Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.892
Filtrar
1.
PLoS One ; 19(4): e0300021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635818

RESUMO

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required. In the UK, T. cruzi is classified by the Advisory Committee on Dangerous Pathogens (ACDP) as a Hazard Group 3 organism and strict safety practices must be adhered to when handling this pathogen in the laboratory. Validated inactivation techniques are required for safe T. cruzi waste disposal and removal from Containment Level 3 (CL3) facilities for storage, transportation and experimental analysis. Here we assess three T. cruzi. inactivation methods. These include three freeze-thaw cycles, chemical inactivation with Virkon disinfectant, and air drying on Whatman FTA cards (A, B, C, Elute) and on a Mitra microsampling device. After each treatment parasite growth was monitored for 4-6 weeks by microscopic examination. Three freeze-thaw cycles were sufficient to inactivate all T. cruzi CLBrener Luc life cycle stages and Silvio x10/7 A1 large epimastigote cell pellets up to two grams wet weight. Virkon treatment for one hour inactivated T. cruzi Silvio x10/7 subclone A1 and CLBrener Luc both in whole blood and cell culture medium when incubated at a final concentration of 2.5% Virkon, or at ≥1% Virkon when in tenfold excess of sample volume. Air drying also inactivated T. cruzi CLBrener Luc spiked blood when dried on FTA A, B or Elute cards for ≥30 minutes and on a Mitra Microsampler for two hours. However, T. cruzi CLBrener Luc were not inactivated on FTA C cards when dried for up to two hours. These experimentally confirmed conditions provide three validated T. cruzi inactivation methods which can be applied to other related ACDP Hazard Group 2-3 kinetoplastid parasites.


Assuntos
Aminopiridinas , Doença de Chagas , Ácidos Sulfúricos , Trypanosoma cruzi , Humanos , Doença de Chagas/parasitologia , Peróxidos
2.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498680

RESUMO

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Assuntos
Vênus , Aminoácidos , Atmosfera/química , Solventes , Ácidos Sulfúricos/química
3.
Waste Manag ; 178: 311-320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428381

RESUMO

Animal slurry storage is an important ammonia (NH3) emission source. Sulfuric acid (H2SO4)-modified vermiculite coverage is a new promising technology for controlling NH3 emission from slurry storage. However, the underlying mechanisms in controlling the mitigation effect remain unclear. Here, a series of experiments to determine the effect of H2SO4 on the modified vermiculite properties, floating persistence, and NH3 mitigation effect was conducted. Results showed that abundant H2SO4 and sulfate remained on the outer surface and in the extended inner pores of the vermiculite with acidifying H+ concentrations higher than 5 M. An initial strong instantaneous acidification of surface slurry released rich carbon dioxide bubbles, strengthening cover floating performance. An acidification in the vermiculite cover layer and a good coverage inhibition interacted, being the two leading mechanisms for mitigating NH3 during initial 40-50 days of storage. The bacterial-amoA gene dominated the conversion of NH3 to nitrous oxide after 50 days of storage. Vermiculite with 5 M H+ modification reduced the NH3 emissions by 90 % within the first month of slurry storage and achieved a 64 % mitigation efficiency throughout the 84 days period. With the development of the aerial spraying equipment such as agricultural drones, acidifying vermiculite coverage hold promise as an effective method for reducing NH3 emission while absorbing nutrients from liquid slurry storage tank or lagoon. This design should now be tested under field conditions.


Assuntos
Silicatos de Alumínio , Amônia , Ácidos Sulfúricos , Animais , Amônia/análise , Agricultura , Esterco , Óxido Nitroso/análise
4.
Sci Rep ; 14(1): 5542, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448468

RESUMO

There are several industrial uses for carbon black (CB), an extremely fine powdered form of elemental carbon that is made up of coalesced particle aggregates and almost spherical colloidal particles. Most carbon black is produced from petroleum-derived feedstock, so there is a need to find an alternative method to produce CB, which relies on renewable resources such as algae and agricultural waste. A process involving hydrolysis, carbonization, and pyrolysis of green algae and sugarcane bagasse was developed, as the optimal hydrolysis conditions (16N sulfuric acid, 70 °C, 1 h, 1:30 g/ml GA or SC to sulfuric acid ratio), a hydrolysis ratio of 62% for SC and 85% for GA were achieved. The acidic solution was carbonized using a water bath, and the solid carbon was then further pyrolyzed at 900 °C. The obtained carbon black has a high carbon content of about 90% which is confirmed by EDX, XRD, and XPS analysis. By comparison carbon black from sugar cane bagasse (CBB) and carbon black from green algae Ulva lactuca (CBG) with commercial carbon black (CCB) it showed the same morphology which was confirmed by SEM analysis. The BET data, showed the high specific surface area of prepared CB, which was 605 (m2/g) for CBB and 424 (m2/g) for CBG compared with commercial carbon black (CBB) was 50 (m2/g), also the mean pore diameter of CBB, CBG and CCB indicated that CBB and CBG were rich in micropores, but CCB was rich in mesoporous according to IUPAC classification. This study might have created a technique that can be used to make carbon black from different kinds of biomass.


Assuntos
Clorófitas , 60578 , Nanopartículas , Saccharum , Ácidos Sulfúricos , Ulva , Celulose , Fuligem , Carbono
5.
Waste Manag ; 179: 110-119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471249

RESUMO

Toxic substances, like fluoride salts present in spent cathode carbon (SCC), have been a great risk to the environment and public health. Our approach involves alkali leaching to eliminate soluble fluoride, followed by microwave hydrothermal acid leaching to efficiently remove insoluble CaF2 from SCC. The optimized conditions, including a temperature of 353 K, a solid-liquid ratio of 1:20, and a 60-minute reaction time, resulted in an impressive 95.6 % removal of fluoride from SCC. Various characterization techniques were employed to analyze the composition, micro-morphology, and elemental content of the materials before and after the leaching process. Furthermore, critical process parameters on the leaching separation of insoluble CaF2 during microwave hydrothermal acid leaching were systematically investigated. The study removal mechanism revealed the transformation of insoluble CaF2 in the process of microwave oxidation insertion-hydrothermal acid leaching for SCC. The kinetic characteristics of the two-stage leaching process of CaF2 at different temperatures were analyzed according to the shrinkage kernel model. The results indicate that the two-stage leaching process of CaF2 is affected by mixing control and by diffusion control, severally. The expansion of the graphite flake layer of SCC through oxidative intercalation was identified as a critical process for the thorough removal of CaF2. Microwave hydrothermal acid leaching demonstrated a 17 % improvement over traditional hydrothermal acid leaching within the same reaction time, showcasing a noteworthy enhancement in fluoride removal. Consequently, the microwave oxidizing intercalation-hydrothermal acid leaching treatment of SCC, as explored in this study, offers an effective approach for achieving deep defluoridation of SCC.


Assuntos
Alumínio , Fluoreto de Cálcio , Ácidos Sulfúricos , Carbono , Fluoretos , Micro-Ondas
6.
Waste Manag ; 177: 135-145, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325014

RESUMO

The surging affluent in society, concomitant with increasing global demand for electrical and electronic devices, has led to a sharp rise in e-waste generation. E-wastes contain significant amounts of precious metals, such as gold, which can be recovered and reused, thus reducing the environmental impact of mining new metals. Selective recovery using sustainable and cost-effective materials and methods is therefore vital. This study undertook a detailed evaluation of low-cost biomass-derived activated carbon (AC) for selective recovery of Au from simulated e-waste streams. Utilizing high-performance synthesized H2SO4-AC, the adsorption mechanisms were explicated through a combination of characterization techniques, i.e., FE-SEM, BET, TGA, XRD, FTIR, XPS, and DFT simulations to conceptualize the atomic and molecular level interactions. Optimization of coordination geometries between model H2SO4-AC and anionic complexes revealed the most stable coordination for AuCl4- (binding energy, Eb = -4064.15 eV). The Au selectivity was further enhanced by reduction of Au(III) to Au(0), as determined by XRD and XPS. The adsorption reaction was relatively fast (∼5h), and maximum Au uptake reached 1679.74 ± 37.66 mg/g (among highest), achieved through adsorption isotherm experiments. Furthermore, a mixture of 0.5 M thiourea/1 M HCl could effectively elute the loaded Au and regenerate the spent AC. This study presents radical attempts to examine in detail, the synergistic effects of H2SO4 activation on biomass-derived ACs for selective recovery of Au from complex mixtures. The paper therefore describes a novel approach for the selective recovery of Au from e-wastes using multifunctional biomass-derived H2SO4-AC.


