Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Cardiovasc Med (Hagerstown) ; 25(4): 271-279, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488064

RESUMO

BACKGROUND: Traditional scores as CHADS2 and CHA2DS2-Vasc are suitable for predicting stroke and systemic embolism in patients with atrial fibrillation (AF) and have shown to be also associated with mortality. Other more complex scores have been recommended for survival prediction. The purpose of our analysis was to test the performance of different clinical scores in predicting 1-year mortality in AF patients. MATERIAL AND METHODS: CHADS2 and CHA2DS2-Vasc scores were calculated for AF patients of the BLITZ-AF register and compared to R2-CHADS2, R2-CHA2DS2-Vasc and CHA2DS2VASc-RAF scores in predicting 1-year survival. Scores including renal function were calculated both with glomerular filtration rate (GFR) and creatinine clearance. RESULTS: One-year vital status (1960 alive and 199 dead) was available in 2159 patients. Receiver-operating characteristic curves displayed an association of each score to all-cause mortality, with R2(ClCrea)-CHADS2 being the best [area under the curve (AUC) 0.734]. Differences among the AUCs of the eight scores were not so evident, and a significant difference was found only between R2(ClCrea)-CHADS2 and CHADS2, CHA2DS2VASc, (ClCrea)-CHA2DS2-VASC-RAF.All the scores showed a similar performance for cardiovascular (CV) mortality, with CHA2DS2VASc-RAF being the best (AUC 0.757), with a significant difference with respect to CHADS2, CHA2DS2VASc, and (ClCrea)CHA2DS2Vasc-RAF. CONCLUSIONS: More complex scores, even if with better statistical performance, do not show a clinically relevant higher capability to discriminate alive or dead patients at 12 months. The classical and well known CHA2DS2VASc score, which is routinely used all around the world, has a high sensitivity in predicting all-cause mortality (AUC 0.695; Sensit. 80.4%) and CV mortality (AUC 0.691; Sensit. 80.0%). GRAPHICAL ABSTRACT: http://links.lww.com/JCM/A632.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/complicações , Medição de Risco/métodos , Fatores de Risco , Fendilina , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , Valor Preditivo dos Testes
2.
Microbiol Spectr ; 12(4): e0309823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38407984

RESUMO

Ebola virus (EBOV) infection is threatening human health, especially in Central and West Africa. Limited clinical trials and the requirement of biosafety level-4 laboratories hinder experimental work to advance our understanding of EBOV and the evaluation of treatment. In this work, we use a computational model to study the assembly and budding process of EBOV and evaluate the effect of fendiline on these processes in the context of fluctuating host membrane lipid levels. Our results demonstrate for the first time that the assembly of VP40 filaments may follow the nucleation-elongation theory, as this mechanism is critical to maintaining a pool of VP40 dimers for the maturation and production of virus-like particles (VLPs). We further find that this nucleation-elongation process is likely influenced by fluctuating phosphatidylserine (PS), which can complicate the efficacy of lipid-targeted therapies like fendiline, a drug that lowers cellular PS levels. Our results indicate that fendiline-induced PS reduction may actually increase VLP production at earlier time points (24 h) and under low fendiline concentrations (≤2 µM). However, this effect is transient and does not change the conclusion that fendiline generally decreases VLP production. In the context of fluctuating PS levels, we also conclude that fendiline can be more efficient at the late stage of VLP budding relative to earlier phases. Combination therapy with a VLP budding step-targeted drug may therefore further increase the treatment efficiency of fendiline. Finally, we also show that fendiline-induced PS reduction more effectively lowers VLP production when VP40 expression is high. Taken together, our results provide critical quantitative information on how fluctuating lipid levels (PS) affect EBOV assembly and egress and how this mechanism can be disrupted by lipid-targeting molecules like fendiline. IMPORTANCE: Ebola virus (EBOV) infection can cause deadly hemorrhagic fever, which has a mortality rate of ~50%-90% without treatment. The recent outbreaks in Uganda and the Democratic Republic of the Congo illustrate its threat to human health. Though two antibody-based treatments were approved, mortality rates in the last outbreak were still higher than 30%. This can partly be due to the requirement of advanced medical facilities for current treatments. As a result, it is very important to develop and evaluate new therapies for EBOV infection, especially those that can be easily applied in the developing world. The significance of our research is that we evaluate the potential of lipid-targeted treatments in reducing EBOV assembly and egress. We achieved this goal using the VP40 system combined with a computational approach, which both saves time and lowers cost compared to traditional experimental studies and provides innovative new tools to study viral protein dynamics.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/tratamento farmacológico , Ebolavirus/genética , Fendilina/metabolismo , Lipídeos , África Ocidental
3.
Cell Struct Funct ; 48(2): 145-160, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37438131

RESUMO

In eukaryotic motile cells, the active Ras (Ras-GTP)-enriched domain is generated in an asymmetric manner on the cell membrane through the excitable dynamics of an intracellular signaling network. This asymmetric Ras signaling regulates pseudopod formation for both spontaneous random migration and chemoattractant-induced directional migration. While membrane lipids, such as sphingomyelin and phosphatidylserine, contribute to Ras signaling in various cell types, whether they are involved in the Ras excitability for cell motility is unknown. Here we report that functional Ras excitability requires the normal metabolism of sphingomyelin for efficient cell motility and chemotaxis. The pharmacological blockade of sphingomyelin metabolism by an acid-sphingomyelinase inhibitor, fendiline, and other inhibitors suppressed the excitable generation of the stable Ras-GTP-enriched domain. The suppressed excitability failed to invoke enough basal motility to achieve directed migration under shallow chemoattractant gradients. The fendiline-induced defects in Ras excitability, motility and stimulation-elicited directionality were due to an accumulation of sphingomyelin on the membrane, which could be recovered by exogenous sphingomyelinase or phosphatidylserine without changing the expression of Ras. These results indicate a novel regulatory mechanism of the excitable system by membrane lipids, in which sphingomyelin metabolism provides a membrane environment to ensure Ras excitation for efficient cellular motility and chemotaxis.Key words: cell polarity, cell migration, Ras, excitability, sphingomyelin.


Assuntos
Quimiotaxia , Esfingomielinas , Quimiotaxia/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Fosfatidilserinas , Fendilina , Movimento Celular , Fatores Quimiotáticos , Guanosina Trifosfato
4.
EMBO Rep ; 23(11): e51709, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36094794

RESUMO

Phosphatidylserine (PS) is a critical lipid factor in the assembly and spread of numerous lipid-enveloped viruses. Here, we describe the ability of the Ebola virus (EBOV) matrix protein eVP40 to induce clustering of PS and promote viral budding in vitro, as well as the ability of an FDA-approved drug, fendiline, to reduce PS clustering and subsequent virus budding and entry. To gain mechanistic insight into fendiline inhibition of EBOV replication, multiple in vitro assays were run including imaging, viral budding and viral entry assays. Fendiline lowers PS content in mammalian cells and PS in the plasma membrane, where the ability of VP40 to form new virus particles is greatly lower. Further, particles that form from fendiline-treated cells have altered particle morphology and cannot significantly infect/enter cells. These complementary studies reveal the mechanism by which EBOV matrix protein clusters PS to enhance viral assembly, budding, and spread from the host cell while also laying the groundwork for fundamental drug targeting strategies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/fisiologia , Fosfatidilserinas/metabolismo , Fendilina/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Análise por Conglomerados , Mamíferos/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201814

RESUMO

High-risk neuroblastoma (HR-NB) still remains the most dangerous tumor in early childhood. For this reason, the identification of new therapeutic approaches is of fundamental importance. Recently, we combined the conventional pharmacological approach to NB, represented by cisplatin, with fendiline hydrochloride, an inhibitor of several transporters involved in multidrug resistance of cancer cells, which demonstrated an enhancement of the ability of cisplatin to induce apoptosis. In this work, we co-administrated acetazolamide, a carbonic anhydrase isoform IX (CAIX) inhibitor which was reported to increase chemotherapy efficacy in various cancer types, to the cisplatin/fendiline approach in SKNBE2 xenografts in NOD-SCID mice with the aim of identifying a novel and more effective treatment. We observed that the combination of the three drugs increases more than twelvefold the differences in the cytotoxic activity of cisplatin alone, leading to a remarkable decrease of the expression of malignancy markers. Our conclusion is that this approach, based on three FDA-approved drugs, may constitute an appropriate improvement of the pharmacological approach to HR-NB.


Assuntos
Acetazolamida/farmacologia , Antineoplásicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Cisplatino/farmacologia , Fendilina/farmacologia , Neuroblastoma/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Eur J Med Chem ; 217: 113381, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756124

RESUMO

KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fendilina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Fendilina/análogos & derivados , Fendilina/química , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
7.
Clin Sci (Lond) ; 135(3): 515-534, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33479769

RESUMO

In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.


Assuntos
Transdiferenciação Celular , Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Calcificação Vascular/patologia , Amitriptilina/farmacologia , Animais , Células Cultivadas , Ceramidas/metabolismo , Condrogênese/efeitos dos fármacos , Fendilina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatos/farmacologia
8.
Front Immunol ; 11: 586572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324406

RESUMO

COVID-19 pandemic has infected millions of people with mortality exceeding >1 million. There is an urgent need to find therapeutic agents that can help clear the virus to prevent severe disease and death. Identifying effective and safer drugs can provide more options to treat COVID-19 infections either alone or in combination. Here, we performed a high throughput screening of approximately 1,700 US FDA-approved compounds to identify novel therapeutic agents that can effectively inhibit replication of coronaviruses including SARS-CoV-2. Our two-step screen first used a human coronavirus strain OC43 to identify compounds with anti-coronaviral activities. The effective compounds were then screened for their effectiveness in inhibiting SARS-CoV-2. These screens have identified 20 anti-SARS-CoV-2 drugs including previously reported compounds such as hydroxychloroquine, amlodipine besylate, arbidol hydrochloride, tilorone 2HCl, dronedarone hydrochloride, mefloquine, and thioridazine hydrochloride. Five of the newly identified drugs had a safety index (cytotoxic/effective concentration) of >600, indicating a wide therapeutic window compared to hydroxychloroquine which had a safety index of 22 in similar experiments. Mechanistically, five of the effective compounds (fendiline HCl, monensin sodium salt, vortioxetine, sertraline HCl, and salifungin) were found to block SARS-CoV-2 S protein-mediated cell fusion. These FDA-approved compounds can provide much needed therapeutic options that we urgently need during the midst of the pandemic.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ensaios de Triagem em Larga Escala/métodos , Pandemias/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular , Reposicionamento de Medicamentos/métodos , Fendilina/uso terapêutico , Células HEK293 , Humanos , Monensin/uso terapêutico , SARS-CoV-2/fisiologia , Salicilanilidas/uso terapêutico , Sertralina/uso terapêutico , Vortioxetina/uso terapêutico
9.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182713

RESUMO

Despite significant improvement of neuroblastoma (NB) patients' survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB's susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB. NB cell treatment with fendiline induced the expression of the ncRNA NDM29, leading to cell differentiation and to the reduction of the expression of MDRs/ABC transporters linked to multidrug resistance. These events were correlated to higher NB cell susceptibility to cisplatin and, consequently, increased its cytotoxic potency. In vivo, this drug interaction causes an enhanced ability of cisplatin to induce apoptosis in NB masses, resulting in tumor growth reduction and prolonged animal survival rate. Thus, the administration of fendiline might be a possible novel therapeutic approach to increase cisplatin efficacy in aggressive and poorly responsive NB cases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/administração & dosagem , Fendilina/administração & dosagem , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , RNA não Traduzido/metabolismo
10.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100813

RESUMO

The L-type calcium channel blocker fendiline has been shown to interfere with Ras-dependent signaling in K-Ras mutant cancer cells. Earlier studies from our lab had shown that treatment of pancreatic cancer cells with fendiline causes significant cytotoxicity and interferes with proliferation, survival, migration, invasion and anchorage independent growth. Currently there are no effective therapies to manage PDACs. As fendiline has been approved for treatment of patients with angina, we hypothesized that, if proven effective, combinatorial therapies using this agent would be easily translatable to clinic for testing in PDAC patients. Here we tested combinations of fendiline with gemcitabine, visudyne (a YAP1 inhibitor) or tivantinib (ARQ197, a c-Met inhibitor) for their effectiveness in overcoming growth and oncogenic characteristics of PDAC cells. The Hippo pathway component YAP1 has been shown to bypass K-Ras addiction, and allow tumor growth, in a Ras-null mouse model. Similarly, c-Met expression has been associated with poor prognosis and metastasis in PDAC patients. Our results presented here show that combinations of fendiline with these inhibitors show enhanced anti-tumor activity in Panc1, MiaPaCa2 and CD18/HPAF PDAC cells, as evident from the reduced viability, migration, anchorage-independent growth and self-renewal. Biochemical analysis shows that these agents interfere with various signaling cascades such as the activation of Akt and ERK, as well as the expression of c-Myc and CD44 that are altered in PDACs. These results imply that inclusion of fendiline may improve the efficacy of various chemotherapeutic agents that could potentially benefit PDAC patients.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Fendilina/farmacologia , Pirrolidinonas/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Verteporfina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinógenos , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfoproteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas de Sinalização YAP , Gencitabina
11.
Mol Cell Biol ; 36(2): 363-74, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26572827

RESUMO

K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.


Assuntos
Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fendilina/farmacologia , Fosfatidilserinas/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetinae , Cães , Humanos
12.
Oncotarget ; 6(34): 35931-48, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26440150

RESUMO

ADAM10 (A Disintegrin and Metalloprotease Domain 10) affects the pathophysiology of various cancers, and we had shown that inhibition of ADAM10 sensitizes pancreatic cancer cells to gemcitabine. ADAM10 is activated in response to calcium influx, and here we examined if calcium channel blockers (CCB) would impede ADAM10 activation and affect biology of pancreatic cancer cells. We find that the CCB, fendiline, significantly reduces proliferation, migration, invasion, and anchorage independent growth of pancreatic cancer cells. This was associated with ADAM10 inhibition and its localization at the actin-rich membrane protrusions. Further, fendiline-treated cells formed cadherin-catenin positive tight adherens junctions and elicited defective protein trafficking and recycling. Furthermore, the expression of ß-catenin target genes, cyclinD1, c-Myc and CD44, were significantly decreased, suggesting that fendiline might prevent cell proliferation and migration by inhibiting ADAM10 function, cadherin proteolysis and stabilization of cadherin-catenin interaction at the plasma membrane. This will subsequently diminish ß-catenin intracellular signaling and repress TCF/LEF target gene expression. Supporting this notion, RNAi-directed downregulation of ADAM10 in cancer cells decreased the expression of cyclinD1, c-Myc and CD44. Furthermore, analysis of human pancreatic tumor tissue microarrays and lysates showed elevated levels of ADAM10, suggesting that aberrant activation of ADAM10 plays a fundamental role in growth and metastasis of PDACs and inhibiting this pathway might be a viable strategy to combat PDACs.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Fendilina/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , beta Catenina/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Transfecção
13.
Psychopharmacology (Berl) ; 232(24): 4401-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26345344

RESUMO

RATIONALE: L-type Ca(2+) channels (LTCC) and GABAB receptors are both possible targets in the development of new pharmacological compounds for cocaine addiction. Drugs that target either receptor attenuate a wide range of cocaine-seeking behaviors in the rat. However, there is no current human-approved pharmacotherapeutic intervention for psychostimulant addiction. OBJECTIVES: This study examined the effects of a human-approved LTCC blocker, fendiline, on cocaine-taking and cocaine-seeking behavior in rats. The effects of combining fendiline with the GABAB receptor agonist baclofen on cocaine self-administration were also tested. METHODS: Male Wistar rats were trained to self-administer cocaine, and the effects of fendiline pretreatment (vehicle, 1.78, 3.16, 5.62 mg/kg, intraperitoneal (IP)) were tested on progressive ratio responding and cue- and drug-induced reinstatement. The effects of baclofen (vehicle, 0.56, 1.78, 3.16, 5.62 mg/kg, IP) combined with fendiline (5.62 mg/kg, IP) were tested on progressive ratio responding. Control experiments measured locomotor activity and lever pressing for food in rats that received both baclofen and fendiline prior to the test session. RESULTS: Acute injections of fendiline prior to cue- or drug-induced reinstatement significantly attenuated lever-pressing behavior (p < 0.05). Fendiline and baclofen, but not fendiline alone, not only significantly attenuated breakpoints, but also impaired general motor behavior and naturalistic reinforcement (p < 0.05). CONCLUSION: These data suggest that the LTCC blocker fendiline may represent a novel pharmacotherapeutic intervention to prevent reinstatement to cocaine seeking. Also, co-administration of fendiline and baclofen not only can attenuate the motivation to take cocaine, but also impairs general motor behavior and naturalistic reinforcement.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Fendilina/farmacologia , Animais , Baclofeno/farmacologia , Comportamento Aditivo/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Reforço Psicológico , Autoadministração
14.
Molecules ; 19(12): 21386-97, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25532838

RESUMO

Fendiline, an effective anti-anginal drug for the treatment of coronary heart diseases, and its sixteen analogues were resolved on a CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Fendiline was resolved quite well with the separation factor (α) of 1.25 and resolution (RS) of 1.55 when a mobile phase consisting of methanol-acetonitrile-trifluoroacetic acid-triethylamine at a ratio of 80/20/0.1/0.5 (v/v/v/v) was used. The comparison of the chromatographic behaviors for the resolution of fendiline and its analogues indicated that the 3,3-diphenylpropyl group bonded to the secondary amino group of fendiline is important in the chiral recognition and the difference in the steric bulkiness between the phenyl group and the methyl group at the chiral center of fendiline is also important in the chiral recognition.


Assuntos
Fármacos Cardiovasculares/isolamento & purificação , Éteres de Coroa/química , Fendilina/análogos & derivados , Fendilina/isolamento & purificação , Acetonitrilas/química , Cromatografia Líquida , Etilaminas/química , Metanol/química , Solventes/química , Ácido Trifluoracético/química
15.
Psychopharmacology (Berl) ; 231(9): 2019-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24264565

RESUMO

RATIONALE: Fendiline is a GABAB receptor-positive allosteric modulator and L-type Ca²âº channel blocker that is safe for human use. Based on these pharmacological properties, fendiline may be useful to disrupt associative memories that can drive relapse to drug use in drug-addicted individuals OBJECTIVE: The current study evaluated the potential of fendiline to inhibit the maintenance and expression of learned associations between methamphetamine (meth) and an environmental context using conditioned place preference (CPP) in rats, to model for the associative learning that occurs during drug abuse by humans METHODS: Following meth conditioning (1 mg/kg), fendiline (5 mg/kg) was administered at various post-conditioning times to ascertain if there was a temporal window during which fendiline would be effective. RESULTS: Two once-daily injections of fendiline did not influence the maintenance of CPP regardless of the post-conditioning treatment time while 10 once-daily fendiline treatments inhibited CPP maintenance (p < 0.05). Fendiline administered immediately prior to the CPP test inhibited expression of meth-induced CPP in rats with a fendiline treatment history of 10 once-daily injections (p < 0.05) or those that received two injections that corresponded to the last 2 days of the 10-day treatment (p < 0.05). Fendiline did not produce preference or aversion on its own, nor did it alter motivated motor behavior. CONCLUSION: Maintenance and expression of meth CPP is mitigated by repeated fendiline treatments when administered during the days that precede CPP testing. Reduction in the significance of meth-associated cues can reduce relapse; therefore, fendiline may be of value for addiction therapy in abstinent, meth-addicted humans.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Fendilina/farmacologia , Metanfetamina/farmacologia , Percepção Espacial/efeitos dos fármacos , Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Fatores de Tempo
16.
J Bone Miner Metab ; 31(1): 26-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23011467

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by progressive heterotopic ossification. FOP is caused by a gain-of-function mutation in ACVR1 encoding the bone morphogenetic protein type II receptor, ACVR1/ALK2. The mutant receptor causes upregulation of a transcriptional factor, Id1. No therapy is available to prevent the progressive heterotopic ossification in FOP. In an effort to search for clinically applicable drugs for FOP, we screened 1,040 FDA-approved drugs for suppression of the Id1 promoter activated by the mutant ACVR1/ALK2 in C2C12 cells. We found that that two antianginal agents, fendiline hydrochloride and perhexiline maleate, suppressed the Id1 promoter in a dose-dependent manner. The drugs also suppressed the expression of native Id1 mRNA and alkaline phosphatase in a dose-dependent manner. Perhexiline but not fendiline downregulated phosphorylation of Smad 1/5/8 driven by bone morphogenetic protein (BMP)-2. We implanted crude BMPs in muscles of ddY mice and fed them fendiline or perhexiline for 30 days. Mice taking perhexiline showed a 38.0 % reduction in the volume of heterotopic ossification compared to controls, whereas mice taking fendiline showed a slight reduction of heterotopic ossification. Fendiline, perhexiline, and their possible derivatives are potentially applicable to clinical practice to prevent devastating heterotopic ossification in FOP.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Fendilina/farmacologia , Células Musculares/metabolismo , Miosite Ossificante/tratamento farmacológico , Ossificação Heterotópica/tratamento farmacológico , Osteoblastos/metabolismo , Perexilina/análogos & derivados , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Proteína 1 Inibidora de Diferenciação/biossíntese , Proteína 1 Inibidora de Diferenciação/genética , Camundongos , Camundongos Mutantes , Células Musculares/patologia , Mutação , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Osteoblastos/patologia , Perexilina/farmacologia , Regiões Promotoras Genéticas/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo
17.
Mol Cell Biol ; 33(2): 237-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129805

RESUMO

Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Fendilina/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Células Madin Darby de Rim Canino , Metilação , Microscopia de Fluorescência , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
18.
Anal Bioanal Chem ; 402(8): 2555-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22006241

RESUMO

The liquid chromatography-mass spectrometry (LC-MS) analysis of complex samples such as biological fluid extracts is widespread when searching for new biomarkers as in metabolomics. The success of this hyphenation resides in the orthogonality of both separation techniques. However, there are frequent cases where compounds are co-eluting and the resolving power of mass spectrometry (MS) is not sufficient (e.g., isobaric compounds and interfering isotopic clusters). Different strategies are discussed to solve these cases and a mixture of eight compounds (i.e., bromazepam, chlorprothixene, clonapzepam, fendiline, flusilazol, oxfendazole, oxycodone, and pamaquine) with identical nominal mass (i.e., m/z 316) is taken to illustrate them. Among the different approaches, high-resolution mass spectrometry or liquid chromatography (i.e., UHPLC) can easily separate these compounds. Another technique, mostly used with low resolving power MS analyzers, is differential ion mobility spectrometry (DMS), where analytes are gas-phase separated according to their size-to-charge ratio. Detailed investigations of the addition of different polar modifiers (i.e., methanol, ethanol, and isopropanol) into the transport gas (nitrogen) to enhance the peak capacity of the technique were carried out. Finally, a complex urine sample fortified with 36 compounds of various chemical properties was analyzed by real-time 2D separation LC×DMS-MS(/MS). The addition of this orthogonal gas-phase separation technique in the LC-MS(/MS) hyphenation greatly improved data quality by resolving composite MS/MS spectra, which is mandatory in metabolomics when performing database generation and search.


Assuntos
Espectrometria de Massas , Aminoquinolinas/urina , Benzimidazóis/urina , Bromazepam/urina , Clorprotixeno/urina , Cromatografia Líquida de Alta Pressão , Clonazepam/urina , Fendilina/urina , Humanos , Oxicodona/urina , Silanos/urina , Fatores de Tempo , Triazóis/urina
19.
Hum Exp Toxicol ; 28(1): 41-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19411560

RESUMO

The effect of fendiline on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and proliferation has not been explored in human oral cancer cells. This study examined whether fendiline altered Ca(2+) levels and caused cell death in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Fendiline at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The fendiline-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers. In Ca(2+)-free medium, after pretreatment with 50 microM fendiline, 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor)-induced [Ca(2+)](i) rises were inhibited; and conversely, thapsigargin pretreatment nearly abolished fendiline-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change fendiline-induced [Ca(2+)](i) rises. At concentrations between 5 and 25 microM, fendiline killed cells in a concentration-dependent manner. The cytotoxic effect of 15 microM fendiline was not reversed by prechelating cytosolic Ca(2+) with BAPTA/AM. Collectively, in OC2 cells, fendiline induced [Ca(2+)](i) rises by causing Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, fendiline-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Fendilina/farmacologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estrenos/farmacologia , Corantes Fluorescentes/metabolismo , Fura-2/metabolismo , Humanos , Neoplasias Bucais/tratamento farmacológico , Nifedipino/toxicidade , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Sais de Tetrazólio/metabolismo , Tapsigargina/farmacologia
20.
J Med Chem ; 51(11): 3081-93, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18459732

RESUMO

We report results of 12 ns, all-atom molecular dynamics simulation (MDS) and Poisson-Boltzmann free energy calculations (PBFE) on calmodulin (CaM) bound to two molecules of trifluoperazine (TFP) and of N-(3,3, diphenylpropyl)- N'-[1- R-(3,4-bis-butoxyphenyl)-ethyl]-propylenediamine (DPD). X-ray data show very similar structures for the two complexes, yet the antagonists significantly differ with respect to their CaM binding affinities, the neutral DPD is much more potent. The goal of the study was to unravel the reason why TFP is less potent although its positive charge should facilitate binding. The electrostatic energy terms in CHARMM and binding free energy terms of the PBFE approach showed TFP a better antagonist, while inspection of hydrophobic contacts supports DPD binding. Detailed inspection of the amino acid contributions of PBFE calculations unravel that steric reasons oppose the favorable binding of TFP. Structural conditions are given for a successful drug design strategy, which may benefit also from charge-charge interactions.


Assuntos
Calmodulina/antagonistas & inibidores , Calmodulina/química , Fendilina/análogos & derivados , Modelos Moleculares , Trifluoperazina/química , Sítios de Ligação , Simulação por Computador , Fendilina/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Ligação Proteica , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...