Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.991
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612521

RESUMO

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Assuntos
Di-Hidroergotamina , Escopolamina , Animais , Ratos , Histamina , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Encéfalo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas dos Receptores H2 da Histamina
2.
Food Chem Toxicol ; 186: 114589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467298

RESUMO

Tropane alkaloids (TA) are natural toxins found in certain plants, including cereals, of which atropine and scopolamine are the main species of concern due to their acute toxicity. This study aimed to determine the occurrence of TA in cereal foods and assess the potential health risks associated with their consumption in Korea. TA levels were analyzed in 80 raw and 71 processed cereal samples, which were distributed throughout Korea in 2021, using ultra-performance liquid chromatography-tandem mass spectrometry. At least one of the six TA species, namely atropine, scopolamine, pseudotropine, tropinone, scopine, and 6-hydroxytropinone, was detected in 10 out of the 151 samples at levels ranging from 0.12 to 88.10 µg kg-1. Dietary exposure (mean, 0.23 ng kg-1 bw day-1) to atropine and scopolamine in the Korean population was estimated to be low across all age groups. This is despite considering worst-case scenarios using the total concentrations of atropine and scopolamine in a millet sample, both of which were detected, and 95th percentile consumption for consumers of millet only. Both the hazard index and margin of exposure methods indicated that the current levels of TA exposure from millet consumption were unlikely to pose significant health risks to the Korean population.


Assuntos
Grão Comestível , Tropanos , Atropina , Grão Comestível/química , República da Coreia , Medição de Risco , Escopolamina/toxicidade , Tropanos/análise , Tropanos/química , Alcaloides/análise , Alcaloides/química
3.
PLoS Med ; 21(3): e1004352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547322

RESUMO

BACKGROUND: Prolonged labor is a common condition associated with maternal and perinatal complications. The standard treatment with oxytocin for augmentation of labor increases the risk of adverse outcomes. Hyoscine butylbromide is a spasmolytic drug with few side effects shown to shorten labor when used in a general population of laboring women. However, research on its effect on preventing prolonged labor is lacking. We aimed to assess the effect of hyoscine butylbromide on the duration of labor in nulliparous women showing early signs of slow labor. METHODS AND FINDINGS: In this double-blind randomized placebo-controlled trial, we included 249 nulliparous women at term with 1 fetus in cephalic presentation and spontaneous start of labor, showing early signs of prolonged labor by crossing the alert line of the World Health Organization (WHO) partograph. The trial was conducted at Oslo University Hospital in Norway from May 2019 to December 2021. One hundred and twenty-five participants were randomized to receive 1 ml hyoscine butylbromide (Buscopan) (20 mg/ml), while 124 received 1 ml sodium chloride intravenously. Randomization was computer-generated, with allocation concealment by opaque sequentially numbered sealed envelopes. The primary outcome was duration of labor from administration of the investigational medicinal product (IMP) to vaginal delivery, which was analyzed by Weibull regression to estimate the cause-specific hazard ratio (HR) of vaginal delivery between the 2 treatment groups, with associated 95% confidence interval (CI). A wide range of secondary maternal and perinatal outcomes were also evaluated. Time-to-event outcomes were analyzed by Weibull regression, whereas continuous and dichotomous outcomes were analyzed by median regression and logistic regression, respectively. All main analyses were based on the modified intention-to-treat (ITT) set of eligible women with signed informed consent receiving either of the 2 treatments. The follow-up period lasted during the postpartum hospital stay. All personnel, participants, and researchers were blinded to the treatment allocation. Median (mean) labor duration from IMP administration to vaginal delivery was 401 (440.8) min in the hyoscine butylbromide group versus 432.5 (453.6) min in the placebo group. We found no statistically significant association between IMP and duration of labor from IMP administration to vaginal delivery: cause-specific HR of 1.00 (95% CI [0.77, 1.29]; p = 0.993). Among 255 randomized women having received 1 dose of IMP, 169 women (66.3%) reported a mild adverse event: 75.2% in the hyoscine butylbromide group and 57.1% in the placebo group (Pearson's chi-square test: p = 0.002). More than half of eligible women were not included in the study because they did not wish to participate or were not included upon admission. The participants might have represented a selected group of women reducing the external validity of the study. CONCLUSIONS: One intravenous dose of 20 mg hyoscine butylbromide was not found to be superior to placebo in preventing slow labor progress in a population of first-time mothers at risk of prolonged labor. Further research is warranted to answer whether increased and/or repeated doses of hyoscine butylbromide might have an effect on duration of labor. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03961165) EudraCT (2018-002338-19).


