Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.769
Filtrar
1.
Chemosphere ; 355: 141696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499077

RESUMO

The present study investigated the removal of malachite green dye from aquifers by means of microalgae-derived mesoporous diatom biosilica. The various process variables (dye concentration, pH, and adsorbent dose) influencing the removal of the dye were optimized and their interactive effects on the removal efficiency were explored by response surface methodology. The pH of the solution (pH = 5.26) was found to be the most dominating among other tested variables. The Langmuir isotherm (R2 = 0.995) best fitted the equilibrium adsorption data with an adsorption capacity of 40.7 mg/g at 323 K and pseudo-second-order model (R2 = 0.983) best elucidated the rate of dye removal (10.6 mg/g). The underlying mechanism of adsorption was investigated by Weber-Morris and Boyd models and results revealed that the film diffusion governed the overall adsorption process. The theoretical investigations on the dye structure using DFT-based chemical reactivity descriptors indicated that malachite green cations are electrophilic, reactive and possess the ability to accept electrons, and are strongly adsorbed on the surface of diatom biosilica. Also, the Fukui function analysis proposed the favorable adsorption sites available on the adsorbent surface.


Assuntos
Diatomáceas , Microalgas , Poluentes Químicos da Água , Adsorção , Cinética , Corantes de Rosanilina/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Termodinâmica
2.
Environ Sci Pollut Res Int ; 31(17): 26019-26035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492145

RESUMO

This study synthesized a new thiomalic acid-modified rice husk biochar (TMA-BC) as a versatile and eco-friendly sorbent. After undergoing chemical treatments, the mercerized rice husk biochar (NaOH-BC) and TMA-BC samples showed higher BET surface area values of 277.1 m2/g and 305.8 m2/g, respectively, compared to the pristine biochar (BC) sample, which had a surface area of 234.2 m2/g. In batch adsorption experiments, it was found that the highest removal efficiency for malachite green (MG) was achieved with TMA-BC, reaching 96.4%, while NaOH-BC and BC exhibited removal efficiencies of 38.6% and 27.9%, respectively, at pH 8. The engineered TMA-BC exhibited a super adsorption capacity of 104.17 mg/g for MG dye at pH 8.0 and 25 °C with a dosage of 2 g/L. The SEM, TEM, XPS, and FTIR spectroscopy analyses were performed to examine mesoporous features and successful TMA-BC carboxylic and thiol functional groups grafting on biochar. Electrostatic forces, such as π - π interactions, hydrogen bonding, and pore intrusion, were identified as key factors in the sorption of MG dye. As compared to single-solution adsorption experiments, the binary solution experiments performed at optimized dosages of undesired ions, such as humic acid, sodium dodecyl sulfate surfactant, NaCl, and NaSCN, reflected an increase in MG dye removal of 2.8%, 8.7%, 5.4%, and 12.7%, respectively, which was attributed to unique mesoporous features and grafted functional groups of TMA-BC. Furthermore, the TMA-BC showed promising reusability up to three cycles. Our study indicates that mediocre biochar modified with TMA can provide an eco-friendly and cost-effective alternative to commercially accessible adsorbents.


Assuntos
Corantes de Rosanilina , Poluentes Químicos da Água , Ligantes , Hidróxido de Sódio , Poluentes Químicos da Água/química , Cinética , Carvão Vegetal/química , Adsorção
3.
Environ Sci Pollut Res Int ; 31(17): 24894-24912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459286

