Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.952
Filtrar
1.
Environ Int ; 185: 108556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461777

RESUMO

Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA). Using a murine model, six-week-old male CD1 mice were exposed to 10 and 20 mg/kg/day of each chemical for 14 days as 14-day exposure and 1 and 5 mg/kg/day for 30 days as 30-day exposure. Results indicate that PFOA exposure induced significant hepatotoxicity, characterized by liver enlargement, and elevated serum biomarkers. In contrast, LiTFSI exposure showed lower hepatotoxicity, accompanied by mild liver injuries. Despite higher bioaccumulation of PFOA in serum, LiTFSI exhibited a similar range of liver concentrations compared to PFOA. Reduced Representative Bisulfite Sequencing (RRBS) analysis revealed distinct DNA methylation patterns between 14-day and 30-day exposure for the two compounds. Both LiTFSI and PFOA implicated liver inflammatory pathways and lipid metabolism. Transcriptional results showed that differentially methylated regions in both exposures are enriched with cancer/disease-related motifs. Furthermore, Peroxisome proliferator-activated receptor alpha (PPARα), a regulator of lipid metabolism, was upregulated in both exposures, with downstream genes indicating potential oxidative damages. Overall, LiTFSI exhibits distinct hepatotoxicity profiles, emphasizing the need for comprehensive assessment of emerging PFAS compounds.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Hidrocarbonetos Fluorados , Imidas , Masculino , Animais , Camundongos , Lítio/metabolismo , Lítio/farmacologia , Fluorocarbonos/toxicidade , Caprilatos/toxicidade , Epigênese Genética , Fígado , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
2.
Biosens Bioelectron ; 252: 116151, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402725

RESUMO

Perylene diimide (PDI) is a readily reducible electron-deficient dye that exhibits strong photoluminescent properties, providing new opportunities for synthesizing novel electrochemiluminescence (ECL) emitters. In this study, ethylene glycol (EG) was used to induce the self-assembly of PDI supramolecules for the preparation of ultrathin EG-PDI nanosheets characterized by low crystallinity and weak stacking interaction. Notably, EG-PDI integrates luminescent and catalytic functions into one device, accelerating the interfacial electron transfer and the faster charge transfer kinetics of EG-PDI with K2S2O8. Furthermore, the narrow band gap of EG-PDI facilitates its excitation at an ultra-low potential (-0.3 V). To improve the efficiency of tumor marker analysis, multifunctional Au nanostars (ANS) was introduced both as an energy acceptor of the ECL system and a probe for the photothermal system. Dual-mode immunoassay have demonstrated superior analytical performance in detecting alpha-fetoprotein (AFP), meeting the requirements of modern clinical diagnostics in resource-limited environments.


Assuntos
Técnicas Biossensoriais , Imidas , Perileno/análogos & derivados , Imunoensaio , Etilenoglicóis
3.
J Environ Sci (China) ; 140: 103-112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331492

RESUMO

Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*-, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism.


Assuntos
Dióxido de Carbono , Nanopartículas , Nitrilas , Adsorção , Imidas
4.
Analyst ; 149(3): 917-924, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38190154

RESUMO

Dopamine (DA) is an important biomarker related to parkinsonism, schizophrenia and renal disease. Traditional electrochemical sensors for DA were based on the direct electrochemical oxidation of DA. In this paper, we report a new sensing strategy using N,N'-di(trimethylaminoethyl)perylene diimide (TMPDI) as an electrochemical probe and K2S2O8 as a signal enhancer for DA detection between 0 and -0.7 V with the DPV technique. MoS2 nanoflowers prepared by the hydrothermal method were used as a nanocarrier to load TMPDI. The reduction current of TMPDI was found to show a stepwise and significant increase at -0.24 V with the increase of concentration of K2S2O8 due to the continuous cycle of TMPDI molecules' electrochemical reduction and chemical oxidation. The presence of DA caused a large decrease of the reduction current of TMPDI due to the synergistic interaction of the competitive consumption of DA for K2S2O8 and the blocking effect of polyDA adhering to the electrode surface. The decreased current exhibited a linear response for DA from 10 pM to 100 µM with a detection limit of 4.1 pM and the proposed sensor showed high selectivity and excellent feasibility in human urine/serum sample detection.


Assuntos
Técnicas Eletroquímicas , Imidas , Perileno , Humanos , Técnicas Eletroquímicas/métodos , Dopamina , Oxirredução , Eletrodos , Limite de Detecção
5.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255806

RESUMO

Microtia-atresia is a rare type of congenital craniofacial malformation causing severe damage to the appearance and hearing ability of affected individuals. The genetic factors associated with microtia-atresia have not yet been determined. The AMER1 gene has been identified as potentially pathogenic for microtia-atresia in two twin families. An amer1 mosaic knockdown zebrafish model was constructed using CRISPR/Cas9. The phenotype and the development process of cranial neural crest cells of the knockdown zebrafish were examined. Components of the Wnt/ß-catenin pathway were examined by qPCR, Western blotting, and immunofluorescence assay. IWR-1-endo, a reversible inhibitor of the Wnt/ß-catenin pathway, was applied to rescue the abnormal phenotype. The present study showed that the development of mandibular cartilage in zebrafish was severely compromised by amer1 knockdown using CRISPR/Cas9. Specifically, amer1 knockdown was found to affect the proliferation and apoptosis of cranial neural crest cells, as well as their differentiation to chondrocytes. Mechanistically, amer1 exerted an antagonistic effect on the Wnt/ß-catenin pathway. The application of IWR-1-endo could partially rescue the abnormal phenotype. We demonstrated that amer1 was essential for the craniofacial development of zebrafish by interacting with the Wnt/ß-catenin pathway. These findings provide important insight into the role of amer1 in zebrafish mandibular development and the pathology of microtia-atresia caused by AMER1 gene mutations in humans.


Assuntos
Microtia Congênita , Imidas , Quinolinas , Peixe-Zebra , Animais , Apoptose/genética , beta Catenina/genética , Peixe-Zebra/genética
6.
ACS Infect Dis ; 10(2): 489-499, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175706

RESUMO

Human immunodeficiency virus 1 (HIV-1) therapeutic regimens consist of three or more drugs targeting different steps of the viral life cycle to limit the emergence of viral resistance. In line with the multitargeting strategy, here we conjugated a naphthalene diimide (NDI) moiety with a tetraazacycloalkane to obtain novel naphthalene diimide (NDI)-tetraazacycloalkane conjugates. The NDI inhibits the HIV-1 promoter activity by binding to LTR G-quadruplexes, and the tetraazacycloalkane mimics AMD3100, which blocks HIV entry into cells by interfering with the CXCR4 coreceptor. We synthesized, purified, and tested the metal-free NDI-tetraazacycloalkane conjugate and the two derived metal-organic complexes (MOCs) that incorporate Cu2+ and Zn2+. The NDI-MOCs showed enhanced binding to LTR G4s as assessed by FRET and CD assays in vitro. They also showed enhanced activity in cells where they dose-dependently reduced LTR promoter activity and inhibited viral entry only of the HIV-1 strain that exploited the CXCR4 coreceptor. The time of addition assay confirmed the dual targeting at the different HIV-1 steps. Our results indicate that the NDI-MOC conjugates can simultaneously inhibit viral entry, by targeting the CXCR4 coreceptor, and LTR promoter activity, by stabilizing the LTR G-quadruplexes. The approach of combining multiple targets in a single compound may streamline treatment regimens and improve the overall patient outcomes.


Assuntos
Quadruplex G , HIV-1 , Humanos , HIV-1/genética , Imidas/farmacologia , Imidas/química , Imidas/metabolismo , Naftalenos/farmacologia , Naftalenos/química
7.
Analyst ; 148(23): 5851-5855, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881949

RESUMO

Peroxynitrite (ONOO-), a highly reactive species, plays a key role in various physiological and pathological processes. Herein, a red-emitting fluorescent reporter perylenemonoimide-boronate ester (PMI-BE) was synthesized and utilized for ultrasensitive detection of ONOO-. The unique feature of PMI-BE is its nanomolar sensitivity with high selectivity towards ONOO-. Moreover, PMI-BE also detects endogenously generated ONOO- in live cells.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Ésteres , Imidas
8.
Bioorg Chem ; 141: 106917, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865055

RESUMO

The limitations associated with the in vivo use of the thrombin binding aptamer (TBA or TBA15) have dramatically stimulated the search of suitable chemically modified analogues in order to discover effective and reversible inhibitors of thrombin activity. In this context, we previously proposed cyclic and pseudo-cyclic TBA analogues with improved stability that proved to be more active than the parent aptamer. Herein, we have investigated a novel library of TBA derivatives carrying naphthalene diimide (NDI) moieties at the 3'- or 5'-end. In a subset of the investigated oligonucleotides, additional 3-hydroxypropylphosphate (HPP) groups were introduced at one or both ends of the TBA sequence. Evaluation of the G-quadruplex thermal stability, serum nuclease resistance and in vitro anticoagulant activity of the new TBA analogues allowed rationalizing the effect of these appendages on the activity of the aptamer on the basis of their relative position. Notably, most of the different TBA analogues tested were more potent thrombin inhibitors than unmodified TBA. Particularly, the analogue carrying an NDI group at the 5'-end and an HPP group at the 3'-end, named N-TBA-p, exhibited enhanced G-quadruplex thermal stability (ΔTm + 14° C) and ca. 10-fold improved nuclease resistance in serum compared to the native aptamer. N-TBA-p also induced prolonged and dose-dependent clotting times, showing a ca. 11-fold higher anticoagulant activity compared to unmodified TBA, as determined by spectroscopic methods. Overall, N-TBA-p proved to be in vitro a more efficient thrombin inhibitor than all the best ones previously investigated in our group. Its interesting features, associated with its easy preparation, make it a very promising candidate for future in vivo studies.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Trombina/metabolismo , Anticoagulantes/química , Imidas/farmacologia , Naftalenos/farmacologia , Aptâmeros de Nucleotídeos/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-37804570

RESUMO

Melamine is added illegally to milk and dairy products to increase the amount of apparent protein. This organic nitrogen rich chemical compound has been of great challenge in food safety based on its adverse effect on health. Therefore, the extraction and determination of melamine from milk is necessary. Recently, ionic liquid (ILs) as solvent usage has been noticeable for low melting point, low toxicity, high thermal stability, and high extraction capabilities in a wide range of separation processes. ILs are introduced as organic-inorganic salts and green solvents in microextraction preparation. Therefore, in this study, three ionic liquids ([C6mim][NTF2], [C4mim][NTF2] and [C2mim][NTF2] ILs) were prepared and employed as an extraction solvent in dispersive liquid-liquid microextraction (DLLME) of melamine from milk samples followed by HPLC-UV. The selected ILs were designed using three types of alkyl-imidazolium (as the short organic cations) and bis (tri fluoro methyl sulfonyl) imide as anion and characterized by ATR-FTIR spectra, carbon, and hydrogen Nuclear Magnetic Resonance spectroscopy (H&C-NMR) and energy-dispersive X-ray spectroscopy (EDX). These techniques confirmed the formation of functional groups, the structure of hydrogen and carbon atoms, and various elements of ionic bond between imidazolium and bis (tri fluoro methyl sulfonyl) imide. In the next step, the effect of significant parameters, including type and volume of ILs, adsorption time, pH of the sample solution, and sample volume, were optimized. Under the optimal conditions, the limits of detection (LOD), limits of quantification (LOQ), and linearity range were obtained 63.64 µg kg-1, 210.03 µg kg-1, and 210.03-1000 µg kg-1, respectively, for as prepared [C6mim][NTF2] as the best ILs. Notably, the achieved LOQ was lower than the maximum residue level (MRL) for the melamine residue in dairy products. Eventually, the proposed method was applied to detect melamine in milk samples, and the relative recoveries were examined as 79.6-105.0 %.


Assuntos
Líquidos Iônicos , Microextração em Fase Líquida , Animais , Solventes/química , Líquidos Iônicos/química , Cromatografia Líquida de Alta Pressão/métodos , Leite , Imidas/química , Microextração em Fase Líquida/métodos , Limite de Detecção , Carbono , Hidrogênio
10.
Environ Sci Technol ; 57(38): 14330-14339, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37710968

RESUMO

The ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis. In this study, tap water samples (n = 39) from Shanghai were collected to assess the levels of EF/EOF, 35 target PFAS, two inorganic fluorinated anions (tetrafluoroborate (BF4-) and hexafluorophosphate (PF6-)), and novel PFAS through suspect screening and potential oxidizable precursors through oxidative conversion. The results showed that ultra-short PFAS were the largest contributors to target PFAS, accounting for up to 97% of ΣPFAS. To the best of our knowledge, this was the first time that bis(trifluoromethanesulfonyl)imide (NTf2) was reported in drinking water from China, and p-perfluorous nonenoxybenzenesulfonate (OBS) was also identified through suspect screening. Small amounts of precursors that can be oxidatively converted to PFCAs were noted after oxidative conversion. EF mass balance analysis revealed that target PFAS could only explain less than 36% of EF. However, the amounts of unexplained extractable fluorine were greatly reduced when BF4- and PF6- were included. These compounds further explained more than 44% of the EF, indicating the role of inorganic fluorinated anions in the mass balance analysis.


Assuntos
Água Potável , Fluorocarbonos , Flúor , China , Imidas
11.
Chem Pharm Bull (Tokyo) ; 71(9): 724-729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661377

RESUMO

Methyl 1,2,3,4-tetra-O-acetyl-α-L-iduronate was prepared from methyl 1,2,3,4-tetra-O-ß-D-glucuronate in two steps: Ferrier's photobromination and subsequent radical reduction with tris(trimethylsilyl)silane. The obtained methyl 1,2,3,4-tetra-O-acetyl-α-L-iduronate was a good glycosyl donor for the L-iduronidation when bis(trifluoromethanesulfonic)imide was employed as the activator. The reaction afforded the α-isomer as the major product, the configuration of which is the same as that of the L-iduronic acid unit in heparin and heparan sulfate.


Assuntos
Glucuronatos , Ácido Idurônico , Ácido Glucurônico , Imidas , Isomerismo
12.
Angew Chem Int Ed Engl ; 62(41): e202308513, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37607898

RESUMO

We report a supramolecular naphthalene diimide (NDI) radical anion with efficient NIR-II photothermal conversion for E. coli-responsive photothermal therapy. The supramolecular radical anion (NDI-2CB[7])⋅- , which is obtained from the E. coli-induced in situ reduction of NDI-2CB[7] neutral complex, formed by the host-guest interaction between an NDI derivative and cucurbit[7]uril (CB[7]), exhibits unexpectedly strong NIR-II absorption and remarkable photothermal conversion capacity in aqueous solution. The NIR-II absorption is caused by the self-assembly of NDI radical anions to form supramolecular dimer radicals in aqueous solution, which is supported by theoretically predicted spectra. The (NDI-2CB[7])⋅- demonstrates excellent NIR-II photothermal antimicrobial activity (>99 %). This work provides a new approach for constructing NIR-II photothermal agents and non-contact treatments for bacterial infections.


Assuntos
Escherichia coli , Terapia Fototérmica , Ânions , Imidas/farmacologia
13.
Mikrochim Acta ; 190(8): 290, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442817

RESUMO

A cationic perylene probe was designed and synthesized for sensitive determination of tartrazine. In the presence of tartrazine, the fluorescence of the perylene probe was quenched by efficient supramolecular self-assembly of the perylene derivate. The quenching is caused by the synergistic effect of noncovalent interactions including static electricity, π-π stacking, and hydrophobic interaction. Benefiting from these advantages, the probe exhibited excellent sensing performance to tartrazine within 2 min. The detection and quantification limit of tartrazine are as low as 2.42 and 8.07 nmol L-1, respectively, with a wide linear operation range from 15 to 500 nmol L-1. Most importantly, due to the high binding affinity (3.22 × 107 mol L-1) between the perylene probe and tartrazine, the sensing system shows great anti-interference capacity. Subsequently, the visualization application of the approach was evaluated by portable device, and the limits of detection for visual detection for test strip, membrane, and hydrogel were 0.5, 0.5, and 5 µmol L-1, respectively. The approach has been applied to monitor tartrazine in various food condiments with recoveries in the range 91.29-108.83%. As far as we know, this is the first report of using perylene-based probe for tartrazine determination, offering a promising strategy for the construction of perylene-based detection system in the field of food safety.


Assuntos
Perileno , Tartrazina , Corantes Fluorescentes/química , Perileno/química , Imidas/química
14.
Adv Mater ; 35(46): e2305077, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37497609

RESUMO

Recently, single-atom nanozymes have made significant progress in the fields of sterilization and treatment, but their catalytic performance as substitutes for natural enzymes and drugs is far from satisfactory. Here, a method is reported to improve enzyme activity by adjusting the spatial position of a single-atom site on the nanoplatforms. Two types of Cu single-atom site nanozymes are synthesized in the interlayer (CuL /PHI) and in-plane (CuP /PHI) of poly (heptazine imide) (PHI) through different synthesis pathways. Experimental and theoretical analysis indicates that the interlayer position of PHI can effectively adjust the coordination number, coordination bond length, and electronic structure of Cu single atoms compared to the in-plane position, thereby promoting photoinduced electron migration and O2 activation, enabling effective generate reactive oxygen species (ROS). Under visible light irradiation, the photocatalytic bactericidal activity of CuL /PHI against aureus is ≈100%, achieving the same antibacterial effect as antibiotics, after 10 min of low-dose light exposure and 2 h of incubation.


Assuntos
Antibacterianos , Eletrônica , Antibacterianos/farmacologia , Catálise , Elétrons , Imidas
15.
Inorg Chem ; 62(24): 9649-9660, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267472

RESUMO

In this work, four naphthalene diimide (NDI)-functionalized half-sandwich Ru(II) complexes Ru1-Ru4 bearing the general formula [(η6-arene)RuII(N^N)Cl]PF6, where arene = benzene (bn), p-cymene (p-cym), 1,3,5-trimethylbenzene (tmb), and hexamethylbenzene (hmb), have been synthesized and characterized. By introducing the NDI unit into the N,N-chelating ligand of these half-sandwich complexes, the poor luminescent half-sandwich complexes are endowed with excellent emission performance. Besides, modification on the arene ligand of arene-Ru(II) complexes can influence the electron density of the metal center, resulting in great changes in the kinetic properties, catalytic activities in the oxidative conversion of NADH to NAD+, and biological activities of these compounds. Particularly, Ru4 exhibits the highest reactivity and the strongest inhibitory activity against the growth of three tested cancer cell lines. Further study revealed that Ru4 can enter cells quickly in an energy-dependent manner and preferentially accumulate in the mitochondria of MDA-MB-231 cells, inducing cell apoptosis via reactive oxygen species overproduction and mitochondrial dysfunction. Significantly, Ru4 can effectively inhibit the cell migration and invasion. Overall, the complexation with NDI and modification on the arene ligand endowed the half-sandwich Ru(II) complexes with improved spectroscopic properties and anticancer activities, highlighting their potential applications for cancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Estrutura Molecular , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Imidas/farmacologia , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Linhagem Celular Tumoral
16.
Org Lett ; 25(27): 5173-5178, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37384740

RESUMO

An efficient and practical route for the synthesis of ß-amino sulfides by Lewis acid-mediated electrophilic thiolative difunctionalization of enimides is disclosed. A series of free phenols, electron-rich arene, alcohol, azide, and hydride, are successfully incorporated into the substrates in high regio- and stereoselectivities under mild conditions. The obtained products possess multiple functional groups and can be easily transformed to other valuable molecules.


Assuntos
Ácidos de Lewis , Sulfetos , Fenóis , Imidas/química
17.
Chembiochem ; 24(18): e202300206, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37380609

RESUMO

Here, we describe a novel method for the on-DNA synthesis of cyclic imides, an important class of molecules that includes several well-known medications. Significantly, the new method enabled on-DNA synthesis under mild conditions with high conversions and a broad functional group tolerance, utilizing ubiquitous bifunctional amines and bis-carboxylic acid, or alkyl halides, and therefore served as the linchpin for DNA encoded library (DEL) synthesis. The mechanism study of off-DNA and on-DNA chemical transformations revealed unique insights in contrast to conventional chemical transformation.


Assuntos
DNA , Imidas , Imidas/química , DNA/química , Replicação do DNA , Biblioteca Gênica , Aminas/química
18.
J Org Chem ; 88(13): 8904-8914, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37327488

RESUMO

Kinetic profiling has shown that a (DHQD)2PHAL-catalyzed intermolecular asymmetric alkene bromoesterification reaction is inhibited by primary amides, imides, hydantoins, and secondary cyclic amides, which are byproducts of common stoichiometric bromenium ion sources. Two approaches to resolving the inhibition are presented, enabling the (DHQD)2PHAL loading to be dropped from 10 to 1 mol % while maintaining high bromoester conversions in 8 h or less. Iterative post-reaction recrystallizations enabled a homochiral bromonaphthoate ester to be synthesized using only 1 mol % (DHQD)2PHAL.


Assuntos
Alcenos , Amidas , Catálise , Cinética , Imidas
19.
Org Lett ; 25(22): 4080-4085, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37234032

RESUMO

A visible-light-induced four-component Ritter-type reaction was developed for the synthesis of ß-trifluoromethyl imides from CF3Br, alkenes, carboxylic acids, and nitriles. This protocol features mild reaction conditions, a broad substrate scope, and excellent functional group compatibility. Furthermore, this method has been proven to be suitable for the late-stage diversification of drug molecules. A mechanism involving a Ritter-type reaction and Mumm rearrangement was proposed on the basis of the control experiments.


Assuntos
Imidas , Luz , Imidas/química , Alcenos/química , Ácidos Carboxílicos/química , Nitrilas/química
20.
Chemistry ; 29(33): e202300652, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37040154

RESUMO

The use of perylenediimide (PDI) building blocks in materials for organic electronic is of considerable interest. This popular n-type organic semiconductor is tuned by introducing peripheral groups in their ortho and bay positions. Such modifications radically alter their optoelectronic properties. In this article, we describe an efficient method to afford regioisomerically pure 1,6/7-(NO2 )2 - and (NH2 )2 -PDIs employing two key steps: the selective crystallization of 1,6-(NO2 )2 -perylene-3,4,9,10-tetracarboxy tetrabutylester and the nitration of regiopure 1,7-Br2 -PDI with silver nitrite. The optoelectronic properties of the resulting regioisomerically pure dinitro, diamino-PDIs and bisazacoronenediimides (BACDs) are reported and demonstrate the need to separate both regioisomers of such n-type organic semiconductors for their inclusion in advanced optoelectronic devices. For the first time, the two regioisomers of the same PDI starting material are available on the multigram scale, which will stimulate the exploration of regioisomerism/properties relationship for this family of dyes.


Assuntos
Perileno , Estrutura Molecular , Perileno/química , Dióxido de Nitrogênio , Imidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...