Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.650
Filtrar
1.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622195

RESUMO

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Solo/química , Aquecimento Global , Agricultura/métodos , Gases de Efeito Estufa/análise , Oryza/química , Metano/análise , Carbono , Óxido Nitroso/análise
2.
Huan Jing Ke Xue ; 45(5): 2741-2747, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629537

RESUMO

To evaluate the effect of thermal hydrolysis pretreatment time on the sludge anaerobic digestion system of wastewater treatment plants (WWTPs) in Daxing district, Beijing, the structure and diversity of microbial communities in primary sludge and an activated sludge anaerobic digestion system with different thermal hydrolysis pretreatment times (15 min, 30 min, and 45 min) were analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the dominant groups of digested sludge were mainly distributed in Firmicutes, Cloacimonadota, Chloroflexi, and Synergistota, with W5 being the most common genus. The sum of relative abundance of the dominant phylum was greater than 60%, and W5 accounted for 20.8%-54.5%, showing a high abundance of a few dominant species. During the anaerobic digestion of thermo-hydrolyzed sludge, the relative abundance of acetogenic methanogens decreased due to high levels of volatile fatty acids (VFAs) and ammonia nitrogen (NH4+-N) concentrations, which suggested that the hydrogenophilic methanogenic pathway was more than that of the acetogenic methanogenic pathway. Correlation analysis showed that the soluble protein and pH of thermo-hydrolyzed sludge, NH4+-N of digested sludge, and thermal hydrolysis pretreatment time were the four main environmental factors affecting microbial community structure, and NH4+-N of digested sludge had the largest negative correlation with methanogens. The thermal hydrolysis pretreatment time was negatively correlated with both the Chao index and Shannon index, so longer thermal hydrolysis pretreatment time was not conducive to microbial flora during anaerobic digestion.


Assuntos
Microbiota , Esgotos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Metano , Reatores Biológicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38607367

RESUMO

An aerobic methanotroph was isolated from a secondary sedimentation tank of a wastewater treatment plant and designated strain OY6T. Cells of OY6T were Gram-stain-negative, pink-pigmented, motile rods and contained an intracytoplasmic membrane structure typical of type I methanotrophs. OY6T could grow at a pH range of 4.5-7.5 (optimum pH 6.5) and at temperatures ranging from 20 °C to 37 °C (optimum 30 °C). The major cellular fatty acids were C14 : 0, C16 : 1ω7c/C16 : 1ω6c and C16 : 1ω5c; the predominant respiratory quinone was MQ-8. The genome size was 5.41 Mbp with a DNA G+C content of 51.7 mol%. OY6T represents a member of the family Methylococcaceae of the class Gammaproteobacteria and displayed 95.74-99.64 % 16S rRNA gene sequence similarity to the type strains of species of the genus Methylomonas. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) confirmed that OY6T should be classified as representing a novel species. The most closely related type strain was Methylomonas fluvii EbBT, with 16S rRNA gene sequence similarity, ANI by blast (ANIb), ANI by MUMmer (ANIm) and dDDH values of 99.64, 90.46, 91.92 and 44.5 %, respectively. OY6T possessed genes encoding both the particulate methane monooxygenase enzyme and the soluble methane monooxygenase enzyme. It grew only on methane or methanol as carbon sources. On the basis of phenotypic, genetic and phylogenetic data, strain OY6T represents a novel species within the genus Methylomonas for which the name Methylomonas defluvii sp. nov. is proposed, with strain OY6T (=GDMCC 1.4114T=KCTC 8159T=LMG 33371T) as the type strain.


Assuntos
Methylococcaceae , Methylomonas , Metano , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias , Methylococcaceae/genética , Oxirredução
4.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
5.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569960

RESUMO

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Oryza/metabolismo , Agricultura/métodos , Aquecimento Global , Produção Agrícola , Óxido Nitroso/análise , Metano/análise , Solo , China
6.
Medicine (Baltimore) ; 103(15): e37580, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608057

RESUMO

In this research, it was aimed to evaluate effects of methane emissions on multiple myeloma related mortality rates. Two countries in Europe (Germany and Netherlands) and 1 country for each region (Turkey, USA, Brazil, Egypt, and Australia) were selected within The World Health Organization Database. Multiple myeloma mortality rates of countries between 2009 and 2019 were used as dependent variable of the research. Methane emission level and agriculture methane levels of countries were used as independent variables from The World Bank Database. Current health expenditure and healthy life expectancy were used as controlling variables. Multiple myeloma-related mortality rate was the highest in the USA, followed by Germany, Brazil, Turkey, Australia, Netherlands, and Egypt. Difference analysis results were significant (P < .05). Methane and agriculture methane emissions were the highest in the USA. Multiple myeloma mortality was positively correlated with methane emissions (R = 0.504; P < .01), agricultural methane emissions (R = 0.705; P < .01), and current health expenditure (R = 0.528; P < .01). According to year and country controlled correlation analysis results, multiple myeloma mortality (MMM) was positively correlated with methane emissions (R = 0.889; P < .01), agricultural methane emissions (R = 0.495; P < .01), and current health expenditure (R = 0.704; P < .01). Methane emission (B = 0.01; P < .05), Germany (B = 9010.81; P < .01), the USA (B = 26516.77; P < .01), and Brazil (B = 4886.14; P < .01) had significant effect on MMM. Nonagricultural methane production has an increasing effect on MMM. Therefore, by looking at the differences between agricultural methane emissions and general methane emissions, studies can be conducted that allow for more effective global comparisons.


Assuntos
Mieloma Múltiplo , Humanos , Europa (Continente) , Agricultura , Metano , Organização Mundial da Saúde
7.
Chemosphere ; 355: 141831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561162

RESUMO

The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds.


Assuntos
Lignina , Microbiota , Lignina/metabolismo , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Metano/metabolismo , Biocombustíveis
8.
Chemosphere ; 355: 141832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570044

RESUMO

Climate change and plastic pollution are likely the most relevant challenges for the environment in the 21st century. Developing cost-effective technologies for the bioconversion of methane (CH4) into polyhydroxyalkanoates (PHAs) could simultaneously mitigate CH4 emissions and boost the commercialization of biodegradable polymers. Despite the fact that the role of temperature, nitrogen deprivation, CH4:O2 ratio or micronutrients availability on the PHA accumulation capacity of methanotrophs has been carefully explored, there is still a need for optimization of the CH4-to-PHA bioconversion process prior to becoming a feasible platform in future biorefineries. In this study, the influence of different cultivation broth pH values (5.5, 7, 8.5 and 10) on bacterial biomass growth, CH4 bioconversion rate, PHA accumulation capacity and bacterial community structure was investigated in a stirred tank bioreactor under nitrogen deprivation conditions. Higher CH4 elimination rates were obtained at increasing pH, with a maximum value of 50.4 ± 2.7 g CH4·m-3·h-1 observed at pH 8.5. This was likely mediated by an increased ionic strength in the mineral medium, which enhanced the gas-liquid mass transfer. Interestingly, higher PHB accumulations were observed at decreasing pH, with the highest PHB contents recorded at a pH 5.5 (43.7 ± 3.4 %w·w-1). The strong selective pressure of low pH towards the growth of Type II methanotrophic bacteria could explain this finding. The genus Methylocystis increased its abundance from 34 % up to 85 and 90 % at pH 5.5 and 7, respectively. On the contrary, Methylocystis was less abundant in the community enriched at pH 8.5 (14 %). The accumulation of intracellular PHB as energy and carbon storage material allowed the maintenance of high CH4 biodegradation rates during 48 h after complete nitrogen deprivation. The results here obtained demonstrated for the first time a crucial and multifactorial role of pH on the bioconversion performance of CH4 into PHA.


Assuntos
Methylocystaceae , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Carbono/metabolismo , Metano/metabolismo , Methylocystaceae/metabolismo , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio
9.
Microbiome ; 12(1): 68, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570877

RESUMO

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Assuntos
Archaea , Metano , Archaea/genética , Marcação por Isótopo , Oxirredução , Metano/metabolismo , Carbono/metabolismo , DNA , Anaerobiose , Sedimentos Geológicos , Filogenia
10.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569319

RESUMO

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Assuntos
Fabaceae , Gases de Efeito Estufa , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Solo , Metano/análise , Nitrogênio/metabolismo , Dióxido de Carbono/análise , Agricultura
11.
J Environ Manage ; 357: 120736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574706

RESUMO

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Biocombustíveis/análise , Saneamento , Solo/química , Metano/análise , Óxido Nitroso/metabolismo , Efeito Estufa
12.
J Environ Manage ; 357: 120828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579473

RESUMO

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Assuntos
Reatores Biológicos , Água , Humanos , Animais , Suínos , Anaerobiose , Água/análise , Fezes , Digestão , Metano/análise
13.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
14.
Animal ; 18(4): 101134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593679

RESUMO

Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.


Assuntos
Plantas Medicinais , Animais , Plantas Medicinais/metabolismo , Metano/metabolismo , Ruminantes/metabolismo , Fermentação , Rúmen/metabolismo
15.
Environ Sci Technol ; 58(15): 6575-6585, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564483

RESUMO

Wide-area aerial methods provide comprehensive screening of methane emissions from oil and gas (O & G) facilities in production basins. Emission detections ("plumes") from these studies are also frequently scaled to the basin level, but little is known regarding the uncertainties during scaling. This study analyzed an aircraft field study in the Denver-Julesburg basin to quantify how often plumes identified maintenance events, using a geospatial inventory of 12,629 O & G facilities. Study partners (7 midstream and production operators) provided the timing and location of 5910 maintenance events during the 6 week study period. Results indicated three substantial uncertainties with potential bias that were unaddressed in prior studies. First, plumes often detect maintenance events, which are large, short-duration, and poorly estimated by aircraft methods: 9.2 to 46% (38 to 52%) of plumes on production were likely known maintenance events. Second, plumes on midstream facilities were both infrequent and unpredictable, calling into question whether these estimates were representative of midstream emissions. Finally, 4 plumes attributed to O & G (19% of emissions detected by aircraft) were not aligned with any O & G location, indicating that the emissions had drifted downwind of some source. It is unclear how accurately aircraft methods estimate this type of plume; in this study, it had material impact on emission estimates. While aircraft surveys remain a powerful tool for identifying methane emissions on O & G facilities, this study indicates that additional data inputs, e.g., detailed GIS data, a more nuanced analysis of emission persistence and frequency, and improved sampling strategies are required to accurately scale plume estimates to basin emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Aeronaves , Metano/análise , Gás Natural/análise
16.
Environ Sci Technol ; 58(15): 6637-6646, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38580315

RESUMO

Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.


Assuntos
Euryarchaeota , Selênio , Metano , Proteômica , Selenocisteína/metabolismo , Euryarchaeota/metabolismo , Estresse Oxidativo , Oxigênio , Anaerobiose , Reatores Biológicos
17.
Nat Commun ; 15(1): 3300, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632227

RESUMO

Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.


Assuntos
Elétrons , Methanosarcina , Transporte de Elétrons , Methanosarcina/metabolismo , Oxirredução , Citocromos/metabolismo , Metano/metabolismo
18.
Sci Rep ; 14(1): 8656, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622318

RESUMO

The adaptation of biochar in anaerobic digestion (AD) positively influences the conversion of substrate to biomethane and promotes system stability. This study investigated the influence of biochar (BC) doses (0 to 8 g/L) on the Biochemical Methane Potential (BMP) of glucose during a 60-day AD in a mesophilic batch-type reactor. The first 6.5 weeks of the experimentation were dedicated to the microorganism's adaptation to the biochar and degradation of organics from the used inoculum (3 phases of the glucose feeding). The last 2 weeks (4th phase of glucose feeding) represented the assumption, that glucose is the sole carbon source in the system. A machine learning model based on the autoregressive integrated moving average (ARIMA) method was used to model the cumulative BMP. The results showed that the BMP increased with the amount of BC added. The highest BMP was obtained at a dose of 8 g/L, with a maximum cumulative BMP of 390.33 mL CH4/g-VS added. Likewise, the system showed stability in the pH (7.17 to 8.17). In contrast, non-amended reactors produced only 135.06 mL CH4/g-VS and became acidic at the end of the operation. Reducing the influence of carbon from inoculum, sharpened the positive effect of BC on the kinetics of biomethane production from glucose.


Assuntos
Reatores Biológicos , Carbono , Anaerobiose , Carvão Vegetal , Metano
19.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600111

RESUMO

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Oxirredução , Ferro , Metano/metabolismo , Minerais
20.
Astrobiology ; 24(4): 407-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603526

RESUMO

Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.


Assuntos
Fosfinas , Vênus , Meio Ambiente Extraterreno , Raios Ultravioleta , Processos Fotoquímicos , Atmosfera , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...