Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1087-1088: 142-148, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29738964

RESUMO

Capillary scale (100 mm × 150 µm id) UPLC/MS/MS, performed using reversed-phase gradient chromatography on sub 2 µm particles, has been successfully employed for the characterization of the metabolites of the drug tienilic acid (TA) excreted via the urine following oral administration to the rat. The capillary LC system provided a significant increase (range ca. 11-33-fold) in sensitivity compared with a conventional 150 mm × 2.1 mm id UPLC system. An investigation of the effect of the injection volume and sample mass loading on the capillary column on the results obtained for both endogenous metabolites and TA was performed. This demonstrated that the injection of up to 2 µL of rat urine onto the system was permitted whilst still providing excellent chromatographic results and robustness. Qualitative analysis of the urine revealed the presence of TA itself and a total of 15 metabolites of the drug, including those resulting from biotransformations such as hydroxylation or conjugation. The capillary chromatography system was shown to be robust, and capable of providing comprehensive drug metabolite profiles from small format urine samples such as those obtained from preclinical studies in rodents.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Ticrinafeno/urina , Administração Intravenosa , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Ticrinafeno/administração & dosagem , Ticrinafeno/metabolismo
2.
Biopharm Drug Dispos ; 39(2): 116-121, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29136681

RESUMO

The fraction of substrate metabolized (fm ) can be used to estimate drug interactions and can be determined by comparison of the intrinsic clearances (CLint ) of victim drugs obtained from inhibited and uninhibited hepatic enzymes. Commercially available human liver microsomes were recently developed in which one cytochrome P450 (P450) isoform is selectively inactivated. These inactivated liver microsomes were used to evaluate the roles of P450 2C isoforms in the depletion and oxidation of probe substrates. Determination of CLint with sets of control and P450 2C9-inactivated liver microsomes yielded fm,P450 2C9 values of 0.69-1.0 for celecoxib, diclofenac and warfarin. Apparent minor contributions of P450 1A2/2C8/3A4 were seen in depletion assays, yielding ~1 for the sum of the fm values. Selectively inactivated liver microsomes were thereby shown to be potentially useful for determining the in vitro fm values for major P450 2C9 contributions to substrate oxidations. Metabolite formations from diclofenac and warfarin were suppressed by 62-84% by the replacement of control liver microsomes with P450 2C9-inactivated liver microsomes. R-, S- and racemic omeprazole and troglitazone oxidation activities by liver microsomes at multiple substrate concentrations were suppressed by 26-36% and 22-50%, respectively, when P450 2C19- and 2C8-inactivated liver microsomes were used in place of control liver microsomes. This study provides important information to help elucidate the different roles of P450 isoforms in metabolite formation at different substrate concentrations. The data obtained allow the fractions metabolized to be calculated for victim drugs.


Assuntos
Família 2 do Citocromo P450/metabolismo , Microssomos Hepáticos/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Celecoxib/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Diclofenaco/farmacocinética , Genfibrozila/farmacologia , Humanos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Isoformas de Proteínas/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacologia , Ticrinafeno/farmacologia , Triazóis/farmacologia , Varfarina/farmacocinética
3.
Eur J Med Chem ; 97: 225-34, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25982331

RESUMO

Combination of the Suzuki cross-coupling and nucleophilic aromatic substitution of hydrogen (SN(H)) reactions proved to be a convenient method for the synthesis of C(4) and/or C(5) mono(thienyl) and di(thienyl) substituted pyrimidines from commercially available 5-bromopyrimidine. All new pyrimidines were found to be active in micromolar concentrations in vitro against H37Rv, avium, terrae, rifampicin and isoniazid-resistance strains of Mycobacterium tuberculosis. The data for acute in vivo toxicity in mice have been obtained for these compounds which appear to be promising antitubercular agents.


Assuntos
Antituberculosos/síntese química , Pirimidinas/síntese química , Ticrinafeno/química , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
4.
Drug Metab Dispos ; 42(11): 1955-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187484

RESUMO

Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Ticrinafeno/metabolismo , Cátions , Simulação por Computador , Diuréticos/metabolismo , Diuréticos/farmacocinética , Humanos , Técnicas In Vitro , Especificidade por Substrato , Ticrinafeno/farmacocinética , Uricosúricos/metabolismo , Uricosúricos/farmacocinética
5.
Chem Res Toxicol ; 27(8): 1344-58, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25014778

RESUMO

Thiophene is a five-membered, sulfur-containing heteroaromatic ring commonly used as a building block in drugs. It is considered to be a structural alert, as its metabolism can lead to the formation of reactive metabolites. Thiophene S-oxides and thiophene epoxides are highly reactive electrophilic thiophene metabolites whose formation is cytochrome P450-dependent. These reactive thiophene-based metabolites are quite often responsible for drug-induced hepatotoxicity. Tienilic acid is an example of a thiophene-based drug that was withdrawn from the market after only a few months of use, due to severe cases of immune hepatitis. However, inclusion of the thiophene moiety in drugs does not necessarily result in toxic effects. The presence of other, less toxic metabolic pathways, as well as an effective detoxification system in our body, protects us from the bioactivation potential of the thiophene ring. Thus, the presence of a structural alert itself is insufficient to predict a compound's toxicity. The question therefore arises as to which factors significantly influence the toxicity of thiophene-containing drugs. There is no easy way to answer this question. However, the findings presented here indicate that, for a number of reasons, daily dose and alternative metabolic pathways are important factors when predicting toxicity and will therefore be discussed together with examples.