RESUMO

Nowadays, organic dyes are prevalent components in wastewater discharges due to their extensive use in various industries, posing a significant threat to public health across different organisms. As a result, wastewater treatment has become an indispensable requirement. In this study, we synthesized supermagnetic iron oxide (Fe3O4 NPs) and gold-iron oxide bimetallic nanoparticles (Au@Fe3O4 BNPs) using an eco-friendly method that involved natural compounds extracted from brown Egyptian propolis. We employed UV-visible spectroscopy, FTIR, XRD, VSM, SEM, HRTEM, EDX, Zeta potential and XPS techniques to examine the optical characteristics, chemical structure, crystalline structure, magnetic properties, morphology, size, and chemical composition of these biosynthesized nanoparticles. Furthermore, these nanoparticles were used as nanocatalysts for the removal of cationic dyes. The photocatalytic results indicated high efficiency in the removal of methylene blue (MB), crystal violet (CV), and malachite green (MG) dyes from aqueous solutions using Fe3O4 NPs and Au@Fe3O4 BNPs. The removal rates of MB, CV, and MG were about 95.2% in 70 min, 99.4% in 50 min, and 96.2% in 60 min for Fe3O4 NPs, and 97.1% in 50 min, 99.1% in 30 min, and 98.1% in 50 min for Au@Fe3O4 BNPs, respectively. The study also assessed the potential anti-radical properties of the extract, Fe3O4 NPs, and Au@Fe3O4 BNPs using the DPPH assay, and the results demonstrated their antioxidant activity. Finally, these Fe3O4 NPs and Au@Fe3O4 BNPs have the potential to serve as efficient antioxidants and photocatalysts for removing basic dyes from water.


Assuntos
Corantes , Ouro , Corantes de Rosanilina , Ouro/química , Compostos Férricos/química , Antioxidantes/química , Nanopartículas Magnéticas de Óxido de Ferro
4.
Bioresour Technol ; 399: 130591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490463

RESUMO

Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.


Assuntos
Lacase , Polyporaceae , Corantes de Rosanilina , Trametes , Compostos de Tritil , Lacase/genética , Lacase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corantes/metabolismo , Biodegradação Ambiental
5.
Int J Biol Macromol ; 263(Pt 1): 130224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387636

RESUMO

Treating wastewater polluted with organic dyestuffs is still a challenge. In that vein, facile synthesis of a structurally simple composite of chitosan with montmorillonite (CS-MMT) using glutaraldehyde as a crosslinker and the magnetized analogue (MAG@CS-MMT) was proposed as versatile adsorbents for the cationic dye, basic Fuchsin (FUS). Statistical modeling of the adsorption process was mediated using Box-Behnken (BB) design and by varying the composite dose, pH, [FUS], and contact time. Characterization of both composites showed an enhancement of surface features upon magnetization, substantiating a better FUS removal of the MAG@CS-MMT (%R = 98.43 %) compared to CS-MMT (%R = 68.02 %). The surface area analysis demonstrates that MAG@CS-MMT possesses a higher surface area, measuring 41.54 m2/g, and the surface analysis of the magnetized nanocomposite, conducted using FT-IR and Raman spectroscopies, proved the presence of FeO peaks. In the same context, adsorption of FUS onto MAG@CS-MMT fitted-well to the Langmuir isotherm model and the maximum adsorption capacities (qm) were 53.11 mg/g for CS-MMT and 88.34 mg/g for MAG@CS-MMT. Kinetics investigation shows that experimental data fitted well to the pseudo-second order (PSO) model. Regeneration study reveals that MAG@CS-MMT can be recovered effectively for repeated use with a high adsorption efficiency for FUS.


Assuntos
Quitosana , Corantes de Rosanilina , Poluentes Químicos da Água , Bentonita/química , Águas Residuárias , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
6.
Int J Biol Macromol ; 263(Pt 2): 130318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408581

RESUMO

This study details the synthesis and characterization of surfactant-modified sodium alginate hydrogel beads crosslinked with Ba2+ ions through ionotropic gelation. Cationic surfactants such as, dodecyltrimethylammonium bromide (DTAB), didodecyldimethylammonium bromide (DDAB), and butanediyl-α,ω-bis-(dimethyldodecylammonium bromide) (GEM), were employed in the modification process. The surfactant-modified ALG-DTAB, ALG-DDAB, and ALG-GEM beads were investigated for the removal of cationic dye Malachite Green (MG) to elucidate the impact of hydrophobicity of amphiphiles on the adsorption process. The characterizations were carried out using Rheometry, Field Emission Scanning Electron Microscopy (FESEM), Infrared Spectroscopy (IR), and Energy Dispersive X-ray Spectroscopy (EDX). Under optimized conditions, ALG-GEM and ALG-DDAB demonstrated highest maximum adsorption capacity (Qmax > 700 mgg-1). The adsorption data fitted well to pseudo-second order kinetic and Langmuir adsorption models, suggesting the involvement of chemisorption phenomena with notable contributions from pore diffusion. The effects of pH, initial dye concentration, adsorbent dose, temperature, and competing ions on the removal of MG were investigated. Interestingly, ALG-GEM beads exhibited an increase in adsorption capacity with rising pH and a subsequent decrease with increasing temperature, showcasing optimal adsorption at pH 7.0 and 25 °C. The study proposes that ALG beads modified with cationic surfactants with higher hydrophobicity could offer a promising avenue in wastewater treatment processes.


Assuntos
Compostos de Amônio Quaternário , Corantes de Rosanilina , Tensoativos , Poluentes Químicos da Água , Adsorção , Alginatos/química , Hidrogéis/química , Lipoproteínas , Íons , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
7.
Environ Toxicol Pharmacol ; 106: 104382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325623

RESUMO

Although banned in food-producing animals, residues of malachite green (MG) and its primary metabolite, leucomalachite green (LMG), have been found in fish due to illegal use in aquaculture and the release of industrial wastewater, which represent a serious risk to food and environmental securities. This study aimed to investigate the residue depletion profile of MG and LMG in edible tissues of Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus) cultured simultaneously under the same environmental conditions to support control measures in case of abuse. An analytical method involving QuEChERS sample preparation and liquid chromatography coupled to tandem mass spectrometry was developed, validated, and applied to quantify MG and LMG residues in fish fillets from two depletion experiments after treatment by immersion bath (MG at 0.10 mg L-1 for 60 min). During the experiment, the average water temperature was 30 ºC, while the pH was 6.9. The method is selective, precise (CV = 0.4 - 22%) and accurate (recovery 92 - 114%). The limits of detection and quantification are 0.15 and 0.5 ng g-1, respectively. In both species, the sum of MG and LMG residues were quantified up to the 32nd day post-exposure, and the concentrations were significantly higher in the pacu fillets (up to 3284 ng g-1) than in Nile tilapia (up to 432 ng g-1). The sums of MG and LMG residues were below 2 ng g-1 at 44 days and 342 days for Nile tilapia and pacu, respectively - the Minimum Required Performance Limit (MRPL) for analytical methods intended to monitor forbidden substances in food according to old European Commission guidelines. The persistence of MG residues in pacu may be attributed to its higher lipid content, which favors the accumulation of the non-polar metabolite LMG. These results provide insights into the concern about human, animal, and environmental health risks resulting from unauthorized use or aquatic contamination by industrial wastewater containing MG residues.


Assuntos
Ciclídeos , Tilápia , Animais , Humanos , Águas Residuárias , Corantes de Rosanilina
8.
Environ Sci Pollut Res Int ; 31(13): 20084-20092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372929

RESUMO

The purpose of this study was to investigate the biodegradation of malachite green (MG) by Pleurotus eryngii via decolorization. This study also explored the possible mechanisms and toxicity. The results indicated that this fungus exhibited strong decolorizing potential. MG degradation based on UPLC-TOF-Triple-MS analysis revealed the formation of intermediates such as 4-(dimethylamino)benzophenone, 4-(methylamino)benzophenone, and 4-(dimethylamino)phenol. Furthermore, a significant reduction in the toxicity of the degradation products was observed using the zebrafish animal model. A newly discovered dye-decolorizing peroxidase (DyP-PE) from P. eryngii was amplified, cloned, and expressed. The purified 56.4 kDa DyP-PE strongly decolorized MG, suggesting potentially application in the bioremediation of MG pollution. Thus, the DyP-PE derived from P. eryngii may contribute to the degradation of MG.


Assuntos
Pleurotus , Corantes de Rosanilina , Peixe-Zebra , Animais , Biodegradação Ambiental , Pleurotus/metabolismo , Benzofenonas
9.
Bioprocess Biosyst Eng ; 47(3): 355-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326513

RESUMO

Dyes in wastewater have adverse effects on the environment and human health. Dye-decolorizing peroxidase (DyP) is a promising biocatalyst to dyes degradation, but the decolorization rates varied greatly which influencing factors and mechanisms remain to be fully disclosed. To explore an effective decolorizing approach, we have studied a DyP from Rhodococcus jostii (RhDyPB) which was overexpressed in Escherichia coli to decolorize four kinds of dyes, Reactive blue 19, Eosin Y, Indigo carmine, and Malachite green. We found the decolorization rates of the dyes by purified RhDyPB were all pH-dependent and the highest one was 94.4% of Malachite green at pH 6.0. ESI-MS analysis of intermediates in the decolorization process of Reactive blue 19 proved the degradation was due to peroxidase catalysis. Molecular docking predicated the interaction of RhDyPB with dyes, and a radical transfer reaction. In addition, we performed decolorization of dyes with whole E. coli cell with and without expressing RhDyPB. It was found that decolorization of dyes by E. coli cell was due to both cell absorption and degradation, and RhDyPB expression improved the degradation rates towards Reactive blue 19, Indigo carmine and Malachite green. The effective decolorization of Malachite green and the successful application of whole DyP-overexpressed cells in dye decolorization is conducive to the bioremediation of dye-containing wastewaters by DyPs.


Assuntos
Antraquinonas , Corantes , Peroxidase , Rhodococcus , Corantes de Rosanilina , Humanos , Corantes/química , Índigo Carmim , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Peroxidases/química , Oxirredutases , Águas Residuárias , Biodegradação Ambiental , Catálise , Concentração de Íons de Hidrogênio
10.
Mar Pollut Bull ; 200: 116093, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310722

RESUMO

Polyethylene terephthalate microplastics (PET-MPs) are one of pivotal nondegradable emerging pollutant. Here the variation of the surface physicochemical characteristics of PET-MPs with UV irradiation aging and the adsorption behaviors of PET-MPs in malachite green (MG), tetracycline (TC) solution and the effect of coexisting Cu(II) were comparatively investigated. The yellowing, weakened hydrophobicity, and increased surface negative charge, crystallinity degree and oxygen-containing functional groups were manifested specifically by the aged PET-MPs. Different from the single system, the hydrophobic interaction and metal ion bridging complexation dominated the adsorption of MG and TC, respectively, in the binary solution. While in the ternary solution, cationic ion competition of Cu(II) with MG decreased its capture, and the formation of PET-Cu(II)-TC ternary complexes promoted TC adsorption. Moreover, PET-MPs could serve as an efficient vector for MG and TC in MG/TC/Cu(II) ternary system, indicating PET-MPs tend to carry more varieties in the complex environment, that may increase the environmental risk of PET-MPs.


Assuntos
Microplásticos , Corantes de Rosanilina , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Polietilenotereftalatos , Poluentes Químicos da Água/análise , Tetraciclina , Antibacterianos , Adsorção , Água , Polietileno
11.
Parasitol Res ; 123(2): 126, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326433

RESUMO

Colorimetric detection can be applied to differentiate between positive and negative conditions. It can be coupled with loop-mediated isothermal amplification to diagnose rumen fluke or paramphistome infection, also called colorimetric PAR-LAMP. This study conducted LAMP using three candidate indicator dyes, namely malachite green (MLG), methyl green (MTG), and neutral red (NTR), and the results were observed by the naked eye. The dye concentration was optimized to obtain the most pronounced positive-negative result discrimination. Subsequently, we conducted target sensitivity tests using the DNA of Fischoederius elongatus at different concentrations. To validate the detection accuracy, the result was confirmed by gel electrophoresis. The sensitivity test presented the lowest detectable DNA concentration or limit of detection (LOD), with 1 pg for MLG, 0.5 ng for MTG, and 50 pg for NTR. Different LODs revealed inhibition of LAMP reaction and reduced efficiency of result presentation for colorimetric-based detection, particularly NTR and MTG. For MLG-LAMP, we observed no cross-reaction of non-target DNA and improved reaction with the DNA of Fischoederius cobboldi and Calicophoron sp., with multi-detection. In addition, naked eye observation and agarose gel electrophoresis (AGE) evaluation of the MLG-LAMP results showed a moderate and strong agreement with LAMP-AGE and microscopic examinations. Based on our results, colorimetric PAR-LAMP is a rapid, comfortable, and point-of-care procedure for the diagnosis of paramphistome infection.


Assuntos
Colorimetria , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Corantes de Rosanilina , Animais , Sensibilidade e Especificidade , Colorimetria/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA
12.
Am J Sports Med ; 52(3): 710-720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353544

RESUMO

BACKGROUND: Extracorporeal shock wave therapy (ESWT) promotes tissue healing by modulating inflammation, which has implications for meniscal tear healing in the avascular zone. PURPOSE: To evaluate the effects of a single dose of radial ESWT on the healing process and inflammation of the meniscus and knee joints after meniscal tears in the avascular zone. STUDY DESIGN: Controlled laboratory study. METHODS: Avascular tears were induced in the medial meniscus (MM) of 72 Sprague-Dawley rats. One week postoperatively, the rats received a single session of radial ESWT with a Power+ handpiece (ESWT group; n = 36) or with a fake handpiece (sham-ESWT group; n = 36). The rats were then euthanized at 2, 4, or 8 weeks postoperatively. The MMs were harvested for analysis of healing (hematoxylin-eosin, safranin O-Fast Green, and collagen type 2 staining) and inflammation (interleukin [IL]-1ß and IL-6 staining). Lateral menisci and synovia were obtained to evaluate knee joint inflammation (enzyme-linked immunosorbent assay of IL-1ß and IL-6). Cartilage degeneration was assessed in the femurs and tibial plateaus using safranin O-Fast Green staining. RESULTS: The ESWT group showed significantly better meniscal healing scores than the sham-ESWT group at 4 (P = .0066) and 8 (P = .0050) weeks postoperatively. The IL-1ß level was significantly higher in the sham-ESWT group than in the ESWT group at 2 (MM: P = .0009; knee joint: P = .0160) and 8 (MM: P = .0399; knee joint: P = .0001) weeks. The IL-6 level was significantly lower in the sham-ESWT group than in the ESWT group at 2 (knee joint: P = .0184) and 4 (knee joint: P = .0247) weeks but higher at 8 weeks (MM: P = .0169; knee joint: P = .0038). The sham group had significantly higher osteoarthritis scores than the ESWT group at 4 (tibial plateau: P = .0157) and 8 (femur: P = .0048; tibial plateau: P = .0359) weeks. CONCLUSION: A single dose of radial ESWT promoted meniscal tear healing in the avascular zone, modulated inflammatory factors in the menisci and knee joints in rats, and alleviated cartilage degeneration. CLINICAL RELEVANCE: Radial ESWT can be considered a potential option for improving meniscal tear healing in the avascular zone because of its ability to modulate inflammation.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Traumatismos do Joelho , Lacerações , Osteoartrite , Corantes de Rosanilina , Animais , Ratos , Ratos Sprague-Dawley , Interleucina-6 , Inflamação/terapia
13.
Anal Chem ; 96(6): 2711-2718, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301229

RESUMO

Excessive sulfite usage in food and pharmaceutical production causes respiratory and neurological diseases, underscoring the need for a sensitive and rapid quantification strategy. The portable sensing platform based on a luminescent hydrogel sensor is a powerful tool for the on-site, real-time detection of sulfite ions. However, the lack of recyclability in almost all reaction-based hydrogel sensors increases the application cost. This study constructed a reversible and upconversion nanoprobe combining upconversion nanoparticles (UCNPs) and pararosaniline (PAR) for sulfite detection. The upconversion nanoprobe was further encapsulated in a three-dimensional polyacrylamide hydrogel matrix to create a background-free, reversible hydrogel sensor. The near-infrared excitation of UCNPs avoids the autofluorescence in the hydrogel and real samples. Meanwhile, PAR serves as a specific recognition unit for sulfite ions. After the addition of sulfites, a specific reaction occurs between PAR and sulfites, leading to the recovery of characteristic emission at 540 nm, achieving sensitive detection of sulfite ions. Importantly, this specific reaction is reversible under thermal treatment, allowing the hydrogel sensor to return to its initial state and thus enabling reversible detection of sulfite ions. Furthermore, a portable sensing platform is developed to realize point-of-care, real-time quantitative detection of sulfite ions. The proposed upconversion reversible hydrogel sensor provides a new sensing strategy for the detection of hazardous substances in food and offers new insights into the preparation of reversible, highly sensitive hydrogel sensors.


Assuntos
Hidrogéis , Nanopartículas , Corantes de Rosanilina , Toluidinas , Alimentos , Luminescência , Sulfitos
14.
Mikrochim Acta ; 191(2): 119, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300297

RESUMO

A ratiometric fluorescence platform was developed based on the cobalt oxyhydroxide (CoOOH) nanosheet-modulated fluorescence response of blue emissive copper nanoclusters (Cu NCs) and yellow emissive o-phenylenediamine (OPD). CoOOH nanosheets showed dual function of strong absorption and oxidation ability, which can effectively quench the blue fluorescence of Cu NCs, with an excitation and emission peak maximum at 390 and 450 nm, respectively , and transfer the OPD into yellow fluorescence products, with an excitation and emission peak maximum at 390 and 560 nm, respectively. Upon introducing butyrylcholinesterase (BChE) and its substrates, CoOOH nanosheets were decomposed into Co2+, and malachite green (MG) showed strong inhibition ability to this  process. This resulted in the obvious difference on the ratio of blue and yellow fluorescence recorded on the system in the presence and absence of MG, which was utilized for the quantitative detection of MG, with a limit of detection of 0.140 µM and a coefficient of variation of 3.5%. The fluorescence ratiometric assay showed excellent detection performances in practical sample analysis.


Assuntos
Butirilcolinesterase , Cobalto , Cobre , Óxidos , Fenilenodiaminas , Animais , Corantes de Rosanilina , Peixes
15.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339054

RESUMO

Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Corantes de Rosanilina , Humanos , Animais , Camundongos , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/tratamento farmacológico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Ciclofosfamida/uso terapêutico , Leucemia/tratamento farmacológico , Estudos Retrospectivos
16.
Eur J Histochem ; 68(1)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389457

RESUMO

For over a century, Palazzo Botta (Palace Botta) has housed the University of Pavia's Biomedical Institutes. Illustrious scientists have conducted research and taught at this Palace, making significant contributions to the advancement of natural, biological, and medical science. Among them, Camillo Golgi received the Nobel Prize for discovering the so-called "black reaction." Following Golgi, the Palace continued to be a hub for the development of methodologies and reactions aimed at detecting and quantifying biological components. Maffo Vialli (in the Golgi stream) was the first to establish a Histochemistry Research Group, which began in the naturalistic field and later expanded to the biomedical area. Among the many histochemical studies initiated in the Palace, the Feulgen reaction undoubtedly played a significant role. This reaction, developed R. Feulgen and H. Rossenbeck in 1924, had significant international implications: numerous researchers then contributed to define its fine chemical details, which remained the subject of study for years, resulting in a massive international scientific literature. The Pavia School of Histochemistry also contributed to the evolution and application of this method, which has become a true benchmark in quantitative histochemistry. Giovanni Prenna and the CNR Centre for Histochemistry made significant contributions, as they were already focused on fluorescence cytochemistry. The Pavia researchers made significant contributions to the development of methodology and, in particular, instrumentation; the evolution of the latter resulted in the emergence of flow cytometry and an ever-increasing family of fluorescent probes, which somewhat overshadowed the Feulgen reaction for DNA quantification. The advent of monoclonal antibodies then contributed to the final explosion of flow cytometry in clinical application, almost making young neophytes forget that its roots date back to Feulgen.


Assuntos
DNA , Corantes de Rosanilina , Histocitoquímica/história , Corantes Fluorescentes
17.
Chemosphere ; 352: 141215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253085

RESUMO

The use of chemical materials to tackle environmental concerns has undergone significant evolution, particularly in the pursuit of strategies for removing pollutants from wastewater as part of environmental remediation an increasingly crucial research topic. Employing green photocatalysts stands out as an efficient and cost-effective approach, playing a key role in promoting sustainable environmental remediation. This study introduces the modification of zinc oxide with cobalt chromite (CoCr2O4/ZnO) through a green synthesis method employing Basella alba L. leaves extract (BALE). Utilizing various characterization techniques, including FT-IR, UV-Vis DRS, XRD, SEM-EDS, and TEM, key features of ZnO, CoCr2O4, and CoCr2O4/ZnO nanocomposites were identified. The optical band gaps for ZnO, CoCr2O4, and CoCr2O4/ZnO nanocomposites were determined as 3.16, 1.71, and 2.80 eV, respectively, where it was shown that the band gap of the ZnO was reduced significantly. CoCr2O4/ZnO nanocomposites displayed a cubic shape of CoCr2O4 on the surface of ZnO, with a particle size of 23.84 ± 8.08 nm. The photocatalytic activity was assessed through the degradation of malachite green under visible light irradiation, where the CoCr2O4/ZnO nanocomposites exhibited superior photodegradation efficiency at 90.91%, surpassing ZnO alone (57.09%). This improvement in photocatalytic activity is attributed to a reduced band gap energy and a high rate constant value of 9.57 × 10-3 min-1, demonstrating pseudo-first-order reaction kinetics. In summary, this research presents the development of a ZnO-based photocatalyst with exceptional performance, especially in the visible light spectrum, making it a promising candidate for applications in wastewater removal.


Assuntos
Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes de Rosanilina , Nanocompostos/química , Água , Catálise
18.
J Assist Reprod Genet ; 41(3): 727-737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294620

RESUMO

PURPOSE: To identify potential biomarkers and the molecular mechanisms associated with repeated implantation failure (RIF), three microarray datasets, GSE71331 (lncRNA + mRNA), GSE111974 (lncRNA + mRNA), and GSE71332 (miRNA), were retrieved from the Gene Expression Omnibus (GEO) database. METHODS: The differentially expressed mRNAs (DEMs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between normal control samples (C group) and RIF samples (RIF group) were identified, and then a module partition analysis was performed based on weighted correlation network analysis (WGCNA). Following enrichment analysis of the genes, the lncRNA-miRNA-mRNA interactions (ceRNA) were examined. The mRNAs in the ceRNA network were evaluated using the GSE58144 dataset. Finally, the key RNAs were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Fifty-three DEmiRNAs, 327 DEMs, and 13 DElncRNAs were identified between the C and RIF groups. According to WGCNA, the magenta module was positively correlated with RIF disease status. The lncRNA-mRNA interaction analysis based on genes in the magenta module revealed the intersecting lncRNAs, including peptidylprolyl isomerase E-like pseudogene (PPIEL) and the testis-specific transcript, y-Linked 14 (TTTY14); these lncRNAs are mainly involved in functions, such as plasma membrane organization. The ceRNA network analysis revealed several interactions, such as TTTY14-miR-6088-semaphorin 5 A (SEMA5A). Finally, SEMA5A and the zinc finger protein 555 (ZNF555) were identified to be significantly upregulated in the RIF group compared with those in the C group in the GSE58144 dataset. The RT-qPCR results aligned with the above results. CONCLUSIONS: Overall, TTTY14, ZNF555, SEMA5A, PPIEL, and miR-6088 could serve as novel biomarkers of RIF.


Assuntos
MicroRNAs , RNA Longo não Codificante , Semaforinas , Masculino , Humanos , RNA Longo não Codificante/genética , Corantes de Rosanilina , Redes Reguladoras de Genes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Semaforinas/genética
19.
Int J Biol Macromol ; 262(Pt 1): 129730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280694

RESUMO

Novel chitosan polymers were synthesized using two cross-linkers, Glutaraldehyde and Terephthaldehyde, to enhance stability and efficiency. Characterization techniques (XRD, FTIR, FE-SEM, TGA, DTG, BJH, and BET) confirmed successful synthesis. These polymers were employed as adsorbents for removing Malachite Green (MG) and Congo Red (CR) dyes from water. Batch experiments and DFT calculations investigated the adsorption process, thermodynamics, and kinetics. Results showed the CSGT-III polymer achieved the highest removal efficiency. For initial dye concentrations ([CR]o = 50 mg/L, [MG]o = 20 mg/L) and adsorbent doses (0.8 g/L for CR, 0.4 g/L for MG), removal efficiencies were 96.99 % for CR and 99.07 % for MG. Thermodynamic analysis confirmed the spontaneous nature of adsorption, and the process was endothermic for both dyes. The Langmuir model fitted adsorption isotherms well, indicating a homogeneous surface. Kinetic analysis revealed a pseudo-second-order model for both dyes.


Assuntos
Quitosana , Corantes de Rosanilina , Poluentes Químicos da Água , Corantes/análise , Glutaral , Cinética , Poluentes Químicos da Água/análise , Vermelho Congo , Termodinâmica , Água , Polímeros , Adsorção , Concentração de Íons de Hidrogênio
20.
Molecules ; 29(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257220

RESUMO

Co-immobilization of laccase and mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) for wastewater treatment could simultaneously achieve the reusability of laccase and avoid secondary pollution caused by the toxic ABTS. Herein, Fe-induced mineralization was proposed to co-immobilize laccase and ABTS into a metal-organic framework (ZIF-8) within 30 min. Immobilized laccase (Lac@ZIF-8-Fe) prepared at a 1:1 mass ratio of Fe2+ to Zn2+ exhibited enhanced catalytic efficiency (2.6 times), thermal stability, acid tolerance, and reusability compared to free laccase. ABTS was then co-immobilized to form Lac+ABTS@ZIF-8-Fe (ABTS = 261.7 mg/g). Lac@ZIF-8-Fe exhibited significantly enhanced bisphenol A (BPA) removal performance over free laccase due to the local substrate enrichment effect and improved enzyme stability. Moreover, the Lac+ABTS@ZIF-8-Fe exhibited higher BPA removal efficiency than the free laccase+ABTS system, implying the presence of a proximity effect in Lac+ABTS@ZIF-8-Fe. In the successive malachite green (MG) removal, the MG degradation efficiency by Lac@ZIF-8-Fe was maintained at 96.6% at the fifth reuse with only an extra addition of 0.09 mM ABTS in each cycle. As for Lac+ABTS@ZIF-8-Fe, 58.5% of MG was degraded at the fifth cycle without an extra addition of ABTS. Taken together, this research has provided a novel strategy for the design of a co-immobilized laccase and ABTS system for the degradation of organic pollutants.


Assuntos
Compostos Benzidrílicos , Benzotiazóis , Poluentes Ambientais , Fenóis , Corantes de Rosanilina , Ácidos Sulfônicos , Lacase , Poluição Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...