improved/improving ratings were in patients receiving idursulfase-IT from the start of the phase 2/3 trial. Moreover, patients under 3 years of age at baseline were all rated as either improved/improving or stabilized disease. In a blinded review of patient profiles, investigators were requested to assign a disease status rating to 18 patients with large IDS deletions; 67% of these patients were rated as improved/improving or stabilized disease. CONCLUSIONS: This qualitative analysis provides a snapshot of clinicians' considerations when evaluating treatment in patients with neuronopathic MPS II, compared with the expected decline in cognitive function in the absence of treatment. The results highlight the importance of robust assessment tools in treatment evaluation.


Assuntos
Iduronato Sulfatase , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose II , Criança , Humanos , Mucopolissacaridose II/tratamento farmacológico , Pesquisadores , Iduronato Sulfatase/uso terapêutico
3.
Genes (Basel) ; 15(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540351

RESUMO

Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.


Assuntos
Reposicionamento de Medicamentos , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Mutação , Lisossomos/metabolismo
4.
Genes (Basel) ; 15(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540409

RESUMO

INTRODUCTION: Alexander disease (AxD) is a rare neurodegenerative condition that represents the group of leukodystrophies. The disease is caused by GFAP mutation. Symptoms usually occur in the infantile age with macrocephaly, developmental deterioration, progressive quadriparesis, and seizures as the most characteristic features. In this case report, we provide a detailed clinical description of the neonatal type of AxD. METHOD: Next-Generation Sequencing (NGS), including a panel of 49 genes related to Early Infantile Epileptic Encephalopathy (EIEE), was carried out, and then Whole Exome Sequencing (WES) was performed on the proband's DNA extracted from blood. CASE DESCRIPTION: In the first weeks of life, the child presented with signs of increased intracranial pressure, which led to ventriculoperitoneal shunt implementation. Recurrent focal-onset motor seizures with secondary generalization occurred despite phenobarbital treatment. Therapy was modified with multiple anti-seizure medications. In MRI contrast-enhanced lesions in basal ganglia, midbrain and cortico-spinal tracts were observed. During the diagnostic process, GLUT-1 deficiency, lysosomal storage disorders, organic acidurias, and fatty acid oxidation defects were excluded. The NGS panel of EIEE revealed no abnormalities. In WES analysis, GFAP missense heterozygous variant NM_002055.5: c.1187C>T, p.(Thr396Ile) was detected, confirming the diagnosis of AxD. CONCLUSION: AxD should be considered in the differential diagnosis in all neonates with progressive, intractable seizures accompanied by macrocephaly.


Assuntos
Doença de Alexander , Doenças Ósseas , Doenças Desmielinizantes , Epilepsia Resistente a Medicamentos , Hiponatremia , Doenças por Armazenamento dos Lisossomos , Megalencefalia , Espasmos Infantis , Criança , Recém-Nascido , Humanos , Doença de Alexander/genética , Doença de Alexander/patologia , Proteína Glial Fibrilar Ácida/genética , Megalencefalia/genética
5.
Mol Genet Genomic Med ; 12(4): e2427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553911

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder caused by a deficiency in the GBA1-encoded enzyme, ß-glucocerebrosidase. Enzyme replacement therapy is ineffective for neuronopathic Gaucher disease (nGD). High-dose ambroxol has been administered as an alternative treatment for a group of patients with nGD. However, little is known about the clinical indication and the long-term outcome of patients after ambroxol therapy. We herein report a case of a female patient who presented with a progressive disease of GD type 2 from 11 months of age and had the pathogenic variants of p.L483P (formerly defined as p.L444P) and p.R502H (p.R463H) in GBA1. A combined treatment of imiglucerase with ambroxol started improving the patient's motor activity in 1 week, while it kept the long-lasting effect of preventing the deteriorating phenotype for 30 months. A literature review identified 40 patients with nGD, who had received high-dose ambroxol therapy. More than 65% of these patients favorably responded to the molecular chaperone therapy, irrespective of p.L483P homozygous, heterozygous or the other genotypes. These results highlight the long-lasting effect of ambroxol-based chaperone therapy for patients with an expanding spectrum of mutations in GBA1.


Assuntos
Ambroxol , Doença de Gaucher , Doenças por Armazenamento dos Lisossomos , Humanos , Feminino , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/patologia , Ambroxol/uso terapêutico , Terapia Combinada , Chaperonas Moleculares
6.
Nat Commun ; 15(1): 2553, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519472

RESUMO

Lysosomal Storage Disorders (LSDs), which share common phenotypes, including enlarged lysosomes and defective lysosomal storage, are caused by mutations in lysosome-related genes. Although gene therapies and enzyme replacement therapies have been explored, there are currently no effective routine therapies against LSDs. During lysosome reformation, which occurs when the functional lysosome pool is reduced, lysosomal lipids and proteins are recycled to restore lysosome functions. Here we report that the sorting nexin protein SNX8 promotes lysosome tubulation, a process that is required for lysosome reformation, and that loss of SNX8 leads to phenotypes characteristic of LSDs in human cells. SNX8 overexpression rescued features of LSDs in cells, and AAV-based delivery of SNX8 to the brain rescued LSD phenotypes in mice. Importantly, by screening a natural compound library, we identified three small molecules that enhanced SNX8-lysosome binding and reversed LSD phenotypes in human cells and in mice. Altogether, our results provide a potential solution for the treatment of LSDs.


Assuntos
Doenças por Armazenamento dos Lisossomos , Camundongos , Animais , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/metabolismo , Proteínas/metabolismo , Encéfalo/metabolismo , Mutação , Lisossomos/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
7.
Adv Rheumatol ; 64(1): 22, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520029

RESUMO

Gaucher and Fabry diseases are lysosomal storage disorders in which deficient enzyme activity leads to pathological accumulation of sphingolipids. These diseases have a broad phenotypic presentation. Musculoskeletal symptoms and pain complaints are frequently reported by patients. Thus, rheumatologists can be contacted by these patients, contributing to the correct diagnosis, earlier indication of appropriate treatment and improvement of their prognosis. This review describes important concepts about Gaucher and Fabry diseases that rheumatologists should understand to improve patients' quality of life and change the natural history of these diseases.


Assuntos
Oftalmopatias , Doença de Fabry , Doença de Gaucher , Doenças por Armazenamento dos Lisossomos , Humanos , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Gaucher/complicações , Doença de Gaucher/diagnóstico , Reumatologistas , Qualidade de Vida , Doenças por Armazenamento dos Lisossomos/diagnóstico
8.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542525

RESUMO

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose II , Humanos , Células-Tronco , Linhagem Celular , Dente Decíduo , Lisossomos , Polpa Dentária , Diferenciação Celular/fisiologia , Proliferação de Células
9.
Orphanet J Rare Dis ; 19(1): 80, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383398

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency in arylsulfatase A (ASA) activity arising primarily from ASA gene (ARSA) variants. Late-infantile, juvenile and adult clinical subtypes are defined by symptom onset at ≤ 2.5, > 2.5 to < 16 and ≥ 16 years, respectively. Epidemiological data were sought to address knowledge gaps and to inform decisions regarding the clinical development of an investigational drug. METHODS: To synthesize all available estimates of MLD incidence and birth prevalence worldwide and in selected countries, Ovid MEDLINE and Embase were searched systematically (March 11, 2022) using a population, intervention, comparator, outcome, time and setting framework, complemented by pragmatic searching to reduce publication bias. Where possible, results were stratified by clinical subtype. Data were extracted from non-interventional studies (clinical trials, non-clinical studies and case reports were excluded; reviews were used for snowballing only). RESULTS: Of the 31 studies included, 14 reported birth prevalence (13 countries in Asia-Pacific, Europe, the Middle East, North America and South America), one reported prevalence and none reported incidence. Birth prevalence per 100,000 live births ranged from 0.16 (Japan) to 1.85 (Portugal). In the three European studies with estimates stratified by clinical subtypes, birth prevalence was highest for late-infantile cases (0.31-1.12 per 100,000 live births). The distribution of clinical subtypes reported in cases diagnosed over various time periods in 17 studies varied substantially, but late-infantile and juvenile MLD accounted for at least two-thirds of cases in most studies. CONCLUSIONS: This review provides a foundation for further analysis of the regional epidemiology of MLD. Data gaps indicate the need for better global coverage, increased use of epidemiological measures (e.g. prevalence estimates) and more stratification of outcomes by clinical and genetic disease subtype.


Assuntos
Leucodistrofia Metacromática , Doenças por Armazenamento dos Lisossomos , Adulto , Humanos , Cerebrosídeo Sulfatase/genética , Europa (Continente) , Leucodistrofia Metacromática/genética , Prevalência
10.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211816

RESUMO

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Animais , Camundongos , Modelos Animais de Doenças , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Camundongos Endogâmicos C57BL
11.
J Postgrad Med ; 70(1): 23-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197333

RESUMO

Introduction: Management of lysosomal storage disorders (LSDs) requires periodic visits for medical surveillance and hospitalizations. Management of LSDs may have been adversely impacted during the COVID-19 pandemic. Objective: To identify the factors impacting health care for patients with LSDs during the COVID-19 pandemic. Methods: An observational study was conducted in Mumbai comparing infusion practices and reasons for missed infusions for 15 months before March 2020 versus two phases during the pandemic (April 2020-March 2021 and April 2021-March 2022) in patients receiving intravenous enzyme replacement therapy (ERT) and on oral substrate reduction therapy (SRT). Results: Fifteen patients with LSDs were enrolled. Before the pandemic, 6/13 (46%) were receiving ERT at the study site, 4/13 (31%) at a local hospital, and 3/13 (23%) at home; two were on SRT. The median distance traveled for receiving ERT was 37 km, and 4.4 infusions/patient were missed. From April 2020 to March 2021, two more patients opted for home ERT infusions. The median distance traveled for receiving ERT was 37 km, and 11.6 infusions/patient were missed. From April 2021 to March 2022, one more patient opted for home ERT infusions. The median distance traveled for receiving ERT was 7 km, and 5.6 infusions/patient were missed. The pandemic also affected SRT compliance adversely. For all patients, the cause of disrupted treatment was travel curbs (69%) and fear of getting COVID-19 infection (38%). Conclusions: Treatment of LSDs was disrupted during the pandemic, with an increase in missed ERT infusions and SRT doses.


Assuntos
COVID-19 , Doenças por Armazenamento dos Lisossomos , Humanos , Pandemias , Atenção Terciária à Saúde , Doenças por Armazenamento dos Lisossomos/terapia , Hospitais Públicos , Lisossomos
12.
J Mol Diagn ; 26(3): 202-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171482

RESUMO

Prenatal molecular genetic testing for familial variants that cause inherited disorders has been performed for decades and is accepted as standard of care. However, the spectrum of genes considered for prenatal testing is expanding because of genetic testing for hereditary cancer risk (HCR) and inclusion of conditions with associated cancer risk in carrier screening panels. A few of these disorders, such as ataxia telangiectasia and Bloom syndrome, include increased cancer risk as part of the phenotype, already meet professional guidelines for prenatal testing, and may be associated with increased cancer risk in heterozygous carriers. In addition, recent studies implicate heterozygosity for variants in lysosomal storage disease genes in HCR etiology. Currently, there is no specific professional guidance regarding prenatal testing for HCR. To determine the prevalence of such testing, we reviewed 1345 consecutive prenatal specimens received in our laboratory for familial variant-specific testing and identified 65 (4.8%) with a known or likely HCR component, plus 210 (15.6%) for lysosomal storage disease. These specimens were classified into five distinct categories for clarity and to enable evaluation. Our experience assessing prenatal specimens for variants associated with HCR, with or without a constitutional phenotype, provides metrics for and contributes to the points to consider in prenatal testing for HCR.


Assuntos
Doenças por Armazenamento dos Lisossomos , Neoplasias , Feminino , Humanos , Gravidez , Predisposição Genética para Doença , Testes Genéticos , Neoplasias/diagnóstico , Neoplasias/genética , Fenótipo
13.
Nat Cell Biol ; 26(2): 219-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253667

RESUMO

Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Lisossomos/metabolismo , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
14.
J Neurol ; 271(1): 593-605, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37755460

RESUMO

Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials.


Assuntos
Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças por Armazenamento dos Lisossomos , Substância Branca , Humanos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Imageamento por Ressonância Magnética
15.
HNO ; 72(1): 16-24, 2024 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-37747492

RESUMO

BACKGROUND: Fabry disease (FD) is one of the X­linked lysosomal storage diseases that can affect any organ. They have a specific lysosomal dysfunction in common, which results in substrate accumulation in lysosomes instead of metabolite degradation. Due to the deficiency/absence of α­galactosidase, globotriaosylceramides (Gb3) are deposited in lysosomes of the organs. In addition to acroparesthesia, angiokeratomas, autonomic dysfunction, vortex keratopathies, ischemic cerebral or cardiac complications and chronic renal failure, also vestibulocochlear dysfunctions with sudden or progressive asymmetric hearing loss, tinnitus and vertigo may be observed. PATIENTS AND METHODS: In this retrospective study, 33 patients (men = 16 and women = 17) with FD were evaluated. All patients presented to us in interdisciplinary cooperation as part of routine examinations by the specialized center for lysosomal storage diseases of the in-house department of nephrology. This presentation is carried out as a screening examination independent of neuro-otological symptoms. RESULTS: The mean age at diagnosis was 34.76 (±11.55) years. The first presentation in our ENT department was at 40.45 (±11.71) years. We were able to demonstrate a significant correlation between neurological symptoms or apoplexy and hearing loss (p = 0.001) and between cardiac manifestations and hearing loss (p = 0.024). CONCLUSION: Hearing loss is a potential symptom of Fabry disease and is not limited to the classic male phenotype. Due to possible positive correlations with neurological and cardiological manifestations of the disease, routine ENT screening examinations should be carried out to be able to identify and treat neuro-otological deficits at an early stage. In addition, FD should also be considered and tested as a differential diagnosis, especially in younger patients with sudden unilateral or bilateral hearing loss and a family history.


Assuntos
Surdez , Doença de Fabry , Perda Auditiva , Doenças por Armazenamento dos Lisossomos , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Estudos Retrospectivos , Perda Auditiva/diagnóstico , Perda Auditiva/etiologia , Doenças por Armazenamento dos Lisossomos/complicações
16.
Arch Toxicol ; 98(1): 121-134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798515

RESUMO

Nanoparticles have been used in neurological research in recent years because of their blood-brain barrier penetration activity. However, their potential neuronanotoxicity remains a concern. In particular, microglia, which are resident phagocytic cells, are mainly exposed to nanoparticles in the brain. We investigated the changes in lysosomal function in silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)]-treated BV2 murine microglial cells. In addition, we analyzed amyloid beta (Aß) accumulation and molecular changes through the integration of transcriptomics, proteomics, and metabolomics (triple-omics) analyses. Aß accumulation significantly increased in the 0.1 µg/µl MNPs@SiO2(RITC)-treated BV2 cells compared to the untreated control and 0.01 µg/µl MNPs@SiO2(RITC)-treated BV2 cells. Moreover, the MNPs@SiO2(RITC)-treated BV2 cells showed lysosomal swelling, a dose-dependent reduction in proteolytic activity, and an increase in lysosomal swelling- and autophagy-related protein levels. Moreover, proteasome activity decreased in the MNPs@SiO2(RITC)-treated BV2 cells, followed by a concomitant reduction in intracellular adenosine triphosphate (ATP). By employing triple-omics and a machine learning algorithm, we generated an integrated single molecular network including reactive oxygen species (ROS), autophagy, lysosomal storage disease, and amyloidosis. In silico analysis of the single triple omics network predicted an increase in ROS, suppression of autophagy, and aggravation of lysosomal storage disease and amyloidosis in the MNPs@SiO2(RITC)-treated BV2 cells. Aß accumulation and lysosomal swelling in the cells were alleviated by co-treatment with glutathione (GSH) and citrate. These findings suggest that MNPs@SiO2(RITC)-induced reduction in lysosomal activity and proteasomes can be recovered by GSH and citrate treatment. These results also highlight the relationship between nanotoxicity and Aß accumulation.


Assuntos
Amiloidose , Doenças por Armazenamento dos Lisossomos , Nanopartículas de Magnetita , Camundongos , Animais , Microglia , Peptídeos beta-Amiloides , Dióxido de Silício/toxicidade , Nanopartículas de Magnetita/toxicidade , Espécies Reativas de Oxigênio , Lisossomos , Citratos
17.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-38088379

RESUMO

The discovery of enzyme deficiencies in lysosomal storage disorders began with two discoveries made in 1963. One of these was made by a Belgian scientist, Henri-Gery Hers, who discovered that in Pompe's disease there was a deficiency in α-glucosidase. The other was made by an international collaboration involving an American neurologist, James Austin, and an Indian biochemist, Bimal Bachhawat, where the enzyme arylsulfatase A was found deficient in metachromatic leukodystrophy. This article attempts to trace the events that led to this fruitful collaboration and how these two young investigators eventually discovered the defective enzyme in metachromatic leukodystrophy.


Assuntos
Leucodistrofia Metacromática , Doenças por Armazenamento dos Lisossomos , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Cerebrosídeo Sulfatase
18.
Glycoconj J ; 40(6): 611-619, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147151

RESUMO

Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing ß-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Neuraminidase , Animais , Humanos , Camundongos , Neuraminidase/química , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
20.
Prenat Diagn ; 43(13): 1638-1649, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37955580

RESUMO

Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.


Assuntos
Terapia de Reposição de Enzimas , Doenças por Armazenamento dos Lisossomos , Gravidez , Feminino , Humanos , Terapia de Reposição de Enzimas/métodos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/complicações , Sistema Nervoso Central , Lisossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...