Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Anal Chim Acta ; 1327: 343157, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39266062

RESUMO

BACKGROUND: Lignocellulosic biomass-based derivatives coupled with surface-enhanced Raman spectroscopy (SERS) technology have emerged as an appealing and indispensable tool in food safety and environmental monitoring for rapidly detecting trace contaminants like pesticide residues. The membrane material, serving as a substrate, ensures both sampling flexibility and test accuracy by directing the diffusion-adsorption process of the molecules. However, the existing membrane substrates, critical for the practical application of SERS, suffer from issues such as costly, intricate fabrication procedures, or restricted detection capabilities. RESULTS: Herein, we present a flexible, transparent, and biodegradable cellulose acetate membrane with gold nanoparticles (AuNPs) uniformly embedded, fabricated using a simple scraping method. This membrane achieved a limit of detection (LOD) of thiram pesticide in water at 10-8 g mL-1. The unique optical transparency of the substrates allowed for in-situ detection on surfaces, with an LOD of thiram reaching 30 ng cm-2. SIGNIFICANCE: Furthermore, SERS substrates made from corn stover-derived cellulose acetate enable the detection of various contaminants, highlighting their cost-effectiveness and eco-friendliness because of the abundance and low environmental impact of the raw materials.


Assuntos
Biomassa , Celulose , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Celulose/química , Celulose/análogos & derivados , Tiram/análise , Membranas Artificiais , Estudos de Viabilidade , Limite de Detecção , Propriedades de Superfície , Poluentes Químicos da Água/análise
2.
Food Chem ; 460(Pt 1): 140405, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053272

RESUMO

Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.


Assuntos
Carbono , Contaminação de Alimentos , Frutas , Hidrogéis , Pontos Quânticos , Tiram , Verduras , Verduras/química , Pontos Quânticos/química , Frutas/química , Contaminação de Alimentos/análise , Carbono/química , Tiram/análise , Tiram/química , Hidrogéis/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Prata/química
3.
Pestic Biochem Physiol ; 203: 106010, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084803

RESUMO

Thiram, a prevalent dithiocarbamate insecticide in agriculture, is widely employed as a crop insecticide and preservative. Chronic exposure to thiram has been linked to various irreversible damages, including tibial cartilage dysplasia, erythrocytotoxicity, renal issues, and immune system compromise. Limited research exists on its effects on reproductive organs. This study investigated the reproductive toxicology in mouse testes exposure to varying concentrations (0, 30, 60, and 120 mg/kg) of thiram. Our study uncovered a series of adverse effects in mice subjected to thiram exposure, including emaciation, stunted growth, decreased water intake, and postponed testicular maturation. Biochemical analysis in thiram-exposed mice showed elevated levels of LDH and AST, while ALP, TG, ALT, and urea were decreased. Histologically, thiram disrupted the testis' microarchitecture and compromised its barrier function by widening the gap between spermatogenic cells and promoting fibrosis. The expression of pro-apoptotic genes (Bax, APAF1, Cytc, and Caspase-3) was downregulated, whereas Bcl-2 expression increased in thiram-treated mice compared to controls. Conversely, the expression of Atg5 was upregulated, and mTOR and p62 expression decreased, with a trend towards lower LC3b levels. Thiram also disrupted the blood-testis barrier, significantly reducing the mRNA expression of zona occludens-1 (ZO-1) and occludin. In conclusion, chronic exposure to high thiram concentrations (120 mg/kg) caused testicular tissue damage, affecting the blood-testis barrier and modulating apoptosis and autophagy through the Bcl-2/Bax and mTOR/Atg5/p62 pathways. This study contributes to understanding the molecular basis of thiram-induced reproductive toxicity and underscores the need for further research and precautions for those chronically exposed to thiram and its environmental residuals.


Assuntos
Apoptose , Proteína 5 Relacionada à Autofagia , Autofagia , Barreira Hematotesticular , Proteínas Proto-Oncogênicas c-bcl-2 , Serina-Treonina Quinases TOR , Testículo , Tiram , Proteína X Associada a bcl-2 , Animais , Masculino , Apoptose/efeitos dos fármacos , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Barreira Hematotesticular/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Autofagia/efeitos dos fármacos , Tiram/toxicidade , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Inseticidas/toxicidade , Transdução de Sinais/efeitos dos fármacos
4.
Food Chem ; 458: 140268, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38968715

RESUMO

In recent years, incidents of pesticide pollution and abuse of feed additives have occurred frequently, which pose a great threat to human health. Raman spectroscopy has become an important method in the field of food safety due to its rapidity, simplicity and sensitivity. It is important to obtain complex structure to promote surface-enhanced Raman scattering (SERS) effect. In this study, gold helical nanoparticles with rich surface structure were synthesized using cysteine as induce agent. Notably, the complex helical structure and tip led to an excellent electromagnetic enhancement property. The helical structure showed ultra-sensitive detection of hazardous molecular, such as thiram and ractopamine. Interestingly, the D/L-Au structure had significant chiral optical activity and could be used as an unlabeled SERS platform for enantiomer identification. This study provided an effective strategy for the detection of pesticides and feed additives, which could be applied in other aspects of food safety in the future.


Assuntos
Ouro , Nanopartículas Metálicas , Praguicidas , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Estereoisomerismo , Praguicidas/análise , Praguicidas/química , Tiram/análise , Tiram/química , Fenetilaminas/análise , Fenetilaminas/química , Contaminação de Alimentos/análise , Substâncias Perigosas/análise
5.
Food Chem ; 457: 140486, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032478

RESUMO

A gold nanogap substrate was used to measure the thiram and carbaryl residues in various fruit juices using surface-enhanced Raman scattering (SERS). The gold nanogap substrates can detect carbaryl and thiram with limits of detection of 0.13 ppb (0.13 µgkg-1) and 0.22 ppb (0.22 µgkg-1). Raw SERS data were first preprocessed to reduce noise and undesirable effects and, were later used for model creation, implementing classification, and regression analysis techniques. The partial least-squares regression models achieved the highest prediction correlation coefficient (R2) of 0.99 and the lowest root mean square of prediction value below 0.62 ppb for both pesticide-infected juice samples. Furthermore, to differentiate between juice samples contaminated by both pesticides and control (pesticide-free), logistic-regression classification models were produced and achieved the highest classification accuracies of 100% and 99% for contaminated juice containing thiram and 100% accurate results for contaminated juice containing carbaryl. This indicates that the gold nanogap surface has significant potential for achieving high sensitivity in detecting trace contaminants in food samples.


Assuntos
Carbaril , Contaminação de Alimentos , Sucos de Frutas e Vegetais , Ouro , Resíduos de Praguicidas , Análise Espectral Raman , Tiram , Resíduos de Praguicidas/análise , Análise Espectral Raman/métodos , Carbaril/análise , Sucos de Frutas e Vegetais/análise , Tiram/análise , Contaminação de Alimentos/análise , Ouro/química , Quimiometria , Nanopartículas Metálicas/química , Limite de Detecção , Frutas/química
6.
Biosensors (Basel) ; 14(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39056605

RESUMO

In this work, a new surface plasmon resonance (SPR) sensor based on sulphur-doped titanium dioxide (S-TiO2) nanostructures and molecularly imprinted polymer (MIP) was presented for thiram (THI) determination in milk samples. Firstly, the S-TiO2 nanomaterial with a high product yield was prepared by using a facile sol-gel hydrolysis technique with a high product yield. After that, UV polymerization was carried out for the preparation of the THI-imprinted SPR chip based on S-TiO2 using a mixture including ethylene glycol dimethacrylate (EGDMA) as the cross-linker, N,N'-azobisisobutyronitrile (AIBN) as the initiator, and methacryloylamidoglutamicacid (MAGA) as the monomer. The reliability of the sensor preparation procedure has been successfully proven by characterization studies of the prepared nanomaterials and SPR chip surfaces through spectroscopic, microscopic, and electrochemical methods. As a result, the prepared SPR sensor showed linearity in the range of 1.0 × 10-9-1.0 × 10-7 M with a detection limit (LOD) of 3.3 × 10-10 M in the real samples, and a sensor technique for THI determination with high sensitivity, repeatability, and selectivity can be included in the literature.


Assuntos
Leite , Polímeros Molecularmente Impressos , Enxofre , Ressonância de Plasmônio de Superfície , Tiram , Titânio , Titânio/química , Leite/química , Enxofre/química , Polímeros Molecularmente Impressos/química , Animais , Tiram/análise , Limite de Detecção , Impressão Molecular , Polímeros/química
7.
Food Chem ; 455: 139852, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823142

RESUMO

Over the last few decades, there is increasing worldwide concern over human health risks associated with extensive use of pesticides in agriculture. Developing excellent SERS substrate materials to achieve highly sensitive detection of pesticide residues in the food is very necessary owing to their serious threat to human health through food chains. Self-assembled metallic nanoparticles have been demonstrated to be excellent SERS substrate materials. Hence, alkanethiols-protected gold nanoparticles have been successfully prepared for forming larger-scale two-dimensional monolayer films. These films can be disassembled into a fluid state and re-assembled back to crystallized structure by controlling surface pressure. Further investigations reveal that their self-assembled structures are mainly dependent on the diameter of gold nanoparticles and ligand length. These results suggest that the size ratio of nanoparticle diameter/ligand length within the range of 4.45-2.35 facilitates the formation of highly ordered 2D arrays. Furthermore, these arrays present excellent Surface-Enhanced Raman Scattering performances in the detection of trace thiram, which can cause environmental toxicity to the soil, water, animals and result in severe damage to human health. Therefore, the current study provides an effective way for preparing monodispersed hydrophobic gold nanoparticles and forming highly ordered 2D close-packed SERS substrate materials via self-assembly to detect pesticide residues in food. We believe that, our research provides not only advanced SERS substrate materials for excellent detection performance of thiram in food, but also novel fundamental understandings of self-assembly, manipulation of nanoparticle interactions, and controllable synthesis.


Assuntos
Ouro , Nanopartículas Metálicas , Resíduos de Praguicidas , Análise Espectral Raman , Tiram , Análise Espectral Raman/métodos , Ouro/química , Tiram/química , Tiram/análise , Nanopartículas Metálicas/química , Resíduos de Praguicidas/química , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise
8.
Food Chem ; 452: 139569, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744131

RESUMO

Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione­iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 µg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.


Assuntos
Colorimetria , Sucos de Frutas e Vegetais , Glutationa , Ferro , Tiram , Colorimetria/instrumentação , Sucos de Frutas e Vegetais/análise , Ferro/química , Ferro/análise , Glutationa/química , Glutationa/análise , Tiram/análise , Tiram/química , Contaminação de Alimentos/análise , Praguicidas/análise , Praguicidas/química , Limite de Detecção , Técnicas Biossensoriais/instrumentação
9.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711406

RESUMO

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Assuntos
Antioxidantes , Fungicidas Industriais , Glutationa , Ratos Wistar , Espécies Reativas de Oxigênio , Tiram , Animais , Masculino , Ratos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Antioxidantes/farmacologia , Boca/metabolismo , Boca/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa Peroxidase/metabolismo
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124300, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640626

RESUMO

Owing to good flexibility, prominent mechanical properties, three-dimensional (3D) nanofibrous structure and low background interference, sustainable bacterial nanocellulose (BNC) is a highly attractive matrix material for surface-enhanced Raman scattering (SERS) sensor. Herein, a highly sensitive, flexible and scalable silver nanorod-decorated BNC (AgNRs@BNC) SERS sensor is developed by a simple vacuum-assisted filtration. The AgNRs were firmly locked in the 3D nanofibrous network of cellulose nanofibers upon vacuum drying process, resulting in the formation of 3D SERS hotspots with a depth of more than 10 µm on the sensor. With 4-aminothiophenol (4-ATP) as a target molecule, a lowest distinguishable level of 10-12 M and a high enhancement factor of 1.1 × 109 were realized by the optimal AgNRs1.5@BNC SERS sensor. Moreover, the AgNRs@BNC SERS sensor exhibits high detectable level of 10-9 M for thiram molecules by integrating with a portable Raman spectrometer. Besides, toxic thiram residues on grape surface could be directly on-site identified by the combination of AgNRs@BNC SERS sensors and a portable Raman spectrometer through a feasible press-and-peel method. The flexible AgNRs@BNC SERS sensor cooperated with portable Raman system demonstrates great potential for on-site detection of pesticide residues on irregular food surfaces.


Assuntos
Celulose , Nanotubos , Resíduos de Praguicidas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Celulose/química , Nanotubos/química , Resíduos de Praguicidas/análise , Tiram/análise , Compostos de Anilina/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/análise , Bactérias , Vitis/química , Limite de Detecção
11.
Sci Total Environ ; 928: 172305, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593872

RESUMO

Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.


Assuntos
Autofagia , Galinhas , Osteocondrodisplasias , Doenças das Aves Domésticas , Transdução de Sinais , Serina-Treonina Quinases TOR , Tiram , Animais , Tiram/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/induzido quimicamente , Proteína 1 do Complexo Esclerose Tuberosa/genética , Tíbia/efeitos dos fármacos , Herbicidas/toxicidade
12.
Pestic Biochem Physiol ; 200: 105817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582587

RESUMO

Thiram is a kind of organic compound, which is commonly used for sterilization, insecticidal and deodorization in daily life. Its toxicology has been broadly studied. Recently, more and more microRNAs have been shown to participate in the regulation of cartilage development. However, the potential mechanism by which microRNA regulates chondrocyte growth is still unclear. Our experiments have demonstrated that thiram can hamper chondrocytes development and cause a significant increase in miR-203a content in vitro and in vivo trials. miR-203a mimic significantly decrease in mRNA and protein expression of Wnt4, Runx2, COL2A1, ß-catenin and ALP, and significantly enhance the mRNA and protein levels of GSK-3ß. It has been observed that overexpression of miR-203a hindered chondrocytes development. In addition, Runx2 was confirmed to be a direct target of miR-203a by dual luciferase report gene assay. Transfection of si-Runx2 into chondrocytes reveals that significant downregulation of genes is associated with cartilage development. Overall, these results suggest that overexpression of miR-203a inhibits the expression of Runx2. These findings are conducive to elucidate the mechanism of chondrocytes dysplasia induced by thiram and provide new research ideas for the toxicology of thiram.


Assuntos
Condrócitos , MicroRNAs , Condrócitos/metabolismo , Tiram , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética
13.
Pestic Biochem Physiol ; 201: 105847, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685209

RESUMO

Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.


Assuntos
Proliferação de Células , Galinhas , Condrócitos , RNA Longo não Codificante , Tiram , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tiram/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/patologia , Apoptose/efeitos dos fármacos
14.
Ecotoxicol Environ Saf ; 275: 116260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564867

RESUMO

Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Galinhas , Leucina , Proteína Relacionada ao Hormônio Paratireóideo , Disbiose
15.
Talanta ; 274: 125989, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537357

RESUMO

Rapid and sensitive determination of pesticide residues in fruits and vegetables is critical for human health and ecosystems. This paper used an Ag-modified CuO sphere-cavity array (CuO@Ag) electrode as a thiram SERS/electrochemical dual readout detection platform. Numerous Raman "hotspots" generated by uniformly distributed silver nanoparticles, charge transfer at the CuO@Ag interface, and the formation of Ag-thiram complexes contribute to the significant enhancement of this SERS substrate, which results in excellent SERS performance with an enhancement factor up to 1.42 × 106. When using SERS as the readout technique, the linear range of the substrate for thiram detection was 0.05-20 nM with a detection limit (LOD) of up to 0.0067 nM. Meanwhile, a correlation between the value of change in current density and thiram concentration was established due to the formation of stable complexes of thiram with Cu2+ generated at specific potentials. The linear range of electrochemical detection was 0.05-20.0 µM, and the detection limit was 0.0167 µM. The newly devised dual-readout sensor offers notable sensitivity and stability. The two signal readout methods complement each other in terms of linear range and detection limit, making it a convenient tool for assessing thiram residue levels in agro-food. At the same time, the combination of commercially available portable equipment makes on-site monitoring possible.


Assuntos
Cobre , Técnicas Eletroquímicas , Prata , Análise Espectral Raman , Tiram , Tiram/análise , Cobre/química , Cobre/análise , Prata/química , Análise Espectral Raman/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Eletrodos , Resíduos de Praguicidas/análise
16.
Environ Sci Technol ; 58(11): 5117-5128, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38440993

RESUMO

Vulcanization accelerators (VAs) serve as crucial additives in synthetic rubber on a global scale. Despite their widespread use, the environmental presence, distribution, and associated exposure risks of VAs remain poorly understood. This study compiled a target list and conducted a screening for eight classes encompassing 42 VAs in diverse urban dust samples from South China. A total of 40 of the 42 target VAs were detectable across all four studied regions, among which 30 were identified for the first time in the environment. Among the eight structure-classified VA classes, xanthates exhibited the highest concentrations (median: 3810-81,300 ng/g), followed by thiazoles, guanidines, sulfenamides, dithiocarbamates, thiurams, thioureas, and others. The median total concentrations of all target VAs (∑VAs) were determined to be 5060 ng/g in road dust, 5730 ng/g in parking lot dust, 29,200 ng/g in vehicle repair plant dust, and 84,300 ng/g in household dust, indicating the widespread presence of numerous rubber-derived VAs in various urban environments. This study marked the first systematic effort to identify a wide range of emerging rubber-derived VAs prevalent in urban environments. The findings call for increased attention to these widely utilized but less well-evaluated chemicals in future research and environmental management efforts.


Assuntos
Poeira , Inseticidas , Poeira/análise , Exposição Ambiental/análise , Tiram , Tiazóis , China , Monitoramento Ambiental
17.
Int J Biol Macromol ; 262(Pt 1): 129941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342254

RESUMO

In response to the prevalent issue of thiram as a common pesticide residue on the surface of fruits and vegetables, our research team employed an acidic hydrated metal salt low co-fusion solvent to dissolve cellulose lysis slurry. Subsequently, a regenerated cellulose membrane (RCM) was successfully prepared via sol-gel method. Uniformly sized Ag nanoparticles (NPs) were deposited on RCM utilizing the continuous ion layer adsorption and reaction (SILAR) technique. The resulting Ag NPs/RCM flexible surface-enhanced Raman spectroscopy (SERS) substrates exhibited a minimum detection limit of 5 × 10-9 M for Rhodamine 6G (R6G), demonstrating good uniformity (RSD = 4.86 %) and reproducibility (RSD = 3.07 %). Moreover, the substrate displayed a remarkable sensitivity of 10-10 M toward thiram standard solution. Given its inherent flexibility, the substrate proves advantageous for the detection of three-dimensional environments such as fruit and vegetable surfaces, and its practicality has been confirmed in the detection of thiram residue on apples, tomatoes, pears, and other fruits and vegetables.


Assuntos
Nanopartículas Metálicas , Tiram , Tiram/análise , Verduras/química , Frutas/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata/química , Análise Espectral Raman/métodos , Celulose/análise
18.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417796

RESUMO

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Assuntos
Carica , Glutationa Transferase , Tiram , Carica/enzimologia , Carica/genética , Fungicidas Industriais/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/química , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Theriogenology ; 218: 183-192, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330862

RESUMO

Previously studied classes of pesticides, including organochlorines, organophosphates and pyrethroids disturb the mechanism that causes bovine myometrial contractions. Hence, the aim of this study was to investigate the effects of carbaryl and thiram, which are representative carbamate pesticides commonly used in global agriculture, on the motor and secretory functions of bovine cervixes. Additionally, the impacts of these pesticides on intra- and intercellular signaling in vitro were estimated. In this study, cervical cells or strips were obtained from cows at days 18-20 of the estrous cycle and were treated with carbaryl or thiram. Neither carbamate (10 or 100 ng/ml) exerted cytotoxic effects. Carbaryl increased the level of mRNA (at a dose of 0.1 ng/ml) and protein (at both doses, 1 and 10 ng/ml) expression for the oxytocin receptor (OXTR), while thiram (at 0.1 and 10 ng/ml or 0.1-10 ng/ml, respectively) caused the opposite effects. Moreover, the level of the second messenger inositol-trisphosphate (IP3) was decreased by carbaryl (10 ng/ml) but increased by thiram (10 ng/ml). Only thiram decreased prostaglandin-endoperoxide synthase 2 (PTGS2; 0.1 ng/ml) and aldo-keto reductase family 1, member B1 (AKR1B1; 0.1 ng/ml), and prostaglandin E synthase 2 (PTGES2; 0.1-10 ng/ml) mRNA expression, while thiram (0.1-10 ng/ml) and carbaryl (0.1 and 10 ng/ml) both decreased the release of PGF2α. Carbaryl (10 ng/ml) and thiram (10 ng/ml) also decreased the level of a gap junction protein (GAP). Moreover, carbaryl (10 ng/ml) decreased the level of myosin light chain kinase (MLCK). However, the strength of cervical contractions was increased by thiram (1 and 10 ng/ml) but decreased by carbaryl (1 and 10 ng/ml). Carbaryl increased the receptivity of cervical cells to oxytocin (OXT), but inhibited further transduction (IP3) of this signal. Hence, direct inhibition of cervical strip contraction may occur. In contrast, thiram mostly decreased the receptivity of cervical cells to OXT, while it stimulated the contraction of cervical strips. Moreover, compared to carbaryl, thiram more greatly affected the synthesis and release of prostaglandins. These results suggest that carbaryl and thiram disturb OXT signaling, PG secretion and cervical contraction in vitro.


Assuntos
Carbaril , Praguicidas , Feminino , Bovinos , Animais , Carbamatos/farmacologia , Tiram , Colo do Útero/metabolismo , Ocitocina/metabolismo , RNA Mensageiro/genética
20.
Food Chem ; 441: 138345, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185049

RESUMO

Advances in flexible SERS substrates has made it possible to approach the ultimate goal of rapid in-situ monitoring of fruit and vegetable safety, but its vulnerability under laser ablation results in low utilization. In order to solve this problem, a 3D framework of TiO2-doped PVDF\PVP polymer was utilized to self-assemble gold-silver core-shell nanorods (Au@Ag NRs) to prepare a flexible SERS substrate with good physical stability and self-cleaning properties. This substrate showed excellent detection limit and recyclability after the detection of three pesticide residues in apple peel. The LOD of methyl-parathion (MP) was as low as 0.037 ng/cm2, with an RSD of 5.61 % for 5 cycle-detection. The recoveries of two additional pesticides thiram (TMTD) and chlorpyrifos (CPF) were 86.32 %-112.47 %. We hoped that this research will contribute to providing a recyclable and facile method for in-situ analysis of fruit and vegetable surface residues and functional manufacture of flexible SERS substrates.


Assuntos
Malus , Nanopartículas Metálicas , Resíduos de Praguicidas , Praguicidas , Malus/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Praguicidas/análise , Resíduos de Praguicidas/análise , Tiram/análise , Verduras/química , Ouro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA