Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
1.
J Psychopharmacol ; 38(4): 353-361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532577

RESUMO

BACKGROUND: The microbiota-gut-brain axis (MGBA) allows bidirectional crosstalk between the brain and gut microbiota (GM) and is believed to contribute to regulating mood/cognition/behaviour/metabolism/health and homeostasis. Manipulation of GM through faecal microbiota transplant (FMT) is a new, exciting and promising treatment for major depressive disorder (MDD). AIMS: This mini-review examines current research into GM and FMT as a therapy for depression. METHODS: Original research articles published in Medline/Cochrane Library/PubMed/EMBASE/PsycINFO databases/National Institute of Health website Clinicaltrials.gov/controlled-trials.com were searched. Full articles included in reference lists were evaluated. We summarise current data on GM and depression and discuss communication through the MGBA and the interaction of antidepressants and GM through this. We review compositions of dysbiosis in depressed cohorts, focusing on future directions in the treatment of MDD. RESULTS: Studies have demonstrated significant gut dysbiosis in depressed patients compared to healthy cohorts, with overgrowth of pro-inflammatory microbiota, reduction in anti-inflammatory species and reduced overall stability and taxonomic richness. FMT allows the introduction of healthy microbiota into the gastrointestinal tract, facilitating the restoration of eubiosis. CONCLUSION: The GM plays an integral role in human health and disease through its communication with the rest of the body via the MGBA. FMT may provide a means to transfer the healthy phenotype into the recipient and this concept in humans is attracting enormous attention as a prospective treatment for psychopathologies, such as MDD, in the future. It may be possible to manipulate the GM in a number of ways, but further research is needed to determine the exact likelihood and profiles involved in the development and amelioration of MDD in humans, as well as the long-term effects and potential risks of this procedure.


Assuntos
Transtorno Depressivo Maior , Mitoguazona/análogos & derivados , Humanos , Transtorno Depressivo Maior/terapia , Depressão/terapia , Transplante de Microbiota Fecal , Disbiose/terapia
2.
Curr Opin Clin Nutr Metab Care ; 27(3): 297-303, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488112

RESUMO

PURPOSE OF REVIEW: Emerging evidence suggests that the gut microbiota and its metabolites regulate neurodevelopment and cognitive functioning via a bi-directional communication system known as the microbiota-gut-brain axis (MGBA). RECENT FINDINGS: The MGBA influences brain development and function via the hypothalamic-pituitary axis, the vagal nerve, immune signaling, bacterial production of neurotransmitters, and microbial metabolites like short-chain fatty acids, tryptophan derivatives, and bile acids. Animal studies show fetal neurodevelopment is mediated by maternal microbiota derivatives, immune activation, and diet. Furthermore, manipulation of the microbiota during critical windows of development, like antibiotic exposure and fecal microbiota transplantation, can affect cognitive functioning and behavior in mice. Evidence from human studies, particularly in preterm infants, also suggests that a disrupted gut microbiota colonization may negatively affect neurodevelopment. Early microbial signatures were linked to favorable and adverse neurodevelopmental outcomes. SUMMARY: The link between the gut microbiota and the brain is evident. Future studies, including experimental studies, larger participant cohort studies with longitudinal analyses of microbes, their metabolites, and neurotransmitters, and randomized controlled trials are warranted to further elucidate the mechanisms of the MGBA. Identification of early, predictive microbial markers could pave the way for the development of novel early microbiota-based intervention strategies, such as targeted probiotics, and vaginal or fecal microbiota transplantation, aimed at improving infant neurodevelopment.


Assuntos
Recém-Nascido Prematuro , Microbiota , Mitoguazona/análogos & derivados , Lactente , Feminino , Humanos , Recém-Nascido , Criança , Animais , Camundongos , Encéfalo/fisiologia , Neurotransmissores/metabolismo
3.
Brain Res Bull ; 207: 110883, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244807

RESUMO

The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.


Assuntos
Encefalopatias , Microbioma Gastrointestinal , Mitoguazona/análogos & derivados , Humanos , Eixo Encéfalo-Intestino , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Encefalopatias/patologia , Encéfalo/metabolismo
4.
Neurobiol Dis ; 170: 105758, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588991

RESUMO

BACKGROUND: Data accumulation reveals that the bidirectional communication between the gut microbiota and the brain, called the microbiota-gut-brain axis (MGBA), can be modulated by different compounds including prebiotics, probiotics, symbiotic (a fair combination of both), and diet, thus exerting a beneficial impact on brain activity and behaviors. This review aims to give an overview of the possible beneficial effects of the supplementation of -biotics in epilepsy treatment. METHODS: A search on PubMed and ClinicalTrials.gov databases using the terms "probiotics", OR "prebiotics", AND "gut microbiota", AND "epilepsy" was performed. The search covered the period of the last eleven years (2010-2021). CONCLUSIONS: Nowadays, studies analyzing the clinical impact of gut microbiota-modulating intervention strategies on epilepsy are limited and heterogenous due either to the different experimental populations studied (i.e., genetic vs lesional mouse models) or the various primary outcomes measure evaluated. However, positive effects have invariably been noticed; particularly, there have been improvements in behavioral comorbidities and associated gastrointestinal (GI) symptoms. More studies will be needed in the next few years to strictly evaluate the feasibility to introduce these new therapeutic strategies in the clinical treatment of highly refractory epilepsies.


Assuntos
Epilepsia , Gastroenteropatias , Microbioma Gastrointestinal , Probióticos , Animais , Epilepsia/tratamento farmacológico , Camundongos , Mitoguazona/análogos & derivados , Prebióticos , Probióticos/farmacologia , Probióticos/uso terapêutico
5.
Methods Mol Biol ; 2460: 33-44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972929

RESUMO

We present here detailed protocols for the newly developed multiplex glycan bead array (MGBA) for the high throughput and high content analyses of various glycan-binding proteins including anti-glycan antibodies. This platform takes advantage of the commercially available Luminex beads to construct glycan arrays that are easily customizable at will and anytime by researchers. The platform allows the simultaneous analyses of up to 500 glycans and 384 samples at a time. By using multiple arrays, a researcher can analyze thousands of glycans and tens of thousands of samples within a short period. The assay is highly sensitive, specific, reproducible, economic, and fast. Furthermore, the bead array platform is approved for use in clinical settings, speeding up the translation of laboratory discoveries into patient care.


Assuntos
Proteínas de Transporte , Polissacarídeos , Anticorpos/metabolismo , Humanos , Mitoguazona/análogos & derivados , Polissacarídeos/química , Proteínas/metabolismo
6.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33785679

RESUMO

The mitochondrion conformation and the contents of conjugated polyamines were investigated using the embryos of developing wheat (Triticum aestivum L.) grains of two cultivars differing in drought tolerance as experiment materials. After drought stress treatment for 7 days, the relative water content of embryo and relative increase rate of embryo dry weight of the drought-sensitive Yangmai No. 9 cv. decreased more significantly than those of the drought-tolerant Yumai No. 18 cv. Furthermore, the changes in mitochondrion conformation of Yangmai No. 9 were more marked. Meanwhile, the increases of the contents of conjugated non-covalently spermidine (CNC-Spd) and conjugated covalently putrescine (CC-Put) of Yumai No. 18 were more obvious than those of Yangmai No. 9. Treatment with exogenous Spd not only alleviated the injury of drought stress to Yangmai No. 9, but also enhanced the increase of CNC-Spd content and inhibited the change in the mitochondrion conformation of this cultivar. The treatments of Yumai No. 18 with two inhibitors, methylglyoxyl-bis (guanylhydrazone) and phenanthrolin, significantly inhibited the drought stress-induced increases of CNC-Spd and CC-Put contents of the cultivar, respectively. Meanwhile, the treatments with the two inhibitors aggravated the injury of drought stress to Yumai No. 18 and enhanced the change in the mitochondrion conformation of this cultivar. These results mentioned above suggested that the CNC-Spd and CC-Put in embryo mitochondrion membrane isolated from developing grains could enhance the wheat tolerance to drought stress by maintaining the mitochondrion conformation.


Assuntos
Membranas Mitocondriais/metabolismo , Poliaminas/metabolismo , Sementes/metabolismo , Triticum/metabolismo , Água/fisiologia , Secas , Membranas Mitocondriais/ultraestrutura , Mitoguazona , Fenantrolinas , Estresse Fisiológico , Triticum/ultraestrutura
7.
J Biol Chem ; 296: 100182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310703

RESUMO

Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Mitoguazona/farmacologia , Mutação , Sequenciamento Completo do Genoma/métodos
8.
Curr Pharm Des ; 26(8): 838-866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039675

RESUMO

In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded. Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range (EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships between the studied guanylhydrazone analogues and their potential enzyme target.


Assuntos
Mitoguazona/análogos & derivados , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Mitoguazona/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
9.
J Plant Physiol ; 246-247: 153092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065919

RESUMO

The mechanisms regulating, and modulating potato wound-healing processes are of great importance in reducing tuber infections, reducing shrinkage and maintaining quality and nutritional value for growers and consumers. Wound-induced changes in tuber polyamine metabolism have been linked to the modulation of wound healing (WH) and in possibly providing the crucial amount of H2O2 required for suberization processes. In this investigation we determined the effect of inhibition of specific steps within the pathway of polyamine metabolism on polyamine content and the initial accumulation of suberin polyphenolics (SPP) during WH. The accumulation of SPP represents a critical part of the beginning or inchoate phase of tuber WH during closing-layer formation because it serves as a barrier to bacterial infection and is a requisite for the accumulation of suberin polyaliphatics which provide the barrier to fungal infection. Results showed that the inhibitor treatments that caused changes in polyamine content generally did not influence wound-induced accumulation of SPP. Such lack of correlation was found for inhibitors involved in metabolism and oxidation of putrescine (arginine decarboxylase, ornithine decarboxylase, and diamine oxidase). However, accumulation of SPP was dramatically reduced by treatment with guazatine, a potent inhibitor of polyamine oxidase (PAO), and methylglyoxal-bis(guanylhydrazone), a putative inhibitor of S-adenosylmethione decarboxylase which may also cross-react to inhibit PAO. The mode of action of these inhibitors is presumed to be blockage of essential H2O2 production within the WH cell wall. These results are of great importance in understanding the mechanisms modulating WH and ultimately controlling related infections and associated postharvest losses.


Assuntos
Diaminas/antagonistas & inibidores , Lipídeos/biossíntese , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Poliaminas/antagonistas & inibidores , Solanum tuberosum/metabolismo , Carboxiliases/metabolismo , Diaminas/metabolismo , Guanidinas/metabolismo , Mitoguazona/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Solanum tuberosum/enzimologia
10.
Int J Dev Biol ; 62(9-10): 647-652, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378390

RESUMO

The polyamines putrescine, spermidine and spermine are essential polycations involved in the regulation of cellular proliferation. They exert dynamic effects on nucleic acids and macromolecular synthesis in vitro but their specific functions in vivo are poorly understood. Here, we have modulated the spermidine levels either by overexpressing the S-adenosylmethionine decarboxylase (samdc) gene or treating the cells with methylglyoxal-bis (guanylhydrazone) (MGBG), an inhibitor of SAMDC. In Dictyostelium, overexpression of SAMDC slowed cell proliferation, delayed development and arrested cells in the S-phase of the cell cycle. Treatment with MGBG reduced cell proliferation and stimulated development, but in samdcOE cells, it increased cell proliferation suggesting critical levels of spermidine to be important. In samdcOE cells, spermidine levels remained high throughout development but only small changes in the spermine levels were observed. Initial putrescine levels did increase but reverted to wild-type levels after the mound stage. As tight regulation of polyamine homeostasis is required, we identified genes that could be involved in its maintenance. In conclusion, we characterised samdcOE cells and observed the maintenance of polyamine homeostasis during the development of Dictyostelium cells.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Homeostase , Poliaminas/metabolismo , Adenosilmetionina Descarboxilase/antagonistas & inibidores , Animais , Dictyostelium/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Mitoguazona/farmacologia
11.
PLoS One ; 13(3): e0192680, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29538412

RESUMO

Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 µM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Mitoguazona/farmacologia , Monócitos/metabolismo , Osteopontina/biossíntese , Relação Dose-Resposta a Droga , Humanos , Macrófagos/citologia , Monócitos/citologia , Transcrição Gênica
12.
J Neurovirol ; 24(2): 213-219, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29435829

RESUMO

Non-human primate models of AIDS and neuroAIDS are critical to study HIV infection of the CNS, neuropathology, and immune activation and macrophage accumulation that occurs in HAND. SIV, similar to HIV, infects CD4+ T lymphocytes and monocytes/macrophages. Virus enters the CNS early, and macrophage activation correlates with CNS disease, as well as inflammation outside of the CNS. Antiretroviral in HIV+ humans and SIV+ Rhesus macaques results in non-detectable plasma virus, decreased or non-detectable viral RNA or protein in the CNS. But, viral DNA rebounds following therapy interruption, demonstrating the presence of replication competent virus in the CNS within myeloid cells. In this brief review, we discuss our findings using a Rhesus macaque model of SIV-associated CNS infection and pathology, focusing on monocyte/macrophage activation and the link between CNS and cardiac disease. We conclude with recent studies using adjunctive therapy targeting monocytes/macrophages with ART to prevent or diminish CNS pathology that may be associated with HAND.


Assuntos
Antivirais/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Terapia Antirretroviral de Alta Atividade , Sistema Nervoso Central/virologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/virologia , Quimioterapia Combinada/métodos , Humanos , Macaca mulatta , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Minociclina/farmacologia , Mitoguazona/farmacologia , Natalizumab/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia , Carga Viral/efeitos dos fármacos , Latência Viral/fisiologia
13.
J Neurovirol ; 23(4): 568-576, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28462488

RESUMO

Peripheral neuropathy (PN) is a major comorbidity of HIV infection that is caused in part by chronic immune activation. HIV-PN is associated with infiltration of monocytes/macrophages to the dorsal root ganglia (DRG) causing neuronal loss and formation of Nageotte nodules. Here, we used an oral form of methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine biosynthesis inhibitor, to specifically reduce activation of myeloid cells. MGBG is selectively taken up by monocyte/macrophages in vitro and inhibits HIV p24 expression and DNA viral integration in macrophages. Here, MGBG was administered to nine SIV-infected, CD8-depleted rhesus macaques at 21 days post-infection (dpi). An additional nine SIV-infected, CD8-depleted rhesus macaques were used as untreated controls. Cell traffic to tissues was measured by in vivo BrdU pulse labeling. MGBG treatment significantly diminished DRG histopathology and reduced the number of CD68+ and CD163+ macrophages in DRG tissue. The number of recently trafficked BrdU+ cells in the DRG was significantly reduced with MGBG treatment. Despite diminished DRG pathology, intraepidermal nerve fiber density (IENFD) did not recover after treatment with MGBG. These data suggest that MGBG alleviated DRG pathology and inflammation.


Assuntos
Inibidores Enzimáticos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Mitoguazona/farmacologia , Monócitos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Administração Oral , Animais , Linfócitos T CD8-Positivos/virologia , Movimento Celular/efeitos dos fármacos , DNA Viral/genética , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Proteína do Núcleo p24 do HIV/genética , Depleção Linfocítica , Macaca mulatta , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Monócitos/imunologia , Monócitos/patologia , Monócitos/virologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/imunologia , Fibras Nervosas/patologia , Fibras Nervosas/virologia , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/virologia , Poliaminas/antagonistas & inibidores , Poliaminas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento
14.
J Acquir Immune Defic Syndr ; 74(5): 583-592, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28141779

RESUMO

BACKGROUND: Despite effective combination antiretroviral therapy, HIV-infected individuals develop comorbidities, including cardiovascular disease, where activated macrophages play a key role. To date, few therapies target activated monocytes and macrophages. METHODS: We evaluated a novel oral form of the polyamine biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone (MGBG) on cardiovascular inflammation, carotid artery intima-media thickness (cIMT), and fibrosis in a simian immunodeficiency virus infection model of AIDS. Eleven simian immunodeficiency virus-infected animals received MGBG (30 mg/kg) once daily and 8 received a placebo control both beginning at 21 days postinfection (dpi). Animals were time sacrificed at 49 days post infection (dpi), when their matched placebo controls developed AIDS (63, 70, 77, 80), or at the study end-point (84 dpi). Aorta, carotid artery, and cardiac tissues were analyzed. Quantitative analyses of macrophage populations and T lymphocytes were done and correlated with cIMT and fibrosis. RESULTS: MGBG treatment resulted in 2.19-fold (CD163), 1.86-fold (CD68), 2.31-fold (CD206), and 2.12-fold (MAC387) decreases in macrophages in carotid arteries and significant 2.07-fold (CD163), 1.61-fold (CD68), 1.95-fold (MAC387), and 1.62-fold (CD206) decreases in macrophages in cardiac tissues. cIMT (1.49-fold) and fibrosis (2.05-fold) also were significantly decreased with MGBG treatment. Numbers of macrophage and the degree of fibrosis in treated animals were similar to uninfected animals. A positive correlation between decreased macrophage in the carotid artery and cIMT, and cardiac macrophages and fibrosis was found. CONCLUSIONS: These data demonstrate that directly targeting macrophages with MGBG can reduce cardiovascular inflammation, cIMT, and fibrosis. They suggest that therapies targeting macrophages with HIV could be used in conjunction with combination antiretroviral therapy.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Mitoguazona/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Animais , Artérias Carótidas/patologia , Fibrose/patologia , Fatores Imunológicos/farmacologia , Macaca mulatta , Macrófagos/imunologia , Mitoguazona/farmacologia , Placebos/administração & dosagem , Resultado do Tratamento , Túnica Íntima/patologia
15.
PLoS One ; 11(10): e0165321, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780273

RESUMO

This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.


Assuntos
Oryza/metabolismo , Reguladores de Crescimento de Plantas/análise , Ácido Abscísico/análise , Ácido Abscísico/isolamento & purificação , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/efeitos dos fármacos , Endosperma/metabolismo , Ensaio de Imunoadsorção Enzimática , Mitoguazona/farmacologia , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Poliaminas/análise , Poliaminas/isolamento & purificação , Putrescina/farmacologia , Espermidina/farmacologia , Zeatina/análise , Zeatina/isolamento & purificação
16.
Int J Mol Sci ; 16(12): 28534-48, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633377

RESUMO

Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 µM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 µM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea.


Assuntos
Reposicionamento de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Tioureia/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Cinética , Melaninas/metabolismo , Melanoma Experimental , Camundongos , Mitoguazona/análogos & derivados , Mitoguazona/farmacologia , Modelos Moleculares , Conformação Molecular , Monofenol Mono-Oxigenase/química , Ligação Proteica , Tioureia/análogos & derivados , Tioureia/farmacologia
17.
J Virol ; 89(22): 11176-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26223636

RESUMO

UNLABELLED: Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE: Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection.


Assuntos
Adenosilmetionina Descarboxilase/antagonistas & inibidores , Antirretrovirais/farmacologia , HIV-1/efeitos dos fármacos , Macrófagos/virologia , Mitoguazona/farmacologia , Monócitos/virologia , Integração Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Transporte Biológico Ativo , Antígenos CD4/biossíntese , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteína do Núcleo p24 do HIV/biossíntese , Infecções por HIV/tratamento farmacológico , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Receptores CCR5/biossíntese
18.
J Pharm Sci ; 103(11): 3594-3601, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187325

RESUMO

The crystal structures of the monohydrate and anhydrous forms of ambazone were determined by single-crystal X-ray diffraction (SC-XRD). Ambazone monohydrate is characterized by an infinite three-dimensional network involving the water molecules, whereas anhydrous ambazone forms a two-dimensional network via hydrogen bonds. The reversible transformation between the monohydrate and anhydrous forms of ambazone was evidenced by thermal analysis, temperature-dependent X-ray powder diffraction and accelerated stability at elevated temperature, and relative humidity (RH). Additionally, a novel ambazone acetate salt solvate form was obtained and its nature was elucidated by SC-XRD. Powder dissolution measurements revealed a substantial solubility and dissolution rate improvement of acetate salt solvated form in water and physiological media compared with ambazone forms. Also, the acetate salt solvate displayed good thermal and solution stability but it transformed to the monohydrate on storage at elevated temperature and RH. Our study shows that despite the requirement for controlled storage conditions, the acetate salt solvated form could be an alternative to ambazone when solubility and bioavailability improvement is critical for the clinical efficacy of the drug product.


Assuntos
Acetatos/química , Mitoguazona/análogos & derivados , Química Farmacêutica , Cristalização , Cristalografia por Raios X , Estabilidade de Medicamentos , Umidade , Ligação de Hidrogênio , Cinética , Mitoguazona/química , Modelos Moleculares , Estrutura Molecular , Difração de Pó , Pós , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura , Água/química
19.
J Plant Physiol ; 171(10): 779-88, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24877669

RESUMO

The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Antioxidantes/metabolismo , Fotossíntese/fisiologia , Poliaminas/metabolismo , Estresse Fisiológico , Vitis/fisiologia , Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Mitoguazona/farmacologia , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Poliaminas/análise , Poliaminas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Vitis/efeitos dos fármacos , Vitis/enzimologia , Vitis/crescimento & desenvolvimento
20.
Free Radic Biol Med ; 71: 36-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24589373

RESUMO

Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions.


Assuntos
Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Poliaminas/metabolismo , Hidróxido de Sódio/farmacologia , Solanum lycopersicum/metabolismo , Adaptação Fisiológica , Benzoatos/farmacologia , Transporte Biológico , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroponia , Imidazóis/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitoguazona/farmacologia , Óxido Nítrico/antagonistas & inibidores , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poliaminas/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...