Assuntos
Brometo de Butilescopolamônio , Hidrocarbonetos Bromados , Trabalho de Parto , Gravidez , Humanos , Feminino , Brometo de Butilescopolamônio/efeitos adversos , Escopolamina , Parassimpatolíticos/uso terapêutico , Método Duplo-Cego
4.
Toxicol Lett ; 394: 128-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428545

RESUMO

The Göttingen minipig is fast becoming the standard for assessing dermal chemical hazards because, like most swine, its skin is predictive of human skin response and because this strain's smaller size makes laboratory manipulations and husbandry easier. Unfortunately, standard behavioral tests and apparatus have not been developed for behavioral assessments of this swine strain. Indeed, computer-controlled automated behavioral testing procedures are much needed. The present research advanced this goal by producing a home-cage behavioral testing system that could accommodate minipigs of various sizes (ages). An aluminum frame housed three levers for recording operant responses, and LEDs above and below each lever served as discriminative stimuli. A commercially available food pellet dispenser was attached to a specialized pellet receptacle capable of measuring pellet retrieval. Two behavioral tests were selected and adapted from our commonly used non-human primate behavioral assessments: delayed match-to-sample (a memory test) and temporal response differentiation (a time-estimation test). Minipigs were capable of learning both tests and attaining stable performance. Next, scopolamine was used to validate the sensitivity of the behavioral tests for gauging behavioral perturbations in this swine strain. Scopolamine dose-effect functions were comparable to those observed in other species, including non-human primates, wherein 37.5 µg/kg of scopolamine (administered intramuscularly) reduced responding approximately 50%. Thus, we were successful in developing the apparatus and automated operant behavioral tests necessary to characterize drug safety in this swine strain. This capability will be valuable for characterizing chemical agent toxicity as well as the safety and efficacy of medical countermeasures.


Assuntos
Escala de Avaliação Comportamental , Pele , Suínos , Animais , Porco Miniatura , Aprendizagem , Escopolamina/toxicidade
5.
Curr Pharm Des ; 30(2): 140-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532323

RESUMO

BACKGROUND: Acetyl-11-keto-ß-boswellic acid (AKBA) is a major component of the oleo-gum resin of B. serrata with multiple pharmacological activities. The objective of this study was to explore the underlying mechanisms of neuroprotective potential of AKBA against scopolamine-mediated cholinergic dysfunction and memory deficits in rats. METHODS: The rats received AKBA (2.5, 5, and 10 mg/kg, oral) for 21 days. In the third week, scopolamine was administered 30 min before the Morris water maze and passive avoidance tests. In order to perform biochemical assessments, the hippocampus and prefrontal cortex were extracted from the rats euthanized under deep anesthesia. RESULTS: In the MWM test, treatment with AKBA (5 and 10 mg/kg) decreased the latency and distance to find the platform. Moreover, in the PA test, AKBA remarkably increased latency to darkness and stayed time in lightness while decreasing the frequency of entry and time in the darkness. According to the biochemical assessments, AKBA decreased acetylcholinesterase activity and malondialdehyde levels while increasing antioxidant enzymes and total thiol content. Furthermore, AKBA administration restored the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF) and mRNA expression of B-cell lymphoma (Bcl)- 2 and Bcl-2- associated X genes in brain tissue of scopolamine-injured rats. CONCLUSION: The results suggested the effectiveness of AKBA in preventing learning and memory dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by modulating BDNF, cholinergic system function, oxidative stress, and apoptotic markers.


Assuntos
Escopolamina , Triterpenos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo , Acetilcolinesterase , Triterpenos/farmacologia , RNA Mensageiro
6.
Environ Toxicol ; 39(5): 3198-3210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351887

RESUMO

In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.


Assuntos
Nelumbo , Neuroblastoma , Camundongos , Humanos , Animais , Escopolamina/farmacologia , Escopolamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogênese , Aprendizagem em Labirinto , Extratos Vegetais/química , Cognição
7.
J Med Chem ; 67(7): 5391-5420, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38354305

RESUMO

This study aimed to develop novel rapid-acting antidepressants with sustained efficacy and favorable safety profiles. We designed and synthesized a series of fluorine-containing scopolamine analogues and evaluated their antidepressant potential. In vitro cytotoxicity assays showed that most of these compounds exhibited minimal toxicity against neuronal and non-neuronal mammalian cell lines (IC50 > 100 µM). The antidepressant activities of the compounds were evaluated using the tail suspension test, and S-3a was identified as a lead compound with potent and sustained antidepressant effects. Behaviorally, S-3a alleviated depressive symptoms in mice and displayed a higher cognitive safety margin than scopolamine. Toxicological assessments confirmed S-3a's safety, while pharmacokinetics showed a rapid clearance (half-life: 16.6 min). Mechanistically, S-3a antagonized M1 receptors and elevated BDNF levels, suggesting its potential as an antidepressant for further exploration.


Assuntos
Flúor , Escopolamina , Camundongos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Mamíferos
8.
Physiol Behav ; 277: 114494, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360390

RESUMO

Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.


Assuntos
Quercetina , Escopolamina , Ratos , Masculino , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Wistar , Escopolamina/toxicidade , Antioxidantes/farmacologia , Estresse Oxidativo , Aprendizagem em Labirinto
9.
Eur Rev Med Pharmacol Sci ; 28(3): 981-994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375702

RESUMO

OBJECTIVE: Recent research suggests that butin may also exert neuroprotective effects. However, its influence on cognitive performance and, specifically, its potential to mitigate scopolamine-induced memory impairment remains unexplored. The aim of the study is to investigate the effects of butin on the cognitive and behavioral performance of rats with scopolamine-induced memory impairment. MATERIALS AND METHODS: Scopolamine-injected memory-impediment model in rats was used to determine the efficacy of butin in higher and lower doses (10 and 20 mg/kg) for 14 days. Y-maze, along with Morris water, was used to assess the ability to recall spatial and working information. Biochemistry-related functions such as acetylcholinesterase, choline acetyltransferase, superoxide dismutase, glutathione transferase, malonaldehyde, catalase, nitric oxide, and neurotransmitters levels were estimated as indicators of free radical damage. Furthermore, we evaluated neuro-inflammatory responses by assessing tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and caspase-3 immuno-reactive proteins. RESULTS: When assessed through behavioral paradigms, the butin-treated group enhanced the spatial and working memory of rodents. Scopolamine caused a substantial alteration in biochemical-related parameters, neuronal enzymatic, inflammation responses and apoptosis markers prominently restored by butin. CONCLUSIONS: This study concludes that butin protects scopolamine-injected rats from behavioral impairments and neuronal damage by reducing apoptosis and neuroinflammation.


Assuntos
Benzopiranos , Fator Neurotrófico Derivado do Encéfalo , Escopolamina , Animais , Ratos , Acetilcolinesterase/metabolismo , Benzopiranos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Estresse Oxidativo , Escopolamina/efeitos adversos
10.
Eur J Pharmacol ; 968: 176430, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38369274

RESUMO

Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.


Assuntos
Escopolamina , Pepinos-do-Mar , Ratos , Humanos , Camundongos , Animais , Escopolamina/farmacologia , Espectrometria de Massas em Tandem , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Estresse Oxidativo , Colinérgicos/farmacologia
11.
J Vis Exp ; (204)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38407247

RESUMO

Aqueous-deficient dry eye (ADDE) is a type of dry eye disease that can result in the reduction of tear secretion quantity and quality. Prolonged abnormal tear production can lead to a disturbance in the ocular surface environment, including corneal damage and inflammation. In severe cases, ADDE can cause vision loss or even blindness. Currently, dry eye treatment is limited to eye drops or physical therapy, which can only alleviate eye discomfort symptoms and cannot fundamentally cure dry eye syndrome. To restore the function of the lacrimal gland in dry eye, we have created an animal model of lacrimal gland dysfunction in rats induced by scopolamine. Through the comprehensive evaluation of the lacrimal gland, corneas, conjunctivas, and other factors, we aim to provide a full understanding of the pathological changes of ADDE. Compared with the current dry eye mouse model, this ADDE animal model includes a functional evaluation of the lacrimal gland, providing a better platform for studying lacrimal gland dysfunction in ADDE.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Camundongos , Animais , Ratos , Escopolamina , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/tratamento farmacológico , Cegueira , Modelos Animais de Doenças
12.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338372

RESUMO

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Assuntos
Benzamidas , Disfunção Cognitiva , Maleato de Dizocilpina , Compostos Nitrosos , Pirazóis , Piridinas , Sulfonamidas , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Óxido Nítrico/farmacologia , Escopolamina/farmacologia , Óxido Nítrico Sintase Tipo III , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Regulação Alostérica
13.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339117

RESUMO

Sideritis scardica Griseb. and Clinopodium vulgare L., belonging to the Lamiaceae family, are rich in terpenoids and phenolics and exhibit various pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer activities. While the memory-enhancing impacts of S. scardica are well documented, the cognitive benefits of C. vulgare remain unexplored. This study assessed the potential effect of C. vulgare on learning and memory in healthy and scopolamine (Sco)-induced memory-impaired male Wistar rats, comparing it with the effects of S. scardica. Over a 21-day period, rats orally received extracts of cultivated S. scardica (200 mg/kg) and C. vulgare (100 mg/kg), either individually or in combination, with administration starting 10 days before and continuing 11 days simultaneously with Sco injection at a dose of 2 mg/kg intraperitoneally. The results showed that both extracts effectively mitigated Sco-induced memory impairment. Their combination significantly improved recognition memory and maintained monoaminergic function. S. scardica excelled in preserving spatial working memory, while C. vulgare exhibited comparable retention of recognition memory, robust antioxidant activity and acetylcholinesterase inhibitory activity. The extracts alleviated Sco-induced downregulation of p-CREB/BDNF signaling, suggesting neuroprotective mechanisms. The extract combination positively affected most of the Sco-induced impairments, underscoring the potential for further investigation of these extracts for therapeutic development.


Assuntos
Disfunção Cognitiva , Demência , Sideritis , Ratos , Masculino , Animais , Escopolamina/efeitos adversos , Ratos Wistar , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Demência/induzido quimicamente , Demência/tratamento farmacológico , Aprendizagem em Labirinto
14.
Pharmacol Res Perspect ; 12(1): e1169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38258916

RESUMO

Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Ligamento Periodontal , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese , Células-Tronco , Escopolamina
15.
Aging (Albany NY) ; 16(3): 2385-2397, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284892

RESUMO

Evodia lepta Merr. (Evodia lepta) is a well-known traditional Chinese medicine, which has been widely used in herbal tea. We previously reported that the coumarin compounds from the root of Evodia lepta exhibited neuroprotective effects. However, whether Evodia lepta could inhibit NLRP3 inflammasome in dementia was still unknown. In this study, the components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. We employed a scopolamine-treated mouse model. Evodia lepta extract (10 or 20 mg/kg) and donepezil were treated by gavage once a day for 14 consecutive days. Following the behavioral tests, oxidative stress levels were measured. Then, Western blot and immunofluorescence analysis were used to evaluate the expressions of NLRP3 inflammasome. 14 major components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. The results of Morris water maze, object recognition task and open field test indicated that Evodia lepta extract could ameliorate cognitive impairment in scopolamine-treated mice. Evodia lepta extract improved cholinergic system. Moreover, Evodia lepta extract improved the expressions of PSD95 and BDNF. Evodia lepta extract suppressed neuronal oxidative stress and apoptosis. In addition, Evodia lepta extract inhibited NLRP3 inflammasome in the hippocampus of scopolamine-treated mice. Evodia lepta extract could protect against cognitive impairment by inhibiting NLRP3 inflammasome in scopolamine-treated mice.