Assuntos
Tiofenos/química , Antidepressivos/química , Antidepressivos/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Depressão/tratamento farmacológico , Cloridrato de Duloxetina , Hepatite/etiologia , Humanos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/toxicidade , Tiofenos/metabolismo , Tiofenos/uso terapêutico , Tiofenos/toxicidade , Ticrinafeno/química , Ticrinafeno/metabolismo , Ticrinafeno/toxicidade
6.
Chem Res Toxicol ; 25(11): 2412-22, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23013248

RESUMO

An NMR-based metabonomic approach was applied to study the systems level metabolic effects of two closely related thiophene compounds, tienilic acid (TA) and tienilic acid isomer (TAI). The metabonomic data were anchored with traditional clinical chemistry and histopathologic analyses. TA was removed from the market as a result of suspected immune-mediated hepatotoxicity, whereas TAI is an intrinsic hepatotoxin. Equimolar doses of TA and TAI were administered to Sprague-Dawley rats, and sampling was conducted at 2, 6, and 24 h post-treatment. Histopathologic analyses revealed development of a significant hepatic lesion 24 h post-TAI treatment with a parallel increase in plasma alanine aminotransferase (ALT) activity. In contrast, TA was not associated with the development of a hepatic lesion or an increase in plasma ALT activity. High-resolution NMR spectral metabolic profiles were generated for liver extracts, plasma, and urine at multiple time points. Multivariate statistical tools were applied to model the metabolic profiles and identify discriminatory metabolites that reflected both the adaptation to TA administration and the onset and progression of TAI-induced hepatotoxicity. TAI was shown to induce marked metabolic effects on the metabolome at all time points, with dramatic metabolic perturbations at 24 h post-treatment correlating with the histopathologic and clinical chemistry evidence of a hepatic lesion. The TAI-induced metabolic perturbations provided evidence for the generation of electrophilic reactive metabolites and a significant impairment of bioenergetic metabolic pathways. TA induced early metabolic perturbations that were largely resolved by 24 h post-treatment, suggesting the reestablishment of metabolic homeostasis and the ability to adapt to the intervention, with hepatic hypotaurine potentially representing a means of assessment of hepatic adaptation. This comparative metabonomic approach enabled the discrimination of metabolic perturbations that were common to both treatments and were interpreted as nontoxic thiophene-induced perturbations. Importantly, this approach enabled the identification of temporal metabolic perturbations that were unique to TAI or TA treatment and hence were of relevance to the development of toxicity or the ability to adapt. This approach is applicable to the future study of pharmacologically and structurally similar compounds and represents a refined means of identification of biomarkers of toxicity.


Assuntos
Ticrinafeno/metabolismo , Animais , Química Clínica , Determinação de Ponto Final , Fígado/química , Fígado/metabolismo , Fígado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Fenótipo , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Ticrinafeno/administração & dosagem , Ticrinafeno/química , Testes de Toxicidade
7.
Chem Res Toxicol ; 25(5): 1145-54, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22462724

RESUMO

Tienilic acid (TA) is a uricosuric diuretic that was withdrawn from the market only months after its introduction because of reports of serious incidents of drug-induced liver injury including some fatalities. Its hepatotoxicity is considered to be primarily immunoallergic in nature. Like other thiophene compounds, TA undergoes biotransformation to a S-oxide metabolite which then reacts covalently with cellular proteins. To identify protein targets of TA metabolites, we incubated [(14)C]-TA with human hepatocytes, separated cellular proteins by 2D gel electrophoresis, and analyzed proteins in 36 radioactive spots by tryptic digestion followed by LC-MS/MS. Thirty-one spots contained at least one identifiable protein. Sixteen spots contained only one of 14 nonredundant proteins which were thus considered to be targets of TA metabolites. Six of the 14 were also found in other radioactive spots that contained from 1 to 3 additional proteins. Eight of the 14 had not been reported to be targets for any reactive metabolite other than TA. The other 15 spots each contained from 2 to 4 identifiable proteins, many of which are known targets of other chemically reactive metabolites, but since adducted peptides were not observed, the identity of the adducted protein(s) in these spots is ambiguous. Interestingly, all the radioactive spots corresponded to proteins of low abundance, while many highly abundant proteins in the mixture showed no radioactivity. Furthermore, of approximately 16 previously reported protein targets of TA in rat liver ( Methogo, R., Dansette, P., and Klarskov, K. ( 2007 ) Int. J. Mass Spectrom. , 268 , 284 -295 ), only one (fumarylacetoacetase) is among the 14 targets identified in this work. One reason for this difference may be statistical, given that each study identified a small number of targets from among thousands present in hepatocytes. Another may be the species difference (i.e., rat vs human), and still another may be the method of detection of adducted proteins (i.e., Western blot vs C-14). Knowledge of human target proteins is very limited. Of more than 350 known protein targets of reactive metabolites, only 42 are known from humans, and only 21 of these are known to be targets for more than one chemical. Nevertheless, the demonstration that human target proteins can be identified using isolated hepatocytes in vitro should enable the question of species differences to be addressed more fully in the future.


Assuntos
Hepatócitos/metabolismo , Proteínas/metabolismo , Ticrinafeno/metabolismo , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Humanos , Proteínas/química , Espectrometria de Massas em Tandem , Ticrinafeno/química
8.
Chem Res Toxicol ; 25(4): 895-903, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22329513

RESUMO

The uricosuric diuretic agent tienilic acid (TA) is a thiophene-containing compound that is metabolized by P450 2C9 to 5-OH-TA. A reactive metabolite of TA also forms a covalent adduct to P450 2C9 that inactivates the enzyme and initiates immune-mediated hepatic injury in humans, purportedly through a thiophene-S-oxide intermediate. The 3-thenoyl regioisomer of TA, tienilic acid isomer (TAI), is chemically very similar and is reported to be oxidized by P450 2C9 to a thiophene-S-oxide, yet it is not a mechanism-based inactivator (MBI) of P450 2C9 and is reported to be an intrinsic hepatotoxin in rats. The goal of the work presented in this article was to identify the reactive metabolites of TA and TAI by the characterization of products derived from P450 2C9-mediated oxidation. In addition, in silico approaches were used to better understand both the mechanisms of oxidation of TA and TAI and/or the structural rearrangements of oxidized thiophene compounds. Incubation of TA with P450 2C9 and NADPH yielded the well-characterized 5-OH-TA metabolite as the major product. However, contrary to previous reports, it was found that TAI was oxidized to two different types of reactive intermediates that ultimately lead to two types of products, a pair of hydroxythiophene/thiolactone tautomers and an S-oxide dimer. Both TA and TAI incorporated ¹8O from ¹8O2 into their respective hydroxythiophene/thiolactone metabolites indicating that these products are derived from an arene oxide pathway. Intrinsic reaction coordinate calculations of the rearrangement reactions of the model compound 2-acetylthiophene-S-oxide showed that a 1,5-oxygen migration mechanism is energetically unfavorable and does not yield the 5-OH product but instead yields a six-membered oxathiine ring. Therefore, arene oxide formation and subsequent NIH-shift rearrangement remains the favored mechanism for formation of 5-OH-TA. This also implicates the arene oxide as the initiating factor in TA induced liver injury via covalent modification of P450 2C9. Finally, in silico modeling of P450 2C9 active site ligand interactions with TA using the catalytically active iron-oxo species revealed significant differences in the orientations of TA and TAI in the active site, which correlated well with experimental results showing that TA was oxidized only to a ring carbon hydroxylated product, whereas TAI formed both ring carbon hydroxylated products and an S-oxide.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Diuréticos/metabolismo , Ticrinafeno/metabolismo , Animais , Citocromo P-450 CYP2C9 , Diuréticos/química , Humanos , NADP/metabolismo , Oxirredução , Ratos , Estereoisomerismo , Ticrinafeno/química
9.
Drug Metab Dispos ; 40(4): 836-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22205778

RESUMO

Polymorphisms in cytochrome P450 enzymes can significantly alter the rate of drug metabolism, as well as the extent of drug-drug interactions. Individuals who homozygotically express the CYP2C9*3 allele (I359L) of CYP2C9 exhibit ∼70 to 80% reductions in the oral clearance of drugs metabolized through this pathway; the reduction in clearance is ∼40 to 50% for heterozygotic individuals. Although these polymorphisms result in a decrease in the activity of individual enzyme molecules, we hypothesized that decreasing the total number of active enzyme molecules in an in vitro system (CYP2C9*1/*1 human liver microsomes) by an equivalent percentage could produce the same net change in overall metabolic capacity. To this end, the selective CYP2C9 mechanism-based inactivator tienilic acid was used to reduce irreversibly the total CYP2C9 activity in human liver microsomes. Tienilic acid concentrations were effectively titrated to produce microsomal preparations with 43 and 73% less activity, mimicking the CYP2C9*1/*3 and CYP2C9*3/*3 genotypes, respectively. With probe substrates specific for other major cytochrome P450 enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), no apparent changes in the rate of metabolism were noted for these enzymes after the addition of tienilic acid, which suggests that this model is selective for CYP2C9. In lieu of using rare human liver microsomes from CYP2C9*1/*3 and CYP2C9*3/*3 individuals, a tienilic acid-created knockdown in human liver microsomes may be an appropriate in vitro model to determine CYP2C9-mediated metabolism of a given substrate, to determine whether other drug-metabolizing enzymes may compensate for reduced CYP2C9 activity, and to predict the extent of genotype-dependent drug-drug interactions.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores Enzimáticos/farmacologia , Microssomos Hepáticos/enzimologia , Polimorfismo Genético , Ticrinafeno/farmacologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C9 , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Genótipo , Humanos , Técnicas In Vitro , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Fenótipo , Ticrinafeno/metabolismo
10.
Drug Metab Dispos ; 37(1): 59-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18838506

RESUMO

In vitro experiments were conducted to compare k(inact), K(I) and inactivation efficiency (k(inact)/K(I)) of cytochrome P450 (P450) 2C9 by tienilic acid and (+/-)-suprofen using (S)-flurbiprofen, diclofenac, and (S)-warfarin as reporter substrates. Although the inactivation of P450 2C9 by tienilic acid when (S)-flurbiprofen and diclofenac were used as substrates was similar (efficiency of approximately 9 ml/min/micromol), the inactivation kinetics were characterized by a sigmoidal profile. (+/-)-Suprofen inactivation of (S)-flurbiprofen and diclofenac hydroxylation was also described by a sigmoidal profile, although inactivation was markedly less efficient (approximately 1 ml/min/micromol). In contrast, inactivation of P450 2C9-mediated (S)-warfarin 7-hydroxylation by tienilic acid and (+/-)-suprofen was best fit to a hyperbolic equation, where inactivation efficiency was moderately higher (10 ml/min/micromol) and approximately 3-fold higher (3 ml/min/micromol), respectively, relative to that of the other probe substrates, which argues for careful consideration of reporter substrate when mechanism-based inactivation of P450 2C9 is assessed in vitro. Further investigations into the increased inactivation seen with tienilic acid relative to that with (+/-)-suprofen revealed that tienilic acid is a higher affinity substrate with a spectral binding affinity constant (K(s)) of 2 microM and an in vitro half-life of 5 min compared with a K(s) of 21 microM and a 50 min in vitro half-life for (+/-)-suprofen. Lastly, a close analog of tienilic acid with the carboxylate functionality replaced by an oxirane ring was devoid of inactivation properties, which suggests that an ionic binding interaction with a positively charged residue in the P450 2C9 active site is critical for recognition and mechanism-based inactivation by these close structural analogs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Diuréticos/farmacologia , Inibidores Enzimáticos/farmacologia , Suprofeno/farmacologia , Ticrinafeno/farmacologia , Anti-Inflamatórios não Esteroides/farmacocinética , Cromatografia Líquida , Citocromo P-450 CYP2C9 , Diuréticos/farmacocinética , Inibidores Enzimáticos/farmacocinética , Espectrofotometria Ultravioleta , Especificidade por Substrato , Suprofeno/farmacocinética , Espectrometria de Massas em Tandem , Ticrinafeno/farmacocinética
11.
Toxicol Lett ; 183(1-3): 81-9, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18992796

RESUMO

Tienilic acid is reported to be converted into electrophilic metabolites by cytochrome P450 (CYP) in vitro. In vivo, however, the metabolites have not been detected and their effect on liver function is unknown. We previously demonstrated that tienilic acid decreased the GSH level and upregulated genes responsive to oxidative/electrophilic stresses, such as heme oxygenase-1 (Ho-1), glutamate-cysteine ligase modifier subunit (Gclm) and NAD(P)H dehydrogenase quinone 1 (Nqo1), in rat liver, as well as inducing hepatotoxicity by co-treatment with the glutathione biosynthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO). In this study, for the first time, we identified a glutathione-tienilic acid adduct, a stable conjugate of putative electrophilic metabolites with glutathione (GSH), in the bile of rats given a single oral dose of tienilic acid (300mg/kg). Furthermore, a tienilic acid-induced decrease in the GSH level and upregulation of Ho-1, Gclm and Nqo1 were completely blocked by pretreatment with the CYP inhibitor 1-aminobenzotriazole (ABT, 66mg/kg, i.p.). The increase in the serum ALT level and hepatocyte necrosis resulting from the combined dosing of BSO and tienilic acid was prevented by ABT, despite a low hepatic GSH level. These findings suggest that the electrophilic metabolites of tienilic acid produced by CYP induce electrophilic/oxidative stresses in the rat liver and this contributes to the hepatotoxicity of tienilic acid under impaired GSH biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatopatias/metabolismo , Fígado/efeitos dos fármacos , Ticrinafeno/toxicidade , Administração Oral , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Anti-Hipertensivos/toxicidade , Apoptose/efeitos dos fármacos , Bile/química , Bile/metabolismo , Doença Hepática Induzida por Substâncias e Drogas , Cromatografia Líquida/métodos , Perfilação da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutationa/metabolismo , Heme Oxigenase-1/genética , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Masculino , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem/métodos , Ticrinafeno/administração & dosagem , Ticrinafeno/química , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Toxicol Appl Pharmacol ; 232(2): 280-91, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18708081

RESUMO

To investigate the hepatotoxic potential of tienilic acid in vivo, we administered a single oral dose of tienilic acid to Sprague-Dawley rats and performed general clinicopathological examinations and hepatic gene expression analysis using Affymetrix microarrays. No change in the serum transaminases was noted at up to 1000 mg/kg, although slight elevation of the serum bile acid and bilirubin, and very mild hepatotoxic changes in morphology were observed. In contrast to the marginal clinicopathological changes, marked upregulation of the genes involved in glutathione biosynthesis [glutathione synthetase and glutamate-cysteine ligase (Gcl)], oxidative stress response [heme oxygenase-1 and NAD(P)H dehydrogenase quinone 1] and phase II drug metabolism (glutathione S-transferase and UDP glycosyltransferase 1A6) were noted after 3 or 6 h post-dosing. The hepatic reduced glutathione level decreased at 3-6 h, and then increased at 24 or 48 h, indicating that the upregulation of NF-E2-related factor 2 (Nrf2)-regulated gene and the late increase in hepatic glutathione are protective responses against the oxidative and/or electrophilic stresses caused by tienilic acid. In a subsequent experiment, tienilic acid in combination with l-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of Gcl caused marked elevation of serum alanine aminotransferase (ALT) with extensive centrilobular hepatocyte necrosis, whereas BSO alone showed no hepatotoxicity. The elevation of ALT by this combination was observed at the same dose levels of tienilic acid as the upregulation of the Nrf2-regulated genes by tienilic acid alone. In conclusion, these results suggest that the impairment of glutathione biosynthesis may play a critical role in the development of tienilic acid hepatotoxicity through extensive oxidative and/or electrophilic stresses.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Glutationa/fisiologia , Hepatopatias/prevenção & controle , Ticrinafeno/toxicidade , Animais , Relação Dose-Resposta a Droga , Hepatopatias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
13.
Chem Res Toxicol ; 21(9): 1814-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18690722

RESUMO

In vitro covalent binding assessments of drugs have been useful in providing retrospective insights into the association between drug metabolism and a resulting toxicological response. On the basis of these studies, it has been advocated that in vitro covalent binding to liver microsomal proteins in the presence and the absence of NADPH be used routinely to screen drug candidates. However, the utility of this approach in predicting toxicities of drug candidates accurately remains an unanswered question. Importantly, the years of research that have been invested in understanding metabolic bioactivation and covalent binding and its potential role in toxicity have focused only on those compounds that demonstrate toxicity. Investigations have not frequently queried whether in vitro covalent binding could be observed with drugs with good safety records. Eighteen drugs (nine hepatotoxins and nine nonhepatotoxins in humans) were assessed for in vitro covalent binding in NADPH-supplemented human liver microsomes. Of the two sets of nine drugs, seven in each set were shown to undergo some degree of covalent binding. Among hepatotoxic drugs, acetaminophen, carbamazepine, diclofenac, indomethacin, nefazodone, sudoxicam, and tienilic acid demonstrated covalent binding, while benoxaprofen and felbamate did not. Of the nonhepatotoxic drugs evaluated, buspirone, diphenhydramine, meloxicam, paroxetine, propranolol, raloxifene, and simvastatin demonstrated covalent binding, while ibuprofen and theophylline did not. A quantitative comparison of covalent binding in vitro intrinsic clearance did not separate the two groups of compounds, and in fact, paroxetine, a nonhepatotoxin, showed the greatest amount of covalent binding in microsomes. Including factors such as the fraction of total metabolism comprised by covalent binding and the total daily dose of each drug improved the discrimination between hepatotoxic and nontoxic drugs based on in vitro covalent binding data; however, the approach still would falsely identify some agents as potentially hepatotoxic.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Hepatócitos/efeitos dos fármacos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Testes de Toxicidade/métodos , Acetaminofen/química , Acetaminofen/metabolismo , Acetaminofen/farmacologia , Sítios de Ligação , Buspirona/química , Buspirona/metabolismo , Buspirona/farmacologia , Carbamazepina/química , Carbamazepina/metabolismo , Carbamazepina/farmacologia , Diclofenaco/química , Diclofenaco/metabolismo , Diclofenaco/farmacologia , Difenidramina/química , Difenidramina/metabolismo , Difenidramina/farmacologia , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Humanos , Indometacina/química , Indometacina/metabolismo , Indometacina/farmacologia , Meloxicam , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Paroxetina/química , Paroxetina/metabolismo , Paroxetina/farmacologia , Piperazinas , Propranolol/química , Propranolol/metabolismo , Propranolol/farmacologia , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/metabolismo , Cloridrato de Raloxifeno/farmacologia , Sinvastatina/química , Sinvastatina/metabolismo , Sinvastatina/farmacologia , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/metabolismo , Tiazinas/farmacologia , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Ticrinafeno/química , Ticrinafeno/metabolismo , Ticrinafeno/farmacologia , Triazóis/química , Triazóis/metabolismo
14.
Drug Metab Dispos ; 36(5): 816-23, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18227147

RESUMO

The metabolic activation of a drug to an electrophilic reactive metabolite and its covalent binding to cellular macromolecules is considered to be involved in the occurrence of idiosyncratic drug toxicity (IDT). As a cellular defense system against oxidative and electrophilic stress, phase II enzymes are known to be induced through a Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2/antioxidant response element system. We presumed that it is important for the risk assessment of drug-induced hepatotoxicity and IDTs to observe the biological responses evoked by exposure to reactive metabolites, and then investigated the mRNA induction profiles of phase II enzymes in human hepatocytes after exposure to problematic drugs associated with IDTs, such as ticlopidine, diclofenac, clozapine, and tienilic acid, as well as safe drugs such as levofloxacin and caffeine. According to the results, the problematic drugs exhibited inductive effects on heme oxygenase 1 (HO-1), which contrasted with the safe drugs; therefore, the induction of HO-1 mRNA seems to be correlated with the occurrence of drug toxicity, including IDT caused by electrophilic reactive metabolites. Moreover, glutathione-depletion and cytochrome P450 (P450)-inhibition experiments have shown that the observed HO-1 induction was triggered by the electrophilic reactive metabolites produced from the problematic drugs through P450-mediated metabolic bioactivation. Taken together with our present study, this suggests that HO-1 induction in human hepatocytes would be a good marker of the occurrence of metabolism-based drug-induced hepatotoxicity and IDT caused by the formation of electrophilic reactive metabolites.


Assuntos
Hidroxianisol Butilado/farmacologia , Heme Oxigenase-1/genética , Hepatócitos/efeitos dos fármacos , Acetaminofen/farmacologia , Aspirina/farmacologia , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Clozapina/farmacologia , Diclofenaco/farmacologia , Furosemida/farmacologia , Glucuronosiltransferase/genética , Hepatócitos/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro/metabolismo , Ticlopidina/farmacologia , Ticrinafeno/farmacologia
15.
Bioorg Med Chem ; 15(19): 6397-406, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17643991

RESUMO

Based on the earlier results of our in-house database and compound library, a series of novel clubbed thienyl triazoles was designed which may emerge as potential cdk5/p25 inhibitors, for the treatment of Alzheimer's disease. A benign synthesis was planned so as to take an advantage of MAOS (Microwave Assisted Organic Synthesis) method. Evaluation of the SAR of this series has allowed the identification of compounds 4, 5, 7 and 8 from series I while 13, 14, 16 and 17 from series II as significant cdk5/p25 inhibitors and thus have potential as possible treatments for Alzheimer's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Tiazóis/farmacologia , Ticrinafeno/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Humanos , Micro-Ondas , Relação Estrutura-Atividade , Tiazóis/síntese química
16.
Drug Metab Dispos ; 34(8): 1291-300, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16679385

RESUMO

Primary human hepatocytes in culture are commonly used to evaluate cytochrome P450 (P450) induction via an enzyme activity endpoint. However, other processes can confound data interpretation. To this end, the impact of time-dependent P450 inhibition in this system was evaluated. Using a substrate-cassette approach, P450 activities were determined after incubation with the prototypic inhibitors tienilic acid (CYP2C9), erythromycin, troleandomycin, and fluoxetine (CYP3A4). Kinetic analysis of enzyme inactivation in hepatocytes was used to describe the effect of these time-dependent inhibitors and derive the inhibition parameters kinact and KI) which generally were in good agreement with the values derived using recombinant P450s and human liver microsomes (HLMs). Tienilic acid selectively inhibited CYP2C9-dependent diclofenac 4'-hydroxylation activity, and erythromycin, troleandomycin, and fluoxetine inhibited CYP3A4-dependent midazolam 1'-hydroxylation in a time- and concentration-dependent manner. Fluoxetine also inhibited CYP2C19-dependent S-mephenytoin 4'-hydroxylation in a time- and concentration-dependent manner in hepatocytes, HLMs, and recombinant CYP2C19 (KI 0.4 microM and kinact 0.5 min(-1)). As expected, the effect of fluoxetine on CYP2D6 in hepatocytes was consistent with potent yet reversible inhibition. A very weak time-dependent CYP2C9 inhibitor (AZ1, a proprietary AstraZeneca compound; KI 30 microM and kinact 0.02 min(-1)) effectively abolished CYP2C9 activity over 24 h at low (micromolar) concentrations in primary cultured human hepatocytes. This work demonstrates that caution is warranted in the interpretation of enzyme induction studies with metabolically stable, weak time-dependent inhibitors, which may have dramatic inhibitory effects on P450 activity in this system. Therefore, in addition to enzyme activity, mRNA and/or protein levels should be measured to fully evaluate the P450 induction potential of a drug candidate.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Hepatócitos/enzimologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Eritromicina/farmacologia , Feminino , Fluoxetina/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Ticrinafeno/farmacologia , Troleandomicina/farmacologia
17.
Toxicol Sci ; 91(2): 651-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16543292

RESUMO

We demonstrated that tienilic acid, a diuretic drug withdrawn from the market because of hepatic failure, enhanced hyperbilirubinemia in Eisai hyperbilirubinuria rats (EHBR) with a defect of canalicular multidrug resistance-associated protein 2 (Mrp2). In contrast, no remarkable changes were noted in Sprague-Dawley (SD) rats, the parent strain for EHBR. To investigate a mechanism underlying this enhanced hyperbilirubinemia, we focused on comprehensive effects of tienilic acid on clinicopathological aspects and expression of hepatic transporters. Other than eventual hyperbilirubinemia with slightly increased biliary bilirubin, a single oral treatment of EHBR with tienilic acid at 300 mg/kg caused no changes in serum alanine aminotransferase and alkaline phosphatase, bile flow rate and biliary bile acid secretion, or hepatic morphology. In analyses of mRNA expression of the hepatic transporters, elevated Mrp3 expression in EHBR correlated with an increase in serum total bilirubin, suggesting increased bilirubin transport from the liver into the peripheral blood flow. Hepatic heme oxygenase-1 (Ho-1) mRNA, a stress-induced isoform of the rate-limiting enzyme in the catabolism of heme to bilirubin, was markedly upregulated in EHBR at the same dose at which increased serum bilirubin was seen. A time-course study revealed that marked induction of Ho-1 occurred earlier than that of Mrp3, followed by an increase in serum bilirubin. These results suggest that hepatic Mrp3 and Ho-1 may contribute to tienilic acid-enhanced hyperbilirubinemia in EHBR by inducing increased bilirubin transport from the liver into the blood stream, preceded by potentiation of bilirubin formation in the liver.


Assuntos
Heme Oxigenase-1/metabolismo , Hiperbilirrubinemia/metabolismo , Fígado/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ticrinafeno/toxicidade , Animais , Anti-Hipertensivos/toxicidade , Bilirrubina/sangue , Modelos Animais de Doenças , Diuréticos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Hiperbilirrubinemia/induzido quimicamente , Fígado/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , RNA Mensageiro/metabolismo , Ratos , Simportadores
18.
Biol Pharm Bull ; 28(12): 2189-96, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16327147

RESUMO

To determine efficacy and therapeutic index in the context of ocular hypotensive activity of the new ethacrynic acid (ECA) derivatives of the series (SA8,248 and SA8,389), 9,000 series (SA9,000, SA9,622 and SA9,995) and ticrynafen, we undertook a comparative evaluation of the dose-dependent effects of these compounds on human trabecular meshwork (HTM) cell shape, actin cytoskeletal organization, focal adhesions and transcellular fluid flow. Responses were either scored using an arbitrary scale of 1-5 or quantified. Compounds of the 9000 series (SA9,995>SA9,000>SA9,622) were found to be 14- to 20-fold more potent than ECA, ticrynafen or analogs from the 8,000 series (SA8,389>SA8,248) in terms of ability to induce cell shape alterations in HTM cells. Similarly, compounds of the 9,000 series (SA9,995>SA9,622>SA9,000) were found to be much stronger (2 to 20 fold) than ECA, ticrynafen or analogs of the 8000 series in terms of affecting decreases in actin stress fiber content in HTM cells. Analogs of the 9000 series (SA9,622>SA9,995>SA9,000) were also observed to be 8 to 10 fold more potent than ECA (SA8,389>ECA>SA8,248>ticrynafen) at eliciting decreases in cellular focal adhesions. Interestingly, analogs of the 9000 series (SA9,000>SA9,622>SA9,995) and SA8,248 demonstrated a huge increase (by many folds) in transcellular fluid flow of HTM cell monolayers as compared to ECA and ticrynafen. Collectively, these analyses revealed that the structural modification of ECA improves its ocular hypotensive efficacy, indicating that the SA9,000 series compounds might be promising novel ocular hypotensive drugs.


Assuntos
Actinas/efeitos dos fármacos , Humor Aquoso/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Ácido Etacrínico/farmacologia , Malha Trabecular/efeitos dos fármacos , Actinas/química , Actinas/ultraestrutura , Humor Aquoso/fisiologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/efeitos adversos , Cinamatos/química , Cinamatos/farmacologia , Citoesqueleto/patologia , Citoesqueleto/ultraestrutura , Diuréticos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ácido Etacrínico/análogos & derivados , Ácido Etacrínico/química , Adesões Focais/efeitos dos fármacos , Humanos , Pressão Intraocular/efeitos dos fármacos , Hipotensão Ocular/tratamento farmacológico , Esclera/efeitos dos fármacos , Esclera/metabolismo , Esclera/patologia , Ticrinafeno/farmacologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia
19.
Biochem Pharmacol ; 70(12): 1870-82, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16257391

RESUMO

Drug-induced autoimmune hepatitis is among the most severe hepatic idiosyncratic adverse drug reactions. Considered multifactorial, the disease combines immunological and metabolic aspects, the latter being to date much better known. As for many other model drugs, studies on tienilic acid (TA)-induced hepatitis have evidenced the existence of bioactivation during the hepatic oxidation of the drug, allowing the identification of the neoantigen of anti-LKM2 autoantibodies and the pathway responsible for its formation. However, most of these results are based on the use of microsomal fractions whose relevance to the liver in vivo still needs to be established. In the more complex intact cell environment, several endogenous processes may play a significant role on triggering the reaction and should therefore be considered. In this work we have characterised the kinetics of TA biotransformation in metabolically competent hepatocytes, the influence of TA bioactivation on physiological GSH levels, and the qualitative and quantitative profile of drug-protein conjugates generated in situ, as a function of exposure time. Results confirm that intact hepatocytes reproduce in vitro the metabolic sequence that leads to the functional generation of drug-protein adducts, in conditions that simulate clinical human exposure to TA. Metabolically competent cultured hepatocytes appear as a very promising approach to investigate the early preimmunological events of drug-induced autoimmune hepatitis, adequate to identify the conditions that may modulate the formation and specificity of drug-protein adducts in vivo, to study the hepatic disposition of the TA-protein targets, and to define the specific role of the hepatocyte in the origin of this adverse reaction.


Assuntos
Hepatócitos/metabolismo , Ticrinafeno/farmacocinética , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Células Cultivadas , Família 2 do Citocromo P450 , Glutationa/metabolismo , Hidroxilação , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Esteroide 16-alfa-Hidroxilase/metabolismo
20.
Arch Biochem Biophys ; 409(1): 80-91, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12464247

RESUMO

A series of six site-directed mutants of CYP 2C9 were constructed with the aim to better define the amino acid residues that play a critical role in substrate selectivity of CYP 2C9, particularly in three distinctive properties of this enzyme: (i) its selective mechanism-based inactivation by tienilic acid (TA), (ii) its high affinity and hydroxylation regioselectivity toward diclofenac, and (iii) its high affinity for the competitive inhibitor sulfaphenazole (SPA). The S365A mutant exhibited kinetic characteristics for the 5-hydroxylation of TA very similar to those of CYP 2C9; however, this mutant did not undergo any detectable mechanism-based inactivation by TA, which indicates that the OH group of Ser 365 could be the nucleophile forming a covalent bond with an electrophilic metabolite of TA in TA-dependent inactivation of CYP 2C9. The F114I mutant was inactive toward the hydroxylation of diclofenac; moreover, detailed analyses of its interaction with a series of SPA derivatives by difference visible spectroscopy showed that the high affinity of SPA to CYP 2C9 (K(s)=0.4 microM) was completely lost when the phenyl substituent of Phe 114 was replaced with the alkyl group of Ile (K(s)=190+/-20 microM), or when the phenyl substituent of SPA was replaced with a cyclohexyl group (K(s)=120+/-30 microM). However, this cyclohexyl derivative of SPA interacted well with the F114I mutant (K(s)=1.6+/-0.5 microM). At the opposite end, the F94L and F110I mutants showed properties very similar to those of CYP 2C9 toward TA and diclofenac. Finally, the F476I mutant exhibited at least three main differences compared to CYP 2C9: (i) big changes in the k(cat) and K(m) values for TA and diclofenac hydroxylation, (ii) a 37-fold increase of the K(i) value found for the inhibition of CYP 2C9 by SPA, and (iii) a great change in the regioselectivity of diclofenac hydroxylation, the 5-hydroxylation of this substrate by CYP 2C9 F476I exhibiting a k(cat) of 28min(-1). These data indicate that Phe 114 plays an important role in recognition of aromatic substrates of CYP 2C9, presumably via Pi-stacking interactions. They also provide the first experimental evidence showing that Phe 476 plays a crucial role in substrate recognition and hydroxylation by CYP 2C9.


Assuntos
Hidrocarboneto de Aril Hidroxilases/química , Diclofenaco/farmacologia , Sulfafenazol/farmacologia , Ticrinafeno/farmacologia , Aminoácidos/química , Anti-Infecciosos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Inibidores de Ciclo-Oxigenase/farmacologia , Citocromo P-450 CYP2C9 , Humanos , Cinética , Microssomos/metabolismo , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fenilalanina/química , Ligação Proteica , Estrutura Terciária de Proteína , Software , Espectrofotometria , Especificidade por Substrato , Fatores de Tempo , Raios Ultravioleta , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...