Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.362
Filtrar
1.
Carbohydr Polym ; 335: 122083, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616101

RESUMO

Sulfated fucans have garnered extensive research interest in recent decades due to their varied bioactivity. Fucanases are important tools for investigating sulfated fucans. This study reported the bioinformatic analysis and biochemical properties of three GH174 family endo-1,3-fucanases. Wherein, Fun174Rm and Fun174Sb showed the highest optimal reaction temperature among the reported fucanases, and Fun174Sb possessed favorable thermostability and catalysis efficiency. Fun174Rm displayed a random endo-acting manner, while Fun174Ri and Fun174Sb hydrolyzed sulfated fucan in processive manners. UPLC-MS and NMR analyses confirmed that the three enzymes catalyze cleavage of the α(1 â†’ 3)-bonds between Fucp2S and Fucp2S in the sulfated fucan from Isostichopus badionotus. These enzymes demonstrated novel cleavage specificities, which could accept α-Fucp2S residues at subsites -1 and + 1. The acquiring of these biotechnological tools would be beneficial to the in-depth research of sulfated fucans.


Assuntos
Glicosídeo Hidrolases , Espectrometria de Massas em Tandem , Cromatografia Líquida , Biotecnologia , Catálise , Sulfatos , Óxidos de Enxofre
2.
Huan Jing Ke Xue ; 45(5): 3088-3097, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629569

RESUMO

Mulching to conserve moisture has become an important agronomic practice in saline soil cultivation, and the effects of the dual stress of salinity and microplastics on soil microbes are receiving increasing attention. In order to investigate the effect of polyethylene microplastics on the microbial community of salinized soils, this study investigated the effects of different types (chloride and sulphate) and concentrations (weak, medium, and strong) of polyethylene (PE) microplastics (1% and 4% of the dry weight mass of the soil sample) on the soil microbial community by simulating microplastic contamination in salinized soil environments indoors. The results showed that:PE microplastics reduced the diversity and abundance of microbial communities in salinized soils and were more strongly affected by sulphate saline soil treatments. The relative abundance of each group of bacteria was more strongly changed in the sulphate saline soil treatment than in the chloride saline soil treatment. At the phylum level, the relative abundance of Proteobacteria was positively correlated with the abundance of fugitive PE microplastics, whereas the relative abundances of Bacteroidota, Actinobacteriota, and Acidobacteria were negatively correlated with the abundance of fugitive PE microplastics. At the family level, the relative abundances of Flavobacteriaceae, Alcanivoracaceae, Halomonadaceae, and Sphingomonasceae increased with increasing abundance of PE microplastics. The KEGG metabolic pathway prediction showed that the relative abundance of microbial metabolism and genetic information functions were reduced by the presence of PE microplastics, and the inhibition of metabolic functions was stronger in sulphate saline soils than in chloride saline soils, whereas the inhibition of genetic information functions was weaker than that in chloride saline soils. The secondary metabolic pathways of amino acid metabolism, carbohydrate metabolism, and energy metabolism were inhibited. It was hypothesized that the reduction in metabolic functions may have been caused by the reduced relative abundance of the above-mentioned secondary metabolic pathways. This study may provide a theoretical basis for the study of the effects of microplastics and salinization on the soil environment under the dual pollution conditions.


Assuntos
Microplásticos , Polietileno , Plásticos , Solo , Cloretos , Halogênios , Sulfatos , Microbiologia do Solo
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612787

RESUMO

Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.


Assuntos
Reguladores de Crescimento de Plantas , Sulfatos , Desenvolvimento Vegetal , Ácido Abscísico , Citocininas
4.
Environ Sci Technol ; 58(15): 6736-6743, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564367

RESUMO

Acidity is an important property of particulate matter (PM) in the atmosphere, but its association with PM toxicity remains unclear. Here, this study quantitively reports the effect of the acidity level on PM toxicity via pH-control experiments and cellular analysis. Oxidative stress and cytotoxicity potencies of acidified PM samples at pH of 1-2 were up to 2.8-5.2 and 2.1-13.2 times higher than those at pH of 8-11, respectively. The toxic potencies of PM samples from real-world smoke plumes at the pH of 2.3 were 9.1-18.2 times greater than those at the pH of 5.6, demonstrating a trend similar to that of acidified PM samples. Furthermore, the impact of acidity on PM toxicity was manifested by promoting metal dissolution. The dramatic increase by 2-3 orders of magnitude in water-soluble metal content dominated the variation in PM toxicity. The significant correlation between sulfate, the pH value, water-soluble Fe, IC20, and EC1.5 (p < 0.05) suggested that acidic sulfate could enhance toxic potencies by dissolving insoluble metals. The findings uncover the superficial association between sulfate and adverse health outcomes in epidemiological research and highlight the control of wet smoke plume emissions to mitigate the toxicity effects of acidity.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Metais/toxicidade , Metais/análise , Fumaça/análise , Sulfatos/análise , Água , Monitoramento Ambiental
5.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573964

RESUMO

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Assuntos
Ecossistema , Meio Ambiente , Transporte de Elétrons , Sulfatos/química , Respiração Celular
6.
Environ Geochem Health ; 46(5): 174, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592609

RESUMO

The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.


Assuntos
Compostos de Amônio , Insuficiência Renal Crônica , Humanos , Adulto , Nitratos , China/epidemiologia , Material Particulado/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Solo , Sulfatos , Óxidos de Enxofre
7.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564431

RESUMO

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Gatos , Vacinas contra COVID-19 , SARS-CoV-2 , Sulfatos/farmacologia , Adjuvantes Imunológicos/química , Nanopartículas/química , Adjuvantes Farmacêuticos/farmacologia , Imunidade Celular , Vacinas de Subunidades/farmacologia
8.
Chem Commun (Camb) ; 60(33): 4495-4498, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38567462

RESUMO

We have demonstrated that cisplatin (CP), an anticancer drug, showed a preference for binding the sulfated-L-iduronic acid (S-L-IdoA) unit over the sulfated-D-glucuronic acid unit of heparan sulfate. The multivalency of S-L-IdoA, such as in the proteoglycan mimic, resulted in distinct modes of cell-surface engineering in normal and cancer cells, with these disparities having a significant impact on CP-mediated toxicity.


Assuntos
Cisplatino , Proteoglicanas , Heparitina Sulfato/química , Ácido Glucurônico/metabolismo , Ácido Idurônico , Sulfatos
9.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581137

RESUMO

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Assuntos
Desulfovibrio , Petróleo , Nitratos , Sulfatos , Água , RNA Ribossômico 16S/genética , Bactérias , Desulfovibrio/genética , Compostos Orgânicos , Enxofre , Oxirredução
10.
Arch Microbiol ; 206(5): 218, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625565

RESUMO

There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert. The exopolysaccharide extraction was performed by the concentration of free-cell supernatant in a rotary evaporator. The infrared analysis showed a characteristic footprint of carbohydrates with particular functional groups, such as sulfate. Gas chromatography-mass spectrometry has revealed a hetero-exopolysaccharide composed of galactose 35.75%, glucose 21.13%, xylose 16.81%, fructose 6.96%, arabinose 5.10%, and glucuronic acid 2.68%. The evaluation of the anti-hyperglycemic activity demonstrated a significant α-D-glucosidase inhibition of 80.94 ± 0.01% at 10 mg mL-1 with IC50 equal to 4.31 ± 0.20 mg mL-1. This study opens a vast prospect to use exopolysaccharides as natural nutraceutical or food additive.


Assuntos
Chlorella , Sulfatos , Ecossistema , Arabinose , Glucosidases
11.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527881

RESUMO

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Benzeno , Monitoramento Ambiental/métodos , China , Emissões de Veículos/análise , Estações do Ano , Poeira/análise , Carvão Mineral/análise , Sulfatos/análise
12.
Sci Total Environ ; 926: 171918, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522553

RESUMO

The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.


Assuntos
Desulfovibrio , Água Subterrânea , Urânio , Bactérias , Urânio/análise , RNA Ribossômico 16S/genética , Estudos Prospectivos , Água Subterrânea/química , Sulfatos/análise
13.
Microbiol Spectr ; 12(4): e0333523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426746

RESUMO

Seagrasses can enhance nutrient mobilization in their rhizosphere via complex interactions with sediment redox conditions and microbial populations. Yet, limited knowledge exists on how seagrass-derived rhizosphere dynamics affect nitrogen cycling. Using optode and gel-sampler-based chemical imaging, we show that radial O2 loss (ROL) from rhizomes and roots leads to the formation of redox gradients around below-ground tissues of seagrass (Zostera marina), which are co-localized with regions of high ammonium concentrations in the rhizosphere. Combining such chemical imaging with fine-scale sampling for microbial community and gene expression analyses indicated that multiple biogeochemical pathways and microbial players can lead to high ammonium concentration within the oxidized regions of the seagrass rhizosphere. Symbiotic N2-fixing bacteria (Bradyrhizobium) were particularly abundant and expressed the diazotroph functional marker gene nifH in Z. marina rhizosphere areas with high ammonium concentrations. Such an association between Z. marina and Bradyrhizobium can facilitate ammonium mobilization, the preferred nitrogen source for seagrasses, enhancing seagrass productivity within nitrogen-limited environments. ROL also caused strong gradients of sulfide at anoxic/oxic interfaces in rhizosphere areas, where we found enhanced nifH transcription by sulfate-reducing bacteria. Furthermore, we found a high abundance of methylotrophic and sulfide-oxidizing bacteria in rhizosphere areas, where O2 was released from seagrass rhizomes and roots. These bacteria could play a beneficial role for the plants in terms of their methane and sulfide oxidation, as well as their formation of growth factors and phytohormones. ROL from below-ground tissues of seagrass, thus, seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations. IMPORTANCE: Seagrasses are important marine habitats providing several ecosystem services in coastal waters worldwide, such as enhancing marine biodiversity and mitigating climate change through efficient carbon sequestration. Notably, the fitness of seagrasses is affected by plant-microbe interactions. However, these microscale interactions are challenging to study and large knowledge gaps prevail. Our study shows that redox microgradients in the rhizosphere of seagrass select for a unique microbial community that can enhance the ammonium availability for seagrass. We provide first experimental evidence that Rhizobia, including the symbiotic N2-fixing bacteria Bradyrhizobium, can contribute to the bacterial ammonium production in the seagrass rhizosphere. The release of O2 from rhizomes and roots also caused gradients of sulfide in rhizosphere areas with enhanced nifH transcription by sulfate-reducing bacteria. O2 release from seagrass root systems thus seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations.


Assuntos
Ecossistema , Rizosfera , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Sulfetos/metabolismo , Nitrogênio/metabolismo , Sulfatos/metabolismo
14.
Sci Total Environ ; 926: 171537, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460684

RESUMO

This study proposed and examined a new process flowsheet for treating neutral mine drainage (NMD) from an open-pit gold mine. The process consisted of three sequential stages: (1) in situ hydrotalcite (HT) precipitation; (2) low-cost carbon substrate driven microbial sulfate reduction; and (3) ferrosol reactive barrier for removing biogenic dissolved hydrogen sulfide (H2S). For concept validation, laboratory-scale columns were established and operated for a 140-days period with key process performance parameters regularly measured. At the end, solids recovered from various depths of the ferrosol column were analysed for elemental composition and mineral phases. Prokaryotic microbial communities in various process locations were characterised using 16S rRNA gene sequencing. Results showed that the Stage 1 HT-treatment substantially removed a range of elements (As, B, Ba, Ca, F, Zn, Si, and U) in the NMD, but not nitrate or sulfate. The Stage 2 sulfate reducing bioreactor (SRB) packed with 70 % (v/v) Eucalyptus woodchip, 1 % (w/v) ground (<1 mm) dried Typha biomass, and 10 % (w/v) NMD-pond sediment facilitated complete nitrate removal and stable sulfate removal of ca. 50 % (50 g-SO4 m-3 d-1), with an average H2S generation rate of 10 g-H2S m-3d-1. The H2S-removal performance of the Stage 3 ferrosol column was compared with a synthetic amorphous Fe-oxyhydroxide-amended sand control column. Although both columns facilitated excellent (95-100 %) H2S removal, the control column only enabled a further ca. 10 % sulfate reduction, giving an overall sulfate removal of 56 %. In contrast, the ferrosol enabled an extra 99.9 % sulfate reduction in the SRB effluent, leading to a near complete sulfate removal. Overall, the process successfully eliminated a range of metal/metalloid contaminants, nitrate, sulfate (2500 mg-SO4 L-1 in the NMD to <10 mg-SO4 L-1 in the final effluent) and H2S (>95 % removal). Further optimisation is required to minimise release of ferrous iron from the ferrosol barrier into the final effluent.


Assuntos
Hidróxido de Alumínio , Sulfeto de Hidrogênio , Hidróxido de Magnésio , RNA Ribossômico 16S , Nitratos , Sulfatos/química , Reatores Biológicos
15.
Biomater Sci ; 12(8): 2067-2085, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470831

RESUMO

The extracellular matrix (ECM) presents a framework for various biological cues and regulates homeostasis during both developing and mature stages of tissues. During development of cartilage, the ECM plays a critical role in endowing both biophysical and biochemical cues to the progenitor cells. Hence, designing microenvironments that recapitulate these biological cues as provided by the ECM during development may facilitate the engineering of cartilage tissue. In the present study, we fabricated an injectable interpenetrating hydrogel (IPN) system which serves as an artificial ECM and provides chondro-inductive niches for the differentiation of stem cells to chondrocytes. The hydrogel was designed to replicate the gradual stiffening (as a biophysical cue) and the presentation of growth factors (as a biochemical cue) as provided by the natural ECM of the tissue, thus exemplifying a biomimetic approach. This dynamic stiffening was achieved by incorporating silk fibroin, while the growth factor presentation was accomplished using sulfated-carboxymethyl cellulose. Silk fibroin and sulfated-carboxymethyl cellulose (s-CMC) were combined with tyraminated-carboxymethyl cellulose (t-CMC) and crosslinked using HRP/H2O2 to fabricate s-CMC/t-CMC/silk IPN hydrogels. Initially, the fabricated hydrogel imparted a soft microenvironment to promote chondrogenic differentiation, and with time it gradually stiffened to offer mechanical support to the joint. Additionally, the presence of s-CMC conferred the hydrogel with the property of sequestering cationic growth factors such as TGF-ß and allowing their prolonged presentation to the cells. More importantly, TGF-ß loaded in the developed hydrogel system remained active and induced chondrogenic differentiation of stem cells, resulting in the deposition of cartilage ECM components which was comparable to the hydrogels that were treated with TGF-ß provided through media. Overall, the developed hydrogel system acts as a reservoir of the necessary biological cues for cartilage regeneration and simultaneously provides mechanical support for load-bearing tissues such as cartilage.


Assuntos
Cartilagem Articular , Fibroínas , Engenharia Tecidual/métodos , Hidrogéis/química , Sulfatos , Carboximetilcelulose Sódica , Peróxido de Hidrogênio , Cartilagem , Seda , Fator de Crescimento Transformador beta , Tecidos Suporte/química , Condrogênese
16.
Int J Biol Macromol ; 265(Pt 1): 130767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471601

RESUMO

The role of anionic counterions of divalent metal salts in alginate gelation and hydrogel properties has been thoroughly investigated. Three anions were selected from the Hofmeister series, namely sulphate, acetate and chloride, paired in all permutations and combinations with divalent metal cations like calcium, zinc and copper. Spectroscopic analysis revealed the presence of anions and their interaction with the respective metal cations in the hydrogel. The data showed that the gelation time and other hydrogel properties were largely controlled by cations. However, subtle yet significant variations in viscoelasticity, water uptake, drug release and cytocompatibility properties were anion dependent in each cationic group. Computational modelling based study showed that metal-anion-alginate configurations were energetically more stable than the metal-alginate models. The in vitro and in silico studies concluded that acetate anions preceded chlorides in the drug release, swelling and cytocompatibility fronts, followed by sulphate anions in each cationic group. Overall, the data confirmed that anions are an integral part of the metal-alginate complex. Furthermore, anions offer a novel option to further fine-tune the properties of alginate hydrogels for myriads of applications. In addition, full exploration of this novel avenue would enhance the usability of alginate polymers in the pharmaceutical, environmental, biomedical and food industries.


Assuntos
Hidrogéis , Sais , Hidrogéis/química , Alginatos/química , Cálcio/química , Cátions , Cloretos , Água , Sulfatos , Acetatos
17.
Carbohydr Polym ; 334: 122025, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553224