Assuntos
Disfunção Cognitiva , Evodia , Camundongos , Animais , Inflamassomos , Evodia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Escopolamina/toxicidade , Etanol/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
16.
J Control Release ; 366: 712-731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219911

RESUMO

Conventional transnasal brain-targeted drug delivery strategies are limited by nasal cilia clearance and the nasal mucosal barrier. To address this challenge, we designed dissolving microneedles combined with nanocarriers for enhanced nose-to-brain drug delivery. To facilitate transnasal administration, a toothbrush-like microneedle patch was fabricated with hyaluronic acid-formed microneedles and tannic acid-crosslinked gelatin as the base, which completely dissolved in the nasal mucosa within seconds leaving only the base, thereby releasing the loaded cyclodextrin-based metal-organic frameworks (CD-MOFs) without affecting the nasal cilia and nasal microbial communities. As nanocarriers for high loading of huperzine A, these potassium-structured CD-MOFs, reinforced with stigmasterol and functionalized with lactoferrin, possessed improved physical stability and excellent biocompatibility, enabling efficient brain-targeted drug delivery. This delivery system substantially attenuated H2O2- and scopolamine-induced neurocyte damage. The efficacy of huperzine A on scopolamine- and D-galactose & AlCl3-induced memory deficits in rats was significantly improved, as evidenced by inhibiting acetylcholinesterase activity, alleviating oxidative stress damage in the brain, and improving learning function, meanwhile activating extracellular regulated protein kinases-cyclic AMP responsive element binding protein-brain derived neurotrophic factor pathway. Moreover, postsynaptic density protein PSD-95, which interacts with two important therapeutic targets Tau and ß-amyloid in Alzheimer's disease, was upregulated. This fruitful treatment was further shown to significantly ameliorate Tau hyperphosphorylation and decrease ß-amyloid by ways including modulating beta-site amyloid precursor protein cleaving enzyme 1 and a disintegrin and metalloproteinase 10. Collectively, such a newly developed strategy breaks the impasse for efficient drug delivery to the brain, and the potential therapeutic role of huperzine A for Alzheimer's disease is further illustrated.


Assuntos
Alcaloides , Doença de Alzheimer , Ciclodextrinas , Polifenóis , Sesquiterpenos , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Peróxido de Hidrogênio , Encéfalo , Mucosa Nasal , Peptídeos beta-Amiloides , Escopolamina
17.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278026

RESUMO

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Assuntos
Doença de Alzheimer , Morfinanos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Neuroimunomodulação , Escopolamina/farmacologia , Inflamação/patologia , Homeostase , Encéfalo/metabolismo , Colinérgicos/farmacologia
18.
Sci Transl Med ; 16(729): eadi2403, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198569

RESUMO

How rapid-acting antidepressants (RAADs), such as ketamine, induce immediate and sustained improvements in mood in patients with major depressive disorder (MDD) is poorly understood. A core feature of MDD is the prevalence of cognitive processing biases associated with negative affective states, and the alleviation of negative affective biases may be an index of response to drug treatment. Here, we used an affective bias behavioral test in rats, based on an associative learning task, to investigate the effects of RAADs. To generate an affective bias, animals learned to associate two different digging substrates with a food reward in the presence or absence of an affective state manipulation. A choice between the two reward-associated digging substrates was used to quantify the affective bias generated. Acute treatment with the RAADs ketamine, scopolamine, or psilocybin selectively attenuated a negative affective bias in the affective bias test. Low, but not high, doses of ketamine and psilocybin reversed the valence of the negative affective bias 24 hours after RAAD treatment. Only treatment with psilocybin, but not ketamine or scopolamine, led to a positive affective bias that was dependent on new learning and memory formation. The relearning effects of ketamine were dependent on protein synthesis localized to the rat medial prefrontal cortex and could be modulated by cue reactivation, consistent with experience-dependent neural plasticity. These findings suggest a neuropsychological mechanism that may explain both the acute and sustained effects of RAADs, potentially linking their effects on neural plasticity with affective bias modulation in a rodent model.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ratos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Ketamina/farmacologia , Psilocibina , Antidepressivos/farmacologia , Viés , Escopolamina
19.
Mol Neurobiol ; 61(3): 1363-1382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37707741

RESUMO

Alzheimer disease is associated with cognitive impairments and neuronal damages. In this study, Scopolamine, a model drug used for the generation of Alzheimer-like symptoms induced cognitive dysfunction in C57BL/6 mice. It also elevated acetylcholine esterase (AcHE) activity, and reduced antioxidant (superoxide dismutase and catalase) activity in cortex tissue. Scop reduced neuronal density and increased pyknotic neurons in hippocampus tissue. In mouse neuroblastoma (Neuro2a) cells, Scop triggered a dose-dependent loss of cell viability and neurite outgrowth reduction. Scop-treated Neuro2a cells showed oxidative stress and reduction in mRNA expression for brain-derived neurotrophic factor (BDNF), nerve growth factor-1 (NGF-1), and Synapsin-1 (SYN-1) genes. Mice treated with Divya-Medha-Vati (DMV), an Ayurvedic polyherbal medicine showed protection against Scop-induced cognitive impairment (Morris Water Maze Escape Latency, and Elevated Plus Maze Transfer Latency). DMV protected against Scop-induced AcHE activity, and loss of antioxidant activities in the mice brain cortex while sustaining neuronal density in the hippocampus region. In the Neuro2a cells, DMV reduced Scop-induced loss of cell viability and neurite outgrowth loss. DMV protected the cells against induction of oxidative stress and promoted mRNA expression of BDNF, NGF-1, and SYN-1 genes. Phytochemical profiling of DMV showed the presence of Withanolide A, Withanolide B, Bacopaside II, Jujubogenin, Apigenin, Gallic acid, Caffeic acid, and Quercetin that are associated with antioxidant and neurostimulatory activities. In conclusion, the study showed that Divya-Medha-Vati was capable of promoting neuronal health and inhibiting Alzheimer-like cognitive dysfunction through enhanced antioxidant activities and modulation of neuronal activities.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Escopolamina , Acetilcolina/metabolismo , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Neuroproteção , Doença de Alzheimer/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aprendizagem em Labirinto , Acetilcolinesterase/metabolismo , Transtornos da Memória/metabolismo
20.
J Ethnopharmacol ; 324: 117416, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37981114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl (DNL), a valued time-honored herb, possesses immune-boosting and age-delaying properties, has been widely used to treat hyperglycemia and neurological diseases, and is probably a potential drug for improving learning and memory. Scopolamine (Scop), an antagonist for muscarinic receptors, potentially impairing intelligence and memory. AIM OF THE STUDY: This investigation aimed to assess the efficacy of DNL in alleviating scopolamine-induced cognitive deficits in mice and its mechanisms. MATERIALS AND METHODS: We utilized the open-field test, novel object recognition test (NOR), and Morris water maze test (MWM) to assess the potential of DNL in ameliorating learning and memory dysfunction caused by scopolamine in mice. Enzyme-linked immunosorbent assay (ELISA) was employed to measure Choline acetyltransferase (ChAT) content and Acetylcholinesterase (AChE) activities in the brain, and oxidative stress-related factors in the serum, including Malondialdehyde (MDA), Superoxide dismutase (SOD), and glutathione (GSH) content. RESULTS: Scopolamine injection significantly reduced the discrimination index of mice in the NOR test and impaired their performance in the MWM test, as demonstrated by longer escape latency, fewer target crossings, and less time spent in the target quadrant in the MWM. After 25 days of administration, DNL increased the discrimination index of the scopolamine-treated mice in the NOR test. DNL reduced the escape latency in the MWM test in the model mice. DNL increased the target crossing number and the percentage of time spent in the target quadrant in the MWM test. ELISA experiments indicated that DNL decreased the AChE activities, increased the ChAT activities, and modulated oxidative stress makers (GSH, SOD, and MDA) in scopolamine-induced mice. CONCLUSIONS: DNL may improve the learning and memory in mice treated with scopolamine, possibly by modulating oxidative stress and impaired cholinergic function.


Assuntos
Dendrobium , Escopolamina , Camundongos , Animais , Acetilcolinesterase/metabolismo , Aprendizagem em Labirinto , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...