Assuntos
Carvão Vegetal , Ouro , Biomassa , Ácidos Sulfúricos
7.
Environ Sci Pollut Res Int ; 31(13): 20651-20664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383930

RESUMO

Traditional pyrolysis biochar has been widely employed to treat dye wastewater. However, there are some problems in the pyrolysis process, such as the generation of harmful gases and the low content of silico-oxygen functional groups to promote adsorption. Straw biochar (Ac-BCbm) was prepared by sulfuric acid co-ball milling method. The adsorption performance and adsorption mechanism of rhodamine B (RhB) under different preparation conditions and factors were investigated. The results showed that the adsorption rate of Ac-BCbm on RhB was up to 94.9%, which was 60.5% and 55.8% higher than that of ball-milling straw (STbm) and biochar prepared by pyrolysis (STBC600), respectively. The Ac-BCbm had better adaptability under different pH and common interfering ions for remove RhB. Characterization and DFT simulation analysis revealed that the sulfuric acid co-ball milling process promoted the formation of Si-OH and Si-O-CH3 oxygen-containing functional groups of Si component in straw, which enhanced the hydrogen bonding interactions and effectively improved the adsorption efficiency. This study investigated a new strategy for biochar preparation by sulfuric acid co-ball milling, which provides an additional development direction for the efficient resource utilization of straw.


Assuntos
Rodaminas , Ácidos Sulfúricos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Oxigênio
8.
Int J Biol Macromol ; 263(Pt 1): 130111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346614

RESUMO

Sugarcane bagasse was pretreated with dilute phosphoric acid or sulfuric acid to facilitate cellulose hydrolysis and lignin extraction. With phosphoric acid, only 8 % of the initial cellulose was lost after delignification, whereas pretreatment with sulfuric acid resulted in the solubilization of 38 % of the initial cellulose. After enzymatic hydrolysis, the process using phosphoric acid produced approximately 35 % more glucose than that using sulfuric acid. In general, the lignins showed 95-97 % purity (total lignin, w/w), an average molar mass of 9500-10,200 g mol-1, a glass transition temperature of 140-160 °C, and a calorific value of 25 MJ kg-1. Phosphoric acid lignin (PAL) was slightly more polar than sulfuric acid lignin (SAL). PAL had 13 % more oxidized units and 20 % more OH groups than SAL. Regardless of the acid used, the lignins shared similar properties, but differed slightly in the characteristics of their functional groups and chemical bonds. These findings show that pretreatment catalyzed with either of the two acids resulted in lignin with sufficiently good characteristics for use in industrial processes.


Assuntos
Celulose , Saccharum , Celulose/química , Lignina/química , Saccharum/química , Hidrólise , Ácidos Fosfóricos , Ácidos Sulfúricos
9.
BMC Infect Dis ; 24(1): 212, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365598

RESUMO

AIMS: We investigated the antibacterial efficacy of Umonium38 and Virkon® against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA) up to 14 days following treatment. METHODS AND RESULTS: Umonium38 was diluted to 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3%, tested against the bacterial strains at various contact times (15 min to 24 h), and incubated for up to 14 days. A minimum concentration of 0.5% Umonium38 with a contact time of 15 min effectively killed approximately 108 CFU/ml of all four bacterial species. No growth was observed on agar plates from day 0 until day 14 for all six concentrations. The bacteria were also inactivated by a 30-minute treatment time using Virkon® 1% solution. CONCLUSIONS: Umonium38 effectively inactivates B. pseudomallei, E. coli, P. aeruginosa and MRSA at a concentration of ≥ 0.5% with a contact time of at least 15 min. The antimicrobial effect of Umonium38 remained for 14 days.


Assuntos
Burkholderia pseudomallei , Staphylococcus aureus Resistente à Meticilina , Peróxidos , Ácidos Sulfúricos , Humanos , Escherichia coli , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bactérias
10.
Chem Pharm Bull (Tokyo) ; 72(1): 75-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233134

RESUMO

The oxidative cleavage reaction of pyrrolidine-2-methanols to γ-lactams has been described. In this reaction, [4-iodo-3-(isopropylcarbamoyl)phenoxy]acetic acid and powdered Oxone (2KHSO5·KHSO4·K2SO4) were employed as the catalyst and co-oxidant, respectively. The reaction is efficient and environmentally benign because it produces various lactams from readily available substrates in moderate to excellent yields using organocatalyst and inorganic non-toxic co-oxidant.


Assuntos
Metanol , Ácidos Sulfúricos , Oxirredução , Oxidantes
11.
J Reprod Dev ; 70(1): 25-29, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38171908

RESUMO

The aim of the present study was to develop a semi-quantitative urine pregnancy test for mares based on the Cuboni reaction and to verify the reliability of this test. The urine specimens were hydrolyzed by heating in the presence of hydrochloric acid. The resulting free estrogens were extracted from the urine matrix using toluene. Sulfuric acid was added to the toluene extract and the mixture was heated again. The lower layer in the test tube containing sulfuric acid was used for fluorescence measurements with excitation at 355 nm and measurement at 535 nm. The fluorometric Cuboni test revealed that the fluorescence counts in urine samples collected after the second trimester of gestation were significantly higher than those obtained from barren mares. The levels of estrogens, including equilin, estrone and estardiol-17ß exhibited a dose-dependent increase in fluorescence counts, whereas other steroids, such as progesterone, testosterone, and cortisol, did not affect fluorescence. Heat treatment of urine samples with hydrochloric acid significantly increased the fluorescence counts in those collected after the second trimester of gestation compared to non-pregnant samples, implying the presence of large amounts of conjugated estrogens in pregnant mare urine. Fluorescence counts in urine samples obtained during pregnancy showed a positive relationship with estrone concentrations as measured by enzyme immunoassay. The results of the present study showed that the fluorometric Cuboni test facilitates urine fluorescence counts depending on the urinary estrogen content and is capable of discriminating between pregnancy and non-pregnancy states beyond the second trimester of gestation in mares.


Assuntos
Estrona , Prenhez , Ácidos Sulfúricos , Gravidez , Cavalos , Animais , Feminino , Ácido Clorídrico , Reprodutibilidade dos Testes , Estrogênios , Tolueno
12.
Int J Biol Macromol ; 259(Pt 2): 129303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216018

RESUMO

Cellulose nanocrystals (CNC) conventionally involve highly concentrated sulphuric acid, which typically resulted in the formation of undesirable by-products. Although less corrosive mineral acids have been explored as alternatives, high concentrations are still required. In this study, CNC was successfully isolated from Leucaena leucocephala wood using mild sulphuric acid with acetic acid as protic solvent, and it was further studied with the addition of Lewis acids in the form of multivalent transition metal salts as co-catalyst. Selected divalent and trivalent transition metal salts including (Cr(NO3)3, Fe(NO3)3, Co(NO3)2, and Ni(NO3)2) were investigated. The morphology, chemical structure, particle size, and physicochemical properties of the CNCs were determined. Controlled depolymerization of cellulose was observed using transmission electron microscopy (TEM). Rod-like morphology for all CNCs was obtained during the hydrolysis process with the smallest CNC particles found at an average length of 278.1 ± 35.1 nm and a diameter of 13.4 ± 3.0 nm. The results showed that higher valence state metal ions resulted in better cellulose hydrolysis efficiency. In addition, the use of transition metal salt as a co-catalyst improved production efficiency and minimised carbonization of CNC while maintaining desired crystallinity and thermal properties.


Assuntos
Celulose , Nanopartículas , Celulose/química , Solventes , Ácido Acético , Sais , Nanopartículas/química , Ácidos Sulfúricos/química
13.
Environ Res ; 248: 118286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280524

RESUMO

This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.


Assuntos
Ecossistema , Lignina , Ácidos Sulfúricos , Humanos , Pentanóis , Biotecnologia/métodos , Biomassa , Saccharomyces cerevisiae , Hidrólise , Biocombustíveis
14.
Environ Res ; 242: 117811, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043896

RESUMO

Clay minerals such as Halloysite nanotubes (HNTs), abundantly available green nanomaterial, exhibit a significant advantage in biomedical applications such as drug delivery, antibacterial and antimicrobials, tissue engineering or regeneration, etc. Because of the mesoporous structure and high absorbability, HNTs exhibit great potential as a nanocarrier in drug delivery applications. The sulfuric acid treatment enhances the surface area of the HNTs and thereby improves their drug-loading capacity by enlarging their lumen space/inner diameter. In the present investigation, based on the literature that supports the efficacy of drug loading after acid treatment, a dual treatment was performed to functionalize the HNTs surface. First, the HNTs were etched and functionalized using sulfuric acid. The acid-functionalized HNTs underwent another treatment using (3-aminopropyl) triethoxysilane (APTES) to better interact the drug molecules with the HNTs surfaces for efficient drug loading. Augmentin, a potential drug molecule of the penicillin group, was used for HNTs loading, and their antibacterial properties, cytotoxicity, and cumulative drug release (%) were evaluated. Different characterization techniques, such as X-ray diffractometer (XRD) and Fourier Transform Infra-Red (FT-IR), confirm the loading of Augmentin to the APTES@Acid HNTs. TEM images confirm the effective loading of the drug molecule with the HNTs. The drug encapsulation efficiency shows 40.89%, as confirmed by the Thermogravimetric Analysis (TGA). Also, the Augmentin-loaded APTES@Acid HNTs exhibited good antibacterial properties against E. coli and S. aureus and low cytotoxicity, as confirmed by the MTT assay. The drug release studies confirmed the sustainable release of Augmentin from the APTES@Acid HNTs. Hence, the treated HNTs can be considered as a potential nanocarrier for effectively delivering Augmentin and promoting enhanced therapeutic benefits.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Nanotubos , Ácidos Sulfúricos , Argila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Nanotubos/química
15.
Chemistry ; 30(5): e202303066, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37818668

RESUMO

Artificial metalloenzymes have emerged as biohybrid catalysts that allow to combine the reactivity of a metal catalyst with the flexibility of protein scaffolds. This work reports the artificial metalloenzymes based on the ß-barrel protein nitrobindin NB4, in which a cofactor [CoII X(Me3 TACD-Mal)]+ X- (X=Cl, Br; Me3 TACD=N,N' ,N''-trimethyl-1,4,7,10-tetraazacyclododecane, Mal=CH2 CH2 CH2 NC4 H2 O2 ) was covalently anchored via a Michael addition reaction. These biohybrid catalysts showed higher efficiency than the free cobalt complexes for the oxidation of benzylic C(sp3 )-H bonds in aqueous media. Using commercially available oxone (2KHSO5 ⋅ KHSO4 ⋅ K2 SO4 ) as oxidant, a total turnover number of up to 220 and 97 % ketone selectivity were achieved for tetralin. As catalytically active intermediate, a mononuclear terminal cobalt(IV)-oxo species [Co(IV)=O]2+ was generated by reacting the cobalt(II) cofactor with oxone in aqueous solution and characterized by ESI-TOF MS.


Assuntos
Cobalto , Metaloproteínas , Ácidos Sulfúricos , Oxirredução , Metais/química , Água/química , Metaloproteínas/química
16.
Ann Work Expo Health ; 68(2): 217-221, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38156670

RESUMO

Sulfuric acid, a constituent of lead-acid batteries, is an extremely hazardous substance, necessitating utmost caution. Unfortunately, many workers that utilize battery-operated equipment remain unaware of the potential exposure. This study aims to evaluate the potential exposure to sulfuric acid among workers employed by small companies associated with the operation of floor cleaning equipment powered by lead-acid batteries. Only cleaning equipment (hand-push and ride-on types) that required supplementation of lead-acid batteries with distilled water were targeted. Exposure measurement and analysis were performed according to the guidelines of NIOSH and including personal sampling and stationary sampling on the equipment. Exposure measurements indicated that workers were exposed to sulfuric acid. Additionally, the concentration level was slightly elevated in the stationary samples compared to personal samples. This study affirms that workers can experience exposure to sulfuric acid, even in the absence of direct handling of the substance. Consequently, there is a need to recognize and mitigate the potential risks.


Assuntos
Exposição Ocupacional , Humanos , Substâncias Perigosas , Ácidos Sulfúricos/análise
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123761, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141504

RESUMO

A user-friendly platform based on foam sheets and silica solid support was developed for colorimetric sensing of dextran via phenol-sulfuric acid assay. The chemical reagents, sulfuric acid and phenol were separately preserved by silica gel. The brown color product of the phenol-sulfuric acid reaction occurred on the silica solid support when sample solutions were added. The color intensity of brown products was easily obtained by a smartphone and color processing software. Subsequently, a broad concentration range of dextran could be determined up to 10,000 mg/L dextran, with a detection limit of 360 mg/L. Furthermore, a precision study, including inter-day and intra-day studies, presented a satisfactory performance for dextran detection. The developed platform was successfully applied for the sugar industry's dextran determination of syrup samples.


Assuntos
Dextranos , Açúcares , Ácidos Sulfúricos , Colorimetria , Carboidratos , Fenol , Fenóis , Dióxido de Silício
18.
Photodiagnosis Photodyn Ther ; 44: 103879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923284

RESUMO

AIMS: To evaluate the impact of conditioning protocols, aluminum trioxide (Al2O3), Er:YAG laser (EYL), and Rosebengal (RB), on the surface roughness (Ra) and shear bond strength (SBS) of polyetheretherketone (PEEK) attached to composite restorations. METHOD: Eighty PEEK discs in total were produced and then divided into four groups (n = 20). Group1:Sulfuric acid (SA), Group 2: PDT (RB), Group 3: Al2O3, Group 4 EYL, respectively. The Ra of PEEK discs was evaluated using the surface profilometer. After being luted, the discs were attached to composite resin discs. After that, samples were put to SBS testing on a Universal testing apparatus. A stereo microscope was also used to evaluate the type of breakdown. The data were analyzed using Tukey's test and one-way analysis of variance. RESULTS: The SA treated group exhibited the highest Ra. Nevertheless, the RB specimens activated by PDT treatment had the lowest mean Ra score. The group that received the treatment of SA exhibited the highest average score of SBS. In contrast, specimens treated with PDT and activated by RB exhibited the lowest levels of bond fidelity. Cohesive failure emerges as the prevailing kind of fracture within the various groups subjected to testing. CONCLUSION: The utilization of Al2O3, RB activated by PDT, and EYL shows promise as a viable substitute for Sulfuric acid in enhancing the bond integrity of composite cement and surface roughness in PEEK materials.


Assuntos
Benzofenonas , Lasers de Estado Sólido , Fotoquimioterapia , Polímeros , Ácidos Sulfúricos , Resinas Compostas/química , Alumínio , Teste de Materiais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Polietilenoglicóis , Cetonas
19.
PLoS One ; 18(9): e0289497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751445

RESUMO

The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.


Assuntos
Cinza de Carvão , Ácidos Sulfúricos , Força Compressiva , Sulfato de Magnésio , Poliésteres , Dióxido de Silício , Cloreto de Sódio
20.
J Environ Manage ; 347: 119079, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748297

RESUMO

New particle formation (NPF) contributes more than half of the global aerosol. Diethanolamine (DEA) and methyldiethanolamine (MDEA) are the most common amines used to remove CO2 and H2S, which are lost to the atmosphere from CO2 chemical absorbers, livestock and consumer products and are involved in sulfuric acid (SA)-driven NPF. Ion-induced nucleation (IIN) is an important nucleation pathway for NPF. We investigated the role of IIN on DEA and MDEA enhancing SA-driven NPF using density functional method (DFT), molecular dynamics (MD) simulation and atmospheric cluster dynamics code (ACDC). The effects of SO42-, H3O+, NH4+, HSO4-, NO3-, ammonia, methylamine, dimethylamine, trimethylamine and water (W) on the nucleation of SA-DEA were further investigated. The enhancement ability of DEA is greater than that of dimethylamine (DMA) and MDEA. Participation in SA-based NPF is a removal pathway for DEA and MDEA. DEA-SA clusters are generated that not only aggregate DEA and SA molecules, but also increase further growth of atmospheric ions. The very low Gibbs formation free energy highlights the importance of ion-induced nucleation for SA-based NPF. The order of the ability of common atmospheric ions to increase the (SA)(DEA) cluster nucleation is SO42- > H3O+ > NH4+ > HSO4- > NO3-. The addition of 20 water molecules increases the (SA)(DEA)9 cluster from 1.882 nm to 2.053 nm, promoting SA-based NPF. The atmospheric ions accelerate the aggregation rate of the (SA)5(DEA)5 cluster within 15 ns?


Assuntos
Aminas , Dióxido de Carbono , Aminas/química , Ácidos Sulfúricos/química , Dimetilaminas/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...