RESUMO

Diabetic foot ulcers (DFUs) are one of the most serious and devastating complication of diabetes, manifesting as foot ulcers and impaired wound healing in patients with diabetes mellitus. To solve this problem, sulfated hyaluronic acid (SHA)/collagen-based nanofibrous biomimetic skins was developed and used to promote the diabetic wound healing and skin remodeling. First, SHA was successfully synthetized using chemical sulfation and incorporated into collagen (COL) matrix for preparing the SHA/COL hybrid nanofiber skins. The polyurethane (PU) was added into those hybrid scaffolds to make up the insufficient mechanical properties of SHA/COL nanofibers, the morphology, surface properties and degradation rate of hybrid nanofibers, as well as cell responses upon the nanofibrous scaffolds were studied to evaluate their potential for skin reconstruction. The results demonstrated that the SHA/COL, SHA/HA/COL hybrid nanofiber skins were stimulatory of cell behaviors, including a high proliferation rate and maintaining normal phenotypes of specific cells. Notably, SHA/COL and SHA/HA/COL hybrid nanofibers exhibited a significantly accelerated wound healing and a high skin remodeling effect in diabetic mice compared with the control group. Overall, SHA/COL-based hybrid scaffolds are promising candidates as biomimetic hybrid nanofiber skin for accelerating diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Nanofibras , Humanos , Camundongos , Animais , Nanofibras/uso terapêutico , Nanofibras/química , Ácido Hialurônico/química , Biomimética/métodos , Sulfatos/farmacologia , Cicatrização , Colágeno/química , Tecidos Suporte/química
18.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494030

RESUMO

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Nanofios , Humanos , Aço , Elétrons , Carbono/metabolismo , Biofilmes , Desulfovibrio/metabolismo , Corrosão , Sulfatos/metabolismo , Redução de Peso
19.
Sci Adv ; 10(13): eadl3685, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552027

RESUMO

The solute carrier 13 (SLC13) family comprises electrogenic sodium ion-coupled anion cotransporters, segregating into sodium ion-sulfate cotransporters (NaSs) and sodium ion-di- and-tricarboxylate cotransporters (NaDCs). NaS1 and NaDC1 regulate sulfate homeostasis and oxidative metabolism, respectively. NaS1 deficiency affects murine growth and fertility, while NaDC1 affects urinary citrate and calcium nephrolithiasis. Despite their importance, the mechanisms of substrate recognition and transport remain insufficiently characterized. In this study, we determined the cryo-electron microscopy structures of human NaS1, capturing inward-facing and combined inward-facing/outward-facing conformations within a dimer both in apo and sulfate-bound states. In addition, we elucidated NaDC1's outward-facing conformation, encompassing apo, citrate-bound, and N-(p-amylcinnamoyl) anthranilic acid (ACA) inhibitor-bound states. Structural scrutiny illuminates a detailed elevator mechanism driving conformational changes. Notably, the ACA inhibitor unexpectedly binds primarily anchored by transmembrane 2 (TM2), Loop 10, TM11, and TM6a proximate to the cytosolic membrane. Our findings provide crucial insights into SLC13 transport mechanisms, paving the way for future drug design.


Assuntos
Simportadores , Animais , Humanos , Camundongos , Regulação Alostérica , Citratos/metabolismo , Microscopia Crioeletrônica , Sódio/metabolismo , Sulfatos/metabolismo , Simportadores/metabolismo
20.
Clin Chim Acta ; 557: 117860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508572

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common infertility disorder which affects reproductive-aged women. However, metabolic change profiles of follicular fluid (FF) in lean and obese women diagnosed with and without PCOS remains unclear. METHODS: 95 infertile women were divided into four subgroups: LC (lean control), OC (overweight control), LP (lean PCOS), and OP (overweight PCOS). The FF samples were collected during oocyte retrieval and assayed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) metabolomics. RESULTS: A total of 236 metabolites were identified by metabolic analysis. The pathway enrichment analysis revealed that the glycerophospholipid metabolism (impact = 0.11182), ether lipid metabolism (impact = 0.14458), and primary bile acid biosynthesis (impact = 0.03267) were related to metabolic pathway between PCOS and control. Correlation analyses showed that epitestosterone sulfate was found positively correlated with fertilization rate in PCOS, while falcarindione, lucidone C. and notoginsenoside I was found to be negatively correlated. The combined four biomarkers including lucidone C, epitestosterone sulfate, falcarindione, and notoginsenoside I was better in predicting live birth rate, with AUC of 0.779. CONCLUSION: The follicular fluid of women with PCOS showed unique metabolic characteristics. Our study provides better identification of PCOS follicular fluid metabolic dynamics, which may serve as potential biomarkers of live birth.


Assuntos
Ciclopentanos , Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Adulto , Líquido Folicular/metabolismo , Nascido Vivo , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/metabolismo , Infertilidade Feminina/diagnóstico , 60705 , Sobrepeso , Epitestosterona/análise , Epitestosterona/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fertilização In Vitro , Biomarcadores/análise , Sulfatos/análise , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...