Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.379
Filtrar
1.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618280

RESUMO

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Assuntos
Catequina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Luteolina , Simulação de Acoplamento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
2.
Sci Rep ; 14(1): 7707, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565590

RESUMO

Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.


Assuntos
Ácido Glutâmico , Fármacos Neuroprotetores , Ácido Glutâmico/metabolismo , Luteolina/farmacologia , Linhagem Celular , Estresse Oxidativo , Morte Celular , Apoptose , Fármacos Neuroprotetores/farmacologia , Autofagia , Espécies Reativas de Oxigênio/metabolismo
3.
Front Immunol ; 15: 1366197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601156

RESUMO

Introduction: Chemotherapy remains the mainstay treatment for triple-negative breast cancer (TNBC) due to the lack of specific targets. Given a modest response of immune checkpoint inhibitors in TNBC patients, improving immunotherapy is an urgent and crucial task in this field. CD73 has emerged as a novel immunotherapeutic target, given its elevated expression on tumor, stromal, and specific immune cells, and its established role in inhibiting anti-cancer immunity. CD73-generated adenosine suppresses immunity by attenuating tumor-infiltrating T- and NK-cell activation, while amplifying regulatory T cell activation. Chemotherapy often leads to increased CD73 expression and activity, further suppressing anti-tumor immunity. While debulking the tumor mass, chemotherapy also enriches heterogenous cancer stem cells (CSC), potentially leading to tumor relapse. Therefore, drugs targeting both CD73, and CSCs hold promise for enhancing chemotherapy efficacy, overcoming treatment resistance, and improving clinical outcomes. However, safe and effective inhibitors of CD73 have not been developed as of now. Methods: We used in silico docking to screen compounds that may be repurposed for inhibiting CD73. The efficacy of these compounds was investigated through flow cytometry, RT-qPCR, CD73 activity, cell viability, tumorsphere formation, and other in vitro functional assays. For assessment of clinical translatability, TNBC patient-derived xenograft organotypic cultures were utilized. We also employed the ovalbumin-expressing AT3 TNBC mouse model to evaluate tumor-specific lymphocyte responses. Results: We identified quercetin and luteolin, currently used as over-the-counter supplements, to have high in silico complementarity with CD73. When quercetin and luteolin were combined with the chemotherapeutic paclitaxel in a triple-drug regimen, we found an effective downregulation in paclitaxel-enhanced CD73 and CSC-promoting pathways YAP and Wnt. We found that CD73 expression was required for the maintenance of CD44highCD24low CSCs, and co-targeting CD73, YAP, and Wnt effectively suppressed the growth of human TNBC cell lines and patient-derived xenograft organotypic cultures. Furthermore, triple-drug combination inhibited paclitaxel-enriched CSCs and simultaneously improved lymphocyte infiltration in syngeneic TNBC mouse tumors. Discussion: Conclusively, our findings elucidate the significance of CSCs in impairing anti-tumor immunity. The high efficacy of our triple-drug regimen in clinically relevant platforms not only underscores the importance for further mechanistic investigations but also paves the way for potential development of new, safe, and cost-effective therapeutic strategies for TNBC.


Assuntos
Antígeno CD47 , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Flavonoides/farmacologia , Luteolina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/uso terapêutico , Quercetina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Antígeno CD47/antagonistas & inibidores
4.
PLoS One ; 19(4): e0299234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630770

RESUMO

OBJECTIVES: The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro. METHODS: The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6. RESULTS: Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1ß, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6. CONCLUSIONS: An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.


Assuntos
Medicamentos de Ervas Chinesas , Mastite , Animais , Feminino , Humanos , Bovinos , Farmacologia em Rede , Antioxidantes , Interleucina-6 , Luteolina , Fosfatidilinositol 3-Quinases , Quercetina , Antibacterianos , Simulação de Acoplamento Molecular , Medicina Tradicional Chinesa
5.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611789

RESUMO

Natural chemicals derived from herbal plants have recently been recognized as potentially useful treatment alternatives owing to their ability to target a wide range of important biological molecules. Cynaroside is one of these natural compounds with promising anticancer activity for numerous tumor types. Nevertheless, the anticancer effects and molecular mechanisms of action of cynaroside on colorectal cancer (CRC) remain unclear. In this study, cynaroside was found to markedly inhibit CRC cell proliferation and colony formation in vitro. Cynaroside also inhibited cell proliferation in vivo and decreased the expression of KI67, a cell nuclear antigen. RNA sequencing revealed 144 differentially expressed genes (DEGs) in HCT116 cells and 493 DEGs in RKO cells that were enriched in the cell cycle signaling pathway. Cell division cycle 25A (CDC25A), a DEG widely enriched in the cell cycle signaling pathway, is considered a key target of cynaroside in CRC cells. Cynaroside also inhibited DNA replication and arrested cells in the G1/S phase in vitro. The expression levels of CDC25A and related G1-phase proteins were significantly elevated after CDC25A overexpression in CRC cells, which partially reversed the inhibitory effect of cynaroside on CRC cell proliferation and G1/S-phase arrest. In summary, cynaroside may be used to treat CRC as it inhibits CDC25A expression.


Assuntos
Neoplasias Colorretais , Glucosídeos , Humanos , Pontos de Checagem da Fase G1 do Ciclo Celular , Luteolina , Neoplasias Colorretais/tratamento farmacológico
6.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611943

RESUMO

Luteolin-7-O-ß-d-glucuronide (LGU) is a major active flavonoid glycoside compound that is extracted from Ixeris sonchifolia (Bge.) Hance, and it is a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the neuroprotective effect of LGU was investigated in an oxygen glucose deprivation (OGD) model and a middle cerebral artery occlusion (MCAO) rat model. In vitro, LGU was found to effectively improve the OGD-induced decrease in neuronal viability and increase in neuronal death by a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) leakage rate assay, respectively. LGU was also found to inhibit OGD-induced intracellular Ca2+ overload, adenosine triphosphate (ATP) depletion, and mitochondrial membrane potential (MMP) decrease. By Western blotting analysis, LGU significantly inhibited the OGD-induced increase in expressions of receptor-interacting serine/threonine-protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). Moreover, molecular docking analysis showed that LGU might bind to RIP3 more stably and firmly than the RIP3 inhibitor GSK872. Immunofluorescence combined with confocal laser analyses disclosed that LGU inhibited the aggregation of MLKL to the nucleus. Our results suggest that LGU ameliorates OGD-induced rat primary cortical neuronal injury via the regulation of the RIP3/MLKL signaling pathway in vitro. In vivo, LGU was proven, for the first time, to protect the cerebral ischemia in a rat middle cerebral artery occlusion (MCAO) model, as shown by improved neurological deficit scores, infarction volume rate, and brain water content rate. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia.


Assuntos
Lesões Encefálicas , Glucuronídeos , Luteolina , Animais , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Simulação de Acoplamento Molecular , Transdução de Sinais , Proteínas Quinases
7.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474604

RESUMO

Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/ß-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.


Assuntos
Luteolina , Neoplasias , Humanos , Luteolina/farmacologia , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Inflamação/tratamento farmacológico , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542210

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon, with symptomatology influenced by factors including environmental, genomic, microbial, and immunological interactions. Gut microbiota dysbiosis, characterized by bacterial population alterations, contributes to intestinal homeostasis disruption and aberrant immune system activation, thereby exacerbating the inflammatory state. This study assesses the therapeutic efficacy of intraperitoneal (IP) injected flavonoids (apigenin, luteolin, and xanthohumol) in the reduction of inflammatory parameters and the modulation of the gut microbiota in a murine model of ulcerative colitis. Flavonoids interact with gut microbiota by modulating their composition and serving as substrates for the fermentation into other anti-inflammatory bioactive compounds. Our results demonstrate the effectiveness of luteolin and xanthohumol treatment in enhancing the relative abundance of anti-inflammatory microorganisms, thereby attenuating pro-inflammatory species. Moreover, all three flavonoids exhibit efficacy in the reduction of pro-inflammatory cytokine levels, with luteolin strongly demonstrating utility in alleviating associated physical UC symptoms. This suggests that this molecule is a potential alternative or co-therapy to conventional pharmacological interventions, potentially mitigating their adverse effects. A limited impact on microbiota is observed with apigenin, and this is attributed to its solubility constraints via the chosen administration route, resulting in its accumulation in the mesentery.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Propiofenonas , Ratos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Apigenina/farmacologia , Apigenina/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Colo , Inflamação/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Colite/tratamento farmacológico
9.
J Ethnopharmacol ; 327: 118022, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38453101

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is an acute multifactorial infectious disease caused by trauma, pneumonia, shock and sepsis. Paeoniae Radix Rubra (Paeonia lactiflora Pall. or Paeonia veitchii Lynch, Chishao in Chinese, CS) and Salviae Miltiorrhizae Radix et Rhizoma (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese, DS) are common traditional Chinese medicines (TCMs). CS-DS herb pair has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, appearing in a variety of prescriptions. However, it is still unclear for the effect and active ingredients of the herb pair on ALI. AIM OF THE STUDY: The study investigated the effect and active ingredients of CS-DS herb pair and demonstrated the synergistic effect and mechanisms of the active ingredients. MATERIALS AND METHODS: Lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cells and BALB/c mice were used to establish an ALI model to investigate the effect of CS-DS herb pair on ALI. Network pharmacology and molecular docking were used to analyze the active ingredients and potential mechanisms of the herb pair. The synergistic effects and mechanisms of active ingredients on ALI were validated by in vitro and in vivo experiments. RESULTS: CS-DS herb pair had a synergistic effect on LPS-induced ALI. Based on the network pharmacology, the compounds paeoniflorin and luteolin were screened. Both paeoniflorin and luteolin had good affinity for NF-κB and MAPK by molecular docking. LPS stimulation of RAW264.7 cells resulted in a significant increase in ROS, NO, TNF-α, IL-6 and IL-1ß, while the paeoniflorin combined with luteolin significantly reduced their expressions. In the LPS-induced ALI model, the combination also reduced the expression of inflammatory factors and oxidative stress levels. Furthermore, LPS activated the NF-κB and MAPK signaling pathways, whereas the combination decreased the expression of proteins in both pathways. CONCLUSION: CS-DS herb pair alleviated LPS-induced ALI with the active ingredients paeoniflorin and luteolin, which suppressed inflammation and oxidative stress via regulation of NF-κB and MAPK signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Glucosídeos , Lipopolissacarídeos , Monoterpenos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Luteolina/farmacologia , Luteolina/uso terapêutico , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo
10.
J Agric Food Chem ; 72(11): 5887-5897, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441878

RESUMO

Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 µM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 µM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 µM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 µM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.


Assuntos
Glutationa Transferase , Luteolina , Ratos , Animais , Humanos , Glutationa Transferase/metabolismo , Mucosa Bucal/metabolismo , Compostos de Sulfidrila , Glutationa/metabolismo
11.
Cell Biochem Funct ; 42(2): e3980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491827

RESUMO

The aim of this study was the identification of luteolin in Prosopis farcta extract (PFE) and melatonin to evaluate its effect on THC withdrawal syndrome in mice. Luteolin was identified by high-performance liquid chromatography (HPCL). Signs of toxicity of mice in PFE and luteolin were monitored for LD50 calculation. The behavioral symptoms of THC withdrawal (stereotypies, ambulation, and inactivity time) induced by the rimonabant challenge were illustrated in THC-dependent mice receiving PFE, luteolin, and melatonin. The expression of mature BDNF (mBDNF) was evaluated by Western blot analysis. The dopamine concentrations were measured using HPLC. PFE and luteolin LD50 were 650 and 220 mg/kg, respectively. PFE (300 mg/kg), all doses of luteolin, and melatonin increased significantly the mBDNF expression and decreased the dopamine concentration. The findings suggest that PFE, luteolin, and melatonin are mighty in reducing the signs of THC withdrawal. It seems these effects were due to a decrease in dopamine concentration level and an increase in mBDNF protein expression in mice brains.


Assuntos
Cannabis , Melatonina , Prosopis , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Prosopis/química , Luteolina/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Dopamina , Melatonina/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Extratos Vegetais/farmacologia , Dronabinol
12.
J Appl Biomed ; 22(1): 33-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505968

RESUMO

PURPOSE: The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. METHODS: HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. RESULTS: Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1ß, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. CONCLUSION: These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.


Assuntos
Antraquinonas , Glucosídeos , Luteolina , Osteogênese , Aldeído Pirúvico , Humanos , Osteogênese/fisiologia , Aldeído Pirúvico/toxicidade , Células Cultivadas , Espécies Reativas de Oxigênio , Polpa Dentária , Óxido de Magnésio , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
13.
Pharmacogenomics J ; 24(2): 8, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485921

RESUMO

BACKGROUND: Tibetan medicine Gaoyuan'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism has not been explored. In this study, we analyzed the mechanism of GYAC in hypoxia tolerance, and provided a new idea for the prevention and treatment of altitude disease. METHODS: The effective components and corresponding targets of GYAC were screened out by the Chinese herbal medicine network database, and the key targets of hypoxia tolerance were retrieved by Genecards, OMIM and PubMed database. Cytoscape 3.7.2 was used to construct GYAC ingredient-target-hypoxia tolerance-related target network. GO function annotation and KEGG enrichment analysis were performed to predict the pathways in which target genes may be involved, and molecular docking was used to verify the binding ability of the compound to target genes. In vitro, the above results were further verified by molecular experiment. RESULTS: We found that GYAC can improve hypoxia tolerance by regulating various target genes, including IL6, IFNG, etc. The main regulatory pathways were HIF-1 signaling pathway. Molecular docking showed that the affinity between luteolin and target genes (IL6, IFNG) were better. In vitro, we observed that hypoxia can inhibit cell viability and promote apoptosis of H9C2 cell. And hypoxia can promote the expression of LDH. After the addition of luteolin, the decrease of cell viability, the increase of cell apoptosis, LDH release and the decrease of mitochondrial membrane potential were inhibited. Besides, inflammatory related factors (IL-6, IL-10, IL-2, IFNG and VEGFA) expression were also inhibited hypoxic cell models. CONCLUSIONS: The results of network pharmacology and molecular docking showed that luteolin, a monomeric component of GYAC, played a role in hypoxia tolerance through a variety of target genes, such as IL6, IFNG. What's more, we have discovered that luteolin can reduce the inflammatory response in cardiac myocytes, thereby alleviating mitochondrial damage, and ultimately enhancing the hypoxia tolerance of H9C2 cardiomyocytes.


Assuntos
Medicamentos de Ervas Chinesas , Interleucina-6 , Humanos , Simulação de Acoplamento Molecular , Luteolina , Farmacologia em Rede , Hipóxia/tratamento farmacológico , Hipóxia/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
14.
Sci Rep ; 14(1): 7202, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531974

RESUMO

Cancer is responsible for approximately 10 million deaths worldwide, with 70% of the deaths occurring in low- and middle-income countries; as such safer and more effective anti-cancer drugs are required. Therefore, the potential benefits of Ziziphus nummularia and Ziziphus spina-christi as sources of anti-cancer agents were investigated. Z. nummularia and Z. spina-christi extracts were prepared using chloroform, ethanol, ethyl acetate, and water. The extracts' anti-cancer properties were determined using the MTT Cell Viability Assay in four cancer cell lines: breast (KAIMRC2 and MDA-MB-231), colorectal (HCT8), and liver (HepG2). The ApoTox-Glo Triplex Assay and high-content imaging (HCI)-Apoptosis Assay were used to assess KAIMRC2 and HCT8 cells further. In addition, KAIMRC2 cells were tested for microtubule staining, and AKT/mTOR protein expression was determined by western blot analysis. Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the secondary metabolites in the ethanol and ethyl acetate extracts, followed by in silico techniques to predict molecular targets and interactions, safety, and pharmacokinetic profile for identified metabolites. Out of the eight extracts, the ethanolic extract of Z. nummularia, exhibited the most potent activity against KAIMRC2 cells with an IC50 value of 29.2 µg/ml. Cancer cell treatment with the ethanolic extract of Z. nummularia resulted in a dose-dependent decrease in cell viability with increased apoptosis and cytotoxic effects. Microtubule staining showed a disrupted microtubular network. The ethanolic extract treatment of KAIMRC2 cells led to upregulated expression of pAKT and pmTOR. In silico studies predicted luteolin-7-O-glucoside to be a ligand for tubulin with the highest docking score (- 7.686) and similar binding interactions relative to the native ligand. Further computational analysis of the metabolites showed acceptable pharmacokinetic and safety profiles, although ethanolic extract metabolites were predicted to have cardiotoxic effects. Ethanolic extraction is optimal for solubilizing active anticancer metabolites from Z. nummularia, which may act by causing M-phase arrest via inhibition of tubulin polymerization. Luteolin-7-O-glucoside is the lead candidate for further research and development as an anti-cancer agent. In addition, this study suggests that herbal treatment could switch on mechanisms of adaptation and survival in cancer cells.


Assuntos
Acetatos , Glucosídeos , Luteolina , Neoplasias , Ziziphus , Extratos Vegetais/farmacologia , Ziziphus/química , Moduladores de Tubulina , Ligantes , Tubulina (Proteína) , Etanol
15.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490155

RESUMO

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Assuntos
Depressão , Ferroptose , Glucosídeos , Luteolina , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Microglia/metabolismo , Hipocampo , Comportamento Animal , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
16.
Nanoscale ; 16(15): 7453-7466, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517408

RESUMO

Pancreatic cancer is one of the major cause of cancer-related deaths worldwide, and is mainly associated with carcinomas of the pancreatic tissue. Current therapies for treating pancreatic cancer have a major drawback related to their low bioavailability and non-specificity, which leads to low therapeutic efficacy and side effects. Luteolin (LUT) has been clinically used for treatment of various types of cancer, although its clinical use has declined owing to its low oral bioavailability. In this work, we prepared an effervescent-based nanocarrier (NG) that rapidly triggers an effervescent reaction and transforms into nanomicelles to modulate the oral bioavailability of the hydrophobic drug Luteolin (LUT). Furthermore, we performed tests to assess its in vitro epithelial cell permeability and cellular internalization on a Caco-2 monolayer. We also performed in vivo toxicity assessment using animal models. Further, we evaluated the nanocarrier system's in vivo efficacy in tumor xenograft pancreatic cancer models. We validated that being pH responsive, our effervescent carrier disassembles at intestinal pH and is absorbed through the intestinal lymphatic system (ILS) to further site-specifically invade the pancreatic cancer cells. Furthermore, the negative surface charge and particle size (450 ± 100 nm) of the nanomicelles helped to internalize LUT through the ILS. We observed that LUT-loaded nanomicelles have significant antipancreatic cancer efficacy by activating caspase-3 activity and downregulating VEGF-A, FAK, TNF-α, and Ki-67. Unlike other drug-delivery systems, we developed noninvasive nanocarrier system has the capability of transporting the hydrophobic drug LUT from the intestine to the tumor site by utilizing the ILS.


Assuntos
Luteolina , Neoplasias Pancreáticas , Animais , Humanos , Células CACO-2 , Sistemas de Liberação de Medicamentos , Intestinos
17.
J Ethnopharmacol ; 327: 117999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447616

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY: In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS: The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS: Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION: The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.


Assuntos
Carcinoma Hepatocelular , Colite , Gastrite , Neoplasias Hepáticas , Melatonina , Hepatopatia Gordurosa não Alcoólica , Portulaca , Animais , Humanos , Medicina Tradicional Chinesa , Fitoterapia , Portulaca/química , Quempferóis , Quercetina , Apigenina , Genisteína , Luteolina , Inflamação
18.
Epilepsy Res ; 201: 107321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382229

RESUMO

Epilepsy represents a prevalent neurological disorder in the population, and the existing antiepileptic drugs (AEDs) often fail to adequately control seizures. Inflammation is recognized as a pivotal factor in the pathophysiology of epilepsy. Luteolin, a natural flavonoid extract, possesses anti-inflammatory properties and exhibits promising neuroprotective activity. Nevertheless, the precise molecular mechanisms underlying the antiepileptic effects of luteolin remain elusive. In this study, we established a rat model of epilepsy using pentylenetetrazole (PTZ) to induce seizures. A series of behavioral experiments were conducted to assess behavioral abilities and cognitive function. Histological techniques, including HE staining, Nissl staining, and TUNEL staining, were employed to assess hippocampal neuronal damage. Additionally, Western blotting, RT-qPCR, and ELISA were utilized to analyze the expression levels of proteins involved in the TLR4/IκBα/NF-κB signaling pathway, transcription levels of apoptotic factors, and levels of inflammatory cytokines, respectively. Luteolin exhibited a dose-dependent reduction in seizure severity, prolonged the latency period of seizures, and shortened seizure duration. Furthermore, luteolin prevented hippocampal neuronal damage in PTZ-induced epileptic rats and partially restored behavioral function and learning and memory abilities. Lastly, PTZ kindling activated the TLR4/IκBα/NF-κB pathway, leading to elevated levels of the cytokines TNF-α, IL-6 and IL-1ß, which were attenuated by luteolin. Luteolin exerted anticonvulsant and neuroprotective activities in the PTZ-induced epileptic model. Its mechanism was associated with the inhibition of the TLR4/IκBα/NF-κB pathway, alleviating the immune-inflammatory response in the post-epileptic hippocampus.


Assuntos
Epilepsia , Pentilenotetrazol , Ratos , Animais , Pentilenotetrazol/toxicidade , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Receptor 4 Toll-Like , Luteolina/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Transdução de Sinais , Epilepsia/tratamento farmacológico , Anticonvulsivantes/efeitos adversos , Citocinas/metabolismo
19.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38307355

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Assuntos
Alpinia , Antiulcerosos , Úlcera Gástrica , Camundongos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Etanol/toxicidade , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Rizoma/metabolismo , Úlcera/tratamento farmacológico , Luteolina/farmacologia , Histamina/metabolismo , Mucosa Gástrica , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo
20.
J Mol Model ; 30(3): 87, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416254

RESUMO

CONTEXT: The antioxidant properties of the three polyphenolic compounds (carnosol, cirsiliol, and luteolin) of Salvia officinalis L. were investigated employing the density functional theory (DFT) calculations at the B3LYP of basis set at 6-311 + + G (d, p) in order to evaluate their antioxidant activity. The enthalpies of reactions associated with the SET-PT, SPLET, and HAT mechanisms were analyzed in gas and in different solvents using the CPCM (conductor-like polarizable continuum) model. For all possible hydrogen donor sites, the corresponding parameters (BDE, AIP, PDE, PA, ETE, HOMOs, and LUMOs) and reactivity indices (IPE, EA, Χ, η, S, and ω) were also evaluated. The calculated results showed that derivatives 12-OH, 11-OH, 4'-OH, and 3'-OH had the lowest antioxidant activity. The results showed as well that carnosol, cirsiliol, and luteolin have higher reactivity compared to ascorbic acid and could be considered better antioxidants. According to research, the catechol group is crucial in influencing the studied compounds antioxidant activity. The theoretically predicted order of antioxidant efficiencies in this work agrees well with the QSAR (quantitative structure-activity relationship) data. The findings show that in the vacuum as well as benzene media. HAT would be the most effective mechanism; in contrast, the thermodynamic equilibrium approach in polar media is the SPLET mechanism. Likewise, the outcomes of the docking modeling confirm that the selected molecules have high inhibitory activity to glutathione-S-transferases (GSTs) receptors. Moreover, they have very important pharmacokinetic, chemical, and biological profiles. Finally, all the results show that the three natural molecules have good pharmacokinetic profiles, particularly the bioavailability and permeability toward biological membranes. METHODS: The software packages used in this investigation are Gaussian 16, Discovery studio Visualizer, and AutoDock vina. The three compounds (carnosol, cirsiliol, and luteolin) of Salvia officinalis L. were optimized with DFT/B3LYP of basis set at 6-311 + + G (d, p). The optimized structures were established via vibrational analysis (i.e., no imaginary frequencies in the frequency set). All enthalpies were zero-point (ZPE) corrected. Vibrational frequency calculations were performed at 298.15 K and 1 atmosphere pressure to determine the thermodynamic characteristics of the investigated reactions. The descriptors were associated with the antioxidant mechanisms for investigated molecules in vacuum and in various solvents. The molecular docking was used by AutoDock vina to estimate and evaluate the title compounds compatibility as potential antioxidant drugs utilizing appropriate receptor proteins. The solvation effect in the medium of benzene (ɛ = 2.27) and water (ɛ = 78.39) was taken into account. Furthermore, a methanol solvent (ɛ = 32.61) was also taken into consideration to compare with the empirical data.


Assuntos
Abietanos , Antioxidantes , