Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.318
Filtrar
1.
Pestic Biochem Physiol ; 204: 106070, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277385

RESUMO

Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the Amaranthus retroflexus biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr. Likewise, Sorghum halepense, carrying Asp-376-Glu showed resistance to field recommended doses of imazethapyr but not of imazamox. Biochemical inhibition and kinetic characterization of the Asp-376-Glu mutant enzyme heterologously expressed using different plant sequence backbones, indicate that the Asp-376-Glu shows high level of insensitivity to imazethapyr but not to imazamox, corroborating the greenhouse results. Docking simulations revealed that imazamox can still inhibit the Asp-376-Glu mutant enzyme through a chalcogen interaction between the oxygen of the ligand and the sulfur atom of the ALS Met200, while imazethapyr does not create such interaction. These results explain the different sensitivity of the Asp-376-Glu mutation towards imidazolinone herbicides, thus providing novel information that can be exploited for defining stewardship guidelines to manage fields infested by weeds harboring the Asp-376-Glu mutation.


Assuntos
Acetolactato Sintase , Amaranthus , Resistência a Herbicidas , Herbicidas , Imidazóis , Mutação Puntual , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Acetolactato Sintase/química , Herbicidas/farmacologia , Herbicidas/química , Resistência a Herbicidas/genética , Imidazóis/farmacologia , Imidazóis/química , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Sorghum/genética , Sorghum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Ácidos Nicotínicos/farmacologia , Niacina/análogos & derivados
2.
J Agric Food Chem ; 72(35): 19333-19341, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39183467

RESUMO

The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.


Assuntos
Herbicidas , Ácidos Nicotínicos , Proteínas de Plantas , ATPases Translocadoras de Prótons , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/enzimologia , Herbicidas/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Nicotínicos/toxicidade , Ácidos Nicotínicos/farmacologia , Ácidos Indolacéticos/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia
3.
J Contam Hydrol ; 266: 104412, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121645

RESUMO

Biochar amendment has emerged as a potential solution for preventing, remediating, and mitigating agricultural compound pollution. This groundbreaking technique not only improves crucial soil properties like porosity, water retention capacity, cation exchange capacity, and pH, but also intricately impacts the interaction and retention mechanisms of polluting molecules. In this study, we investigate the dynamic of the herbicide Imazapic when subjected to applying pyrolyzed biochars, specifically at temperatures of 300 and 500 °C, within the context of a low-fertility soil characterized as dystrophic Yellow Ultisol (YUd) in a sugarcane cultivation area in Igarassu-PE, Brazil. The biochars were produced from sugarcane bagasse by pyrolysis process in a muffle furnace. In laboratory conditions, with saturated soil columns under steady-state, analyses of the mechanisms involved in interaction and transport and determining hydrodispersive parameters for Imazapic were performed by the two-site nonequilibrium transport model using the CXTFIT 2.0 program. Samples of YUd soil amended with biochar pyrolyzed at 300 °C presented a negligible interaction with Imazapic. However, adding biochar pyrolyzed at 500 °C (BC500) to the soil samples enhanced the adsorption coefficient and improved the interaction with Imazapic. This research points out that biochar produced from agricultural waste biomass, such as sugarcane bagasse specifically pyrolyzed at 500 °C, offers a potential means to adsorb herbicides, reducing their leaching to deeper layers of the amended soils and the risk of groundwater contamination and potential environmental negative impacts.


Assuntos
Carvão Vegetal , Herbicidas , Saccharum , Poluentes do Solo , Solo , Saccharum/química , Carvão Vegetal/química , Herbicidas/química , Adsorção , Poluentes do Solo/química , Solo/química , Imidazóis/química , Brasil , Recuperação e Remediação Ambiental/métodos , Agricultura/métodos , Celulose , Ácidos Nicotínicos
4.
Bull Environ Contam Toxicol ; 113(2): 21, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096383

RESUMO

Imazethapyr is the most common herbicide used for weed management in pulses. A field trial was carried out with imazethapyr 10% SL formulation at 100 and 150 g a.i./ha application rates, as pre-and post-emergence, to study dissipation of imazethapyr in soil, persistence in urdbean plant, terminal residues in urdbean grains and effect on soil microbes. An acetate buffered- quick, easy, cheap, effective, rugged, and safe (QuEChERS) method in combination with high-performance liquid chromatography (HPLC) was validated for imazethapyr residue analysis. The half-life of imazethapyr in soil ranged from 15.12 to 18.02 days. The residues of imazethapyr persist up to 60 days in soil and up to 7-15 days in urdbean plant. Residues were not detected in grains at the time of harvest. Persistence of imazethapyr residues in soil significantly impact soil microbial populations depending on herbicide application rates and timing.


Assuntos
Herbicidas , Ácidos Nicotínicos , Resíduos de Praguicidas , Microbiologia do Solo , Poluentes do Solo , Solo , Vigna , Herbicidas/análise , Poluentes do Solo/análise , Vigna/química , Ácidos Nicotínicos/análise , Resíduos de Praguicidas/análise , Solo/química , Cinética , Cromatografia Líquida de Alta Pressão , Meia-Vida
5.
J Agric Food Chem ; 72(31): 17271-17282, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052523

RESUMO

Ethyl 5-cyano-1,6-dihydro-2-methyl-4-(2'-thienyl)-6-thioxonicotinate (A) was synthesized and reacted with ethyl chloroacetate in the presence of sodium acetate or sodium carbonate to give ethyl 5-cyano-6-((2-ethoxy-2-oxoethyl)thio)-2-methyl-4-(2'-thienyl)nicotinate (1a) or its isomeric thieno[2,3-b]pyridine 2a. 3-Aminothieno[2,3-b]pyridine-2-carboxamide 2b was also synthesized by the reaction of A with 2-chloroacetamide. The reaction of 1a with hydrazine hydrate in boiling ethanol gave acethydrazide 3. Heating ester 1a with hydrazine hydrate under neat conditions afforded 3-amino-1H-pyrazolo[3,4-b]pyridine 10. Compounds 2b, 3, and 10 were used as precursors for synthesizing other new thieno[2,3-b]pyridines and pyrazolo[3,4-b]pyridines containing mainly the ethyl nicotinate scaffold. Structures of all new compounds were confirmed by elemental and spectral analyses. Most of the obtained compounds were evaluated for their insecticidal activity toward the nymphs and adults of Aphis gossypii (Glover,1887). Some compounds such as 4, 9b, and 9c showed promising results. The effect of some sublethal concentrations, less than LC50, of compounds 4, 9b, and 9c on the examined Aphis was subjected to a further study. The results demonstrated that exposure of A. gossypii nymphs to sublethal concentrations of compounds 4, 9b, and 9c had noticeable effects on their biological parameters, i.e., nymphal instar duration, generation time, and adult longevity. The highest concentration C1 of all three compounds increased the nymphal instar duration and generation time and decreased adult longevity and vice versa.


Assuntos
Afídeos , Inseticidas , Piridinas , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Animais , Piridinas/química , Afídeos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacologia
6.
Eur J Pharm Biopharm ; 200: 114346, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823541

RESUMO

Tazarotene is a widely prescribed topical retinoid for acne vulgaris and plaque psoriasis and is associated with skin irritation, dryness, flaking, and photosensitivity. In vitro permeation of tazarotene was studied across the dermatomed human and full-thickness porcine skin. The conversion of tazarotene to the active form tazarotenic acid was studied in various skin models. Tazarotene-loaded PLGA nanoparticles were prepared using the nanoprecipitation technique to target skin and hair follicles effectively. The effect of formulation and processing variables on nanoparticle properties, such as particle size and drug loading, was investigated. The optimized nanoparticle batches with particle size <500 µm were characterized further for FT-IR analysis, which indicated no interactions between tazarotene and PLGA. Scanning electron microscopy analysis showed uniform, spherical, and non-agglomerated nanoparticles. In vitro release study using a dialysis membrane indicated a sustained release of 40-70 % for different batches over 36 h, following a diffusion-based release mechanism based on the Higuchi model. In vitro permeation testing (IVPT) in full-thickness porcine skin showed significantly enhanced follicular and skin delivery from nanoparticles compared to solution. The presence of tazarotenic acid in the skin from tazarotene nanoparticles indicated the effectiveness of nanoparticle formulations in retaining bioconversion ability and targeting follicular delivery.


Assuntos
Nanopartículas , Ácidos Nicotínicos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Absorção Cutânea , Pele , Ácidos Nicotínicos/administração & dosagem , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Suínos , Nanopartículas/química , Humanos , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/química , Portadores de Fármacos/química , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Liberação Controlada de Fármacos , Administração Cutânea , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Acne Vulgar/tratamento farmacológico , Composição de Medicamentos/métodos , Dermatopatias/tratamento farmacológico
7.
Dermatol Clin ; 42(3): 357-363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796267

RESUMO

Oral psoriasis therapies include both older traditional immunosuppressants, such as methotrexate, cyclosporine, and acitretin, as well as newer, more targeted agents, such as apremilast, deucravacitinib, and oral interleukin-23 receptor antagonists. Patients may prefer oral therapies to injectable therapies based on the route of administration. Both older and newer oral psoriasis therapies can be utilized effectively in the treatment of psoriasis. Here, we will review oral agents used in the treatment of psoriasis as well as provide commentary on their role in our current, evolving psoriasis treatment paradigm.


Assuntos
Acitretina , Ciclosporina , Fármacos Dermatológicos , Imunossupressores , Metotrexato , Psoríase , Talidomida , Humanos , Psoríase/tratamento farmacológico , Administração Oral , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Acitretina/uso terapêutico , Acitretina/administração & dosagem , Imunossupressores/uso terapêutico , Metotrexato/uso terapêutico , Metotrexato/administração & dosagem , Ciclosporina/uso terapêutico , Ciclosporina/administração & dosagem , Fármacos Dermatológicos/uso terapêutico , Fármacos Dermatológicos/administração & dosagem , Piperidinas/uso terapêutico , Piperidinas/administração & dosagem , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Pirróis/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Ceratolíticos/uso terapêutico , Indóis/uso terapêutico , Ácidos Nicotínicos/uso terapêutico , Ácidos Nicotínicos/administração & dosagem , Anticorpos Monoclonais
8.
Environ Sci Pollut Res Int ; 31(26): 38265-38273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801610

RESUMO

Controlling and mitigating the toxicity of herbicides to non-target plants is of significant importance in reducing ecological risks. The development of green and natural herbicide control technologies has become an urgent necessity. In this paper, how 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) and baicalein alleviated oxidative stress induced by imazethapyr (IM) in wheat seedlings was investigated. We found that DIMBOA and baicalein enhanced the antioxidant enzyme activities in wheat seedlings exposed to IM and reduced the excessive reactive oxygen species due to IM stress by 21.3% and 23.5%, respectively. DIMBOA and baicalein also restored the iron content reduced by IM and effectively mitigated Fe2+ overload by alleviating the response of heme oxygenase 1 to IM stress. The antioxidant and iron homeostatic maintenance properties of DIMBOA and baicalein enhanced the defenses of wheat seedlings against IM stress. Our results highlight the potential implication of secondary metabolites as natural products to modulate herbicide toxicity to non-target plants.


Assuntos
Flavanonas , Herbicidas , Plântula , Triticum , Triticum/efeitos dos fármacos , Triticum/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Herbicidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Ácidos Nicotínicos
9.
Sci Total Environ ; 928: 172479, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621543

RESUMO

The main metabolic product of the pyridinecarboxamide insecticide flonicamid, N-(4-trifluoromethylnicotinyl)glycinamide (TFNG-AM), has been shown to have very high mobility in soil, leading to its accumulation in the environment. Catabolic pathways of flonicamid have been widely reported, but few studies have focused on the metabolism of TFNG-AM. Here, the rapid transformation of TFNG-AM and production of the corresponding acid product N-(4-trifluoromethylnicotinoyl) glycine (TFNG) by the plant growth-promoting bacterium Variovorax boronicumulans CGMCC 4969 were investigated. With TFNG-AM at an initial concentration of 0.86 mmol/L, 90.70 % was transformed by V. boronicumulans CGMCC 4969 resting cells within 20 d, with a degradation half-life of 4.82 d. A novel amidase that potentially mediated this transformation process, called AmiD, was identified by bioinformatic analyses. The gene encoding amiD was cloned and expressed recombinantly in Escherichia coli, and the enzyme AmiD was characterized. Key amino acid residue Val154, which is associated with the catalytic activity and substrate specificity of signature family amidases, was identified for the first time by homology modeling, structural alignment, and site-directed mutagenesis analyses. When compared to wild-type recombinant AmiD, the mutant AmiD V154G demonstrated a 3.08-fold increase in activity toward TFNG-AM. The activity of AmiD V154G was greatly increased toward aromatic L-phenylalanine amides, heterocyclic TFNG-AM and IAM, and aliphatic asparagine, whereas it was dramatically lowered toward benzamide, phenylacetamide, nicotinamide, acetamide, acrylamide, and hexanamid. Quantitative PCR analysis revealed that AmiD may be a substrate-inducible enzyme in V. boronicumulans CGMCC 4969. The mechanism of transcriptional regulation of AmiD by a member of the AraC family of regulators encoded upstream of the amiD gene was preliminarily investigated. This study deepens our understanding of the mechanisms of metabolism of toxic amides in the environment, providing new ideas for microbial bioremediation.


Assuntos
Amidoidrolases , Biodegradação Ambiental , Comamonadaceae , Inseticidas , Niacinamida/análogos & derivados , Inseticidas/metabolismo , Comamonadaceae/metabolismo , Comamonadaceae/genética , Amidoidrolases/metabolismo , Amidoidrolases/genética , Ácidos Nicotínicos/metabolismo
10.
Bioorg Med Chem Lett ; 105: 129730, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583784

RESUMO

Chlorambucil is an alkylating drug that finds application towards chemotherapy of different types of cancers. In order to explore the possibility of utilization of this drug as an imaging agent for early diagnosis of solid tumors, attempt was made to synthesize a 99mTc complex of chlorambucil and evaluate its potential in tumor bearing small animal model. HYNIC-chlorambucil was synthesized by conjugation of HYNIC with chlorambucil via an ethylenediamine linker. All the intermediates and final product were purified and characterized by standard spectroscopic techniques viz. FT-IR, 1H/13C-NMR as well as by mass spectrometry. HYNIC-chlorambucil conjugate was radiolabeled with [99mTc]Tc and found to be formed with > 95 % radiochemical purity via RP-HPLC studies. The partition coefficient (Log10Po/w) of the synthesized complex was found to be -0.78 ± 0.25 which indicated the moderate hydrophilic nature for the complex. Biological behaviour of [99mTc]Tc-HYNIC-chlorambucil, studied in fibrosarcoma bearing Swiss mice, revealed a tumor uptake of about 4.16 ± 1.52 %IA/g at 30 min post-administration, which declined to 1.91 ± 0.13 % IA/g and 1.42 ± 0.14 %IA/g at 1 h and 2 h post-administration, respectively. A comparison of different [99mTc]Tc-chlorambucil derivatives (reported in the contemporary literature) formulated using different methodologies revealed that tumor uptake and pharmacokinetics exhibited by these agents strongly depend on the lipophilicity/hydrophilicity of such agents, which in turn is dependent on the bifunctional chelators used for formulating the radiolabeled chlorambucils.


Assuntos
Clorambucila , Compostos de Organotecnécio , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Clorambucila/química , Clorambucila/síntese química , Clorambucila/farmacologia , Estrutura Molecular , Ácidos Nicotínicos/química , Ácidos Nicotínicos/síntese química , Compostos de Organotecnécio/química , Compostos de Organotecnécio/síntese química , Compostos de Organotecnécio/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Distribuição Tecidual
11.
Environ Monit Assess ; 196(5): 478, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664274

RESUMO

The management of invasive weeds on both arable and non-arable land is a vast challenge. Converting these invasive weeds into biochar and using them to control the fate of herbicides in soil could be an effective strategy within the concept of turning waste into a wealth product. In this study, the fate of imazethapyr (IMZ), a commonly used herbicide in various crops, was investigated by introducing such weeds as biochar, i.e., Parthenium hysterophorus (PB) and Lantana camara (LB) in sandy loam soil. In terms of kinetics, the pseudo-second order (PSO) model provided the best fit for both biochar-mixed soils. More IMZ was sorbed onto LB-mixed soil compared to PB-mixed soil. When compared to the control (no biochar), both PB and LB biochars (at concentrations of 0.2% and 0.5%) increased IMZ adsorption, although the extent of this effect varied depending on the dosage and type of biochar. The Freundlich adsorption isotherm provided a satisfactory explanation for IMZ adsorption in soil/soil mixed with biochar, with the adsorption process exhibiting high nonlinearity. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil mixed with biochar, indicating that sorption was exothermic and spontaneous. Both types of biochar significantly affect IMZ dissipation, with higher degradation observed in LB-amended soil compared to PB-amended soil. Hence, the findings suggest that the preparation of biochar from invasive weeds and its utilization for managing the fate of herbicides can effectively reduce the residual toxicity of IMZ in treated agroecosystems in tropical and subtropical regions.


Assuntos
Carvão Vegetal , Herbicidas , Ácidos Nicotínicos , Plantas Daninhas , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Herbicidas/análise , Herbicidas/química , Solo/química , Adsorção , Ácidos Nicotínicos/química , Lantana/química , Espécies Introduzidas , Cinética , Asteraceae/química
12.
Biotechnol J ; 19(4): e2300466, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581094

RESUMO

The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.


Assuntos
Carbonato de Cálcio , Ácidos Nicotínicos , Sporosarcina , Carbonato de Cálcio/química , Urease/metabolismo , Biomassa , Ureia/química , Ureia/metabolismo , Vitaminas , Aminoácidos , Glucose
13.
Environ Sci Pollut Res Int ; 31(19): 28368-28378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532215

RESUMO

Imazethapyr is a widely used imidazolinone herbicide worldwide, and its potential adverse effects on non-target plants have raised concerns. Understanding the mechanisms of imazethapyr phytotoxicity is crucial for its agro-ecological risk assessment. Here, the comprehensive molecular responses and metabolic alterations of Arabidopsis in response to imazethapyr were investigated. Our results showed that root exposure to imazethapyr inhibited shoot growth, reduced chlorophyll contents, induced photoinhibition and decreased photosynthetic activity. By non-target metabolomic analysis, we identified 75 metabolites that were significantly changed after imazethapyr exposure, and they are mainly enriched in carbohydrate, lipid and amino acid metabolism. Transcriptomic analysis confirmed that imazethapyr significantly downregulated the genes involved in photosynthetic electron transport and the carbon cycle. In detail, 48 genes in the photosynthetic lightreaction and 11 genes in Calvin cycle were downregulated. Additionally, the downregulation of genes related to electron transport in mitochondria provides strong evidence for imazethapyr inhibiting photosynthetic carbon fixation and cellular energy metabolism as one of mechanisms of toxicity. These results revealed the molecular and metabolic basis of imazethapyr toxicity on non-target plants, contributing to environmental risk assessment and mitigate negative impact of imazethapyr residues in agricultural soils.


Assuntos
Arabidopsis , Herbicidas , Metabolômica , Transcriptoma , Herbicidas/toxicidade , Transcriptoma/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Fotossíntese/efeitos dos fármacos , Ácidos Nicotínicos/toxicidade
14.
Int J Biol Macromol ; 262(Pt 1): 129903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325694

RESUMO

In the present study, chitosan-bentonite biocomposites were synthesised by ultrasonication, characterized using spectral techniques and assessed for their effectiveness in removing imazethapyr and imazamox from aqueous solution. The response surface methodology based box behnken design was utilized to generate optimum conditions viz. pH (1 to 9), adsorbent dose (0.01 to 1.0 g), contact time (0.5 to 48 h) and temperature (15 to 55 °C) for adsorption of herbicides on biocomposites. Based on model predictions, 60.4 to 91.5 % of imazethapyr and 31.7 to 46.4 % of imazamox was efficiently removed under optimal conditions. Adsorption data exhibited a strong fit to pseudo-second-order kinetic (R2 > 0.987) and Freundlich isotherm (R2 > 0.979). The adsorption capacity ranged from 3.88 to 112 µg1-ng-1mLn and order of adsorption was: low molecular weight chitosan-bentonite> medium molecular weight chitosan-bentonite> high molecular weight chitosan-bentonite> bentonite. Thermodynamic experiments suggested a spontaneous, exothermic process, reducing the system randomness during adsorption. Desorption experiments revealed successful desorption ranging from 91.5 to 97.0 % using 0.1 M NaOH. The adsorption mechanism was dominated by synergistic electrostatic interactions and hydrogen bonding. These results collectively indicated the potential environmental remediation application of chitosan-bentonite biocomposites to adsorb imazethapyr and imazamox from wastewaters.


Assuntos
Quitosana , Imidazóis , Ácidos Nicotínicos , Poluentes Químicos da Água , Quitosana/química , Bentonita/química , Adsorção , Concentração de Íons de Hidrogênio , Termodinâmica , Cinética , Poluentes Químicos da Água/química
15.
J Drugs Dermatol ; 23(2): 50-53, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306148

RESUMO

INTRODUCTION: Moisturizers are often used as adjuvant therapy for psoriasis to assist with rehydration and skin barrier restoration. Fixed-combination halobetasol propionate 0.01% and tazarotene 0.045% lotion (HP/TAZ) is indicated for the topical treatment of plaque psoriasis in adults, with a demonstrated clinical profile in two phase 3 trials. However, the effect of application order with HP/TAZ has yet to be explored. This study evaluated the clinical profile of HP/TAZ applied before versus after a ceramide-containing moisturizer in adults with mild-to-moderate plaque psoriasis. METHODS: Sixteen participants were randomized to apply HP/TAZ followed by moisturizer on one side and moisturizer followed by HP/TAZ on the other side once daily for 12 weeks. Tolerability, safety, efficacy, and quality of life endpoints were assessed.  Results: Significant Investigator's Global Assessment improvement was observed across all time points (P≤0.003) regardless of application order. Total Dermatology Life Quality Index scores significantly improved at all time points (P≤0.003), and visual analog scale for itch significantly improved at weeks 4, 8, and 12 (P<0.008). Four moderate adverse events were experienced by 3 participants. Two participants reported itching/irritation, which was worse when HP/TAZ was applied first. CONCLUSIONS: The application order of moisturizer did not decrease therapeutic efficacy of HP/TAZ. Moisturizer application before HP/TAZ may reduce incidence of application site adverse events, ultimately increasing tolerability and supporting the real-world recommendation that applying a ceramide-containing moisturizer before HP/TAZ, versus after, results in a safe and effective therapeutic option for plaque psoriasis. J Drugs Dermatol. 2024;23(2):50-53.     doi:10.36849/JDD.7928.


Assuntos
Fármacos Dermatológicos , Ácidos Nicotínicos , Psoríase , Adulto , Humanos , Combinação de Medicamentos , Qualidade de Vida , Resultado do Tratamento , Índice de Gravidade de Doença , Creme para a Pele , Clobetasol/efeitos adversos , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Ceramidas/uso terapêutico , Método Duplo-Cego
16.
J Agric Food Chem ; 72(7): 3445-3455, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38325393

RESUMO

As representatives of allelopathy, weeds consistently coexist with crops, exhibiting mutual growth inhibition. At the same time, herbicides are usually employed to control weeds. However, few studies have investigated how herbicides will affect allelopathy between crops and their neighboring weeds. Our findings suggested that allelopathic-induced phenotypic variations in ryegrass were reduced in the presence of the herbicide imazethapyr (IM), consistent with the antioxidant system analysis results. Additionally, IM affected the levels of allelochemical hydroxamic acid (Hx) in both plants. Hydroponic experiments revealed that this impact was due to the accelerated transportation of Hx from wheat to ryegrass, driven by ryegrass-secreted jasmonic acid. This study holds paramount significance for comprehending the effects of herbicides on the allelopathic interactions between nontargeted crops and neighboring weeds, contributing to an enhanced understanding of herbicides on plant species interactions.


Assuntos
Herbicidas , Lolium , Ácidos Nicotínicos , Triticum , Herbicidas/farmacologia , Alelopatia , Plantas Daninhas , Produtos Agrícolas
17.
Nanoscale ; 16(7): 3243-3268, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265094

RESUMO

A key role in lessening humanity's continuous fight against cancer could be played by photodynamic therapy (PDT), a minimally invasive treatment employed in the medical care of a range of benign disorders and malignancies. Cancerous tissue can be effectively removed by using a light source-excited photosensitizer. Singlet oxygen and reactive oxygen species are produced via the photosensitizer as a result of this excitation. In the recent past, researchers have put in tremendous efforts towards developing photosensitizer molecules for photodynamic treatment (PDT) to treat cancer. Conjugated polymers, characterized by their efficient fluorescence, exceptional photostability, and strong light absorption, are currently under scrutiny for their potential applications in cancer detection and treatment through photodynamic and photothermal therapy. Researchers are exploring the versatility of these polymers, utilizing sophisticated chemical synthesis and adaptable polymer structures to create new variants with enhanced capabilities for generating singlet oxygen in photodynamic treatment (PDT). The incorporation of photosensitizers into conjugated polymer nanoparticles has proved to be beneficial, as it improves singlet oxygen formation through effective energy transfer. The evolution of nanotechnology has emerged as an alternative avenue for enhancing the performance of current photosensitizers and overcoming significant challenges in cancer PDT. Various materials, including biocompatible metals, polymers, carbon, silicon, and semiconductor-based nanomaterials, have undergone thorough investigation as potential photosensitizers for cancer PDT. This paper outlines the recent advances in singlet oxygen generation by investigators using an array of materials, including graphene quantum dots (GQDs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), titanium dioxide (TiO2), ytterbium (Yb) and thulium (Tm) co-doped upconversion nanoparticle cores (Yb/Tm-co-doped UCNP cores), bismuth oxychloride nanoplates and nanosheets (BiOCl nanoplates and nanosheets), and others. It also stresses the synthesis and application of systems such as amphiphilic block copolymer functionalized with folic acid (FA), polyethylene glycol (PEG), poly(ß-benzyl-L-aspartate) (PBLA10) (FA-PEG-PBLA10) functionalized with folic acid, tetra(4-hydroxyphenyl)porphyrin (THPP-(PNIPAM-b-PMAGA)4), pyrazoline-fused axial silicon phthalocyanine (HY-SiPc), phthalocyanines (HY-ZnPcp, HY-ZnPcnp, and HY-SiPc), silver nanoparticles coated with polyaniline (Ag@PANI), doxorubicin (DOX) and infrared (IR)-responsive poly(2-ethyl-2-oxazoline) (PEtOx) (DOX/PEtOx-IR NPs), particularly in NIR imaging-guided photodynamic therapy (fluorescent and photoacoustic). The study puts forward a comprehensive summary and a convincing justification for the usage of the above-mentioned materials in cancer PDT.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Ácidos Nicotínicos , Fotoquimioterapia , Succinimidas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Polímeros/química , Ouro/química , Prata , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Doxorrubicina/uso terapêutico , Ácido Fólico
18.
Chemosphere ; 351: 141178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218236

RESUMO

Excessive or inappropriate applications of imazethapyr cause severe ecological deteriorations and health risks in human. A novel bacterial strain, i.e., Bacillus marcorestinctum YN1, was isolated to efficiently degrade imazethapyr, with the degradation pathways and intermediates predicted. Protein mass spectrometry analysis identified enzymes in strain YN1 potentially involved in imazethapyr biodegradation, including methylenetetrahydrofolate dehydrogenase, carbon-nitrogen family hydrolase, heme degrading monooxygenase, and cytochrome P450. The strain YN1 was further immobilized with biochar (BC600) prepared from mushroom waste (i.e., spent mushroom substrate) by pyrolysis at 600 °C to evaluate its degrading characteristics of imazethapyr. Scanning electron microscope observation showed that strain YN1 was adsorbed in the rich pore structure of BC600 and the adsorption efficiency reached the maximum level of 88.02% in 6 h. Both energy dispersive X-ray and Fourier transform infrared spectroscopy analyses showed that BC600 contained many elements and functional groups. The results of liquid chromatography showed that biochar-immobilized strain YN1 (IBC-YN1) improved the degradation rate of imazethapyr from 79.2% to 87.4%. The degradation rate of imazethapyr by IBC-YN1 could still reach 81.0% in the third recycle, while the bacterial survival rate was 67.73% after 180 d storage at 4 °C. The treatment of IBC-YN1 significantly shortened the half-life of imazethapyr in non-sterilized soil from 35.51 to 11.36 d, and the vegetative growth of imazethapyr sensitive crop plant (i.e., Cucumis sativus L.) was significantly increased in soil remediated, showing that the inhibition rate of root length and fresh weight were decreased by 12.45% and 38.49% respectively. This study exhanced our understanding of microbial catabolism of imazethapyr, and provided a potential in situ remediation strategy for improving the soil environment polluted by imazethapyr.


Assuntos
Bacillus , Carvão Vegetal , Herbicidas , Ácidos Nicotínicos , Poluentes do Solo , Humanos , Herbicidas/análise , Solo/química , Biodegradação Ambiental , Bactérias/metabolismo , Poluentes do Solo/análise
19.
Photodiagnosis Photodyn Ther ; 44: 103818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788794

RESUMO

The rational design of photosensitizers with rapid cellular uptake and dual-organelle targeting ability is essential for enhancing the efficacy of photodynamic therapy (PDT). However, achieving this goal is a great challenge. In this paper, a novel axial piperazine substituted (PIP) silicon phthalocyanine (PIP-SiPc) has been synthesized. The PIP substitution significantly improved the cellular uptake of PIP-SiPc in MCF-7 breast cancer cells, as demonstrated by two-photon fluorescence imaging combined with fluorescence correlation spectroscopy. Additionally, PIP-SiPc was able to target both mitochondria and lysosomes simultaneously. Notably, PIP-SiPc exhibited remarkable singlet oxygen generation ability, leading to apoptosis in cancer cells upon irradiation, with an IC50 value of only 0.2 µM. These findings highlight the effectiveness of PIP-SiPc as a multifunctional photosensitizer for PDT.


Assuntos
Isoindóis , Ácidos Nicotínicos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Succinimidas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Mitocôndrias , Piperazinas/farmacologia
20.
BMC Biotechnol ; 23(1): 25, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507713

RESUMO

BACKGROUND: One critical parameter in microbial cultivations is the composition of the cultivation medium. Nowadays, the application of chemically defined media increases, due to a more defined and reproducible fermentation performance than in complex media. In order, to improve cost-effectiveness of fermentation processes using chemically defined media, the media should not contain nutrients in large excess. Additionally, to obtain high product yields, the nutrient concentrations should not be limiting. Therefore, efficient medium optimization techniques are required which adapt medium compositions to the specific nutrient requirements of microorganisms. RESULTS: Since most Paenibacillus cultivation protocols so far described in literature are based on complex ingredients, in this study, a chemically defined medium for an industrially relevant Paenibacillus polymyxa strain was developed. A recently reported method, which combines a systematic experimental procedure in combination with online monitoring of the respiration activity, was applied and extended to identify growth limitations for Paenibacillus polymyxa. All cultivations were performed in microtiter plates. By systematically increasing the concentrations of different nutrient groups, nicotinic acid was identified as a growth-limiting component. Additionally, an insufficient buffer capacity was observed. After optimizing the growth in the chemically defined medium, the medium components were systematically reduced to contain only nutrients relevant for growth. Vitamins were reduced to nicotinic acid and biotin, and amino acids to methionine, histidine, proline, arginine, and glutamate. Nucleobases/-sides could be completely left out of the medium. Finally, the cultivation in the reduced medium was reproduced in a laboratory fermenter. CONCLUSION: In this study, a reliable and time-efficient high-throughput methodology was extended to investigate limitations in chemically defined media. The interpretation of online measured respiration activities agreed well with the growth performance of samples measured in parallel via offline analyses. Furthermore, the cultivation in microtiter plates was validated in a laboratory fermenter. The results underline the benefits of online monitoring of the respiration activity already in the early stages of process development, to avoid limitations of medium components, oxygen limitation and pH inhibition during the scale-up.


Assuntos
Ácidos Nicotínicos , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Reatores Biológicos , Fermentação , Meios de Cultura/química , Ácidos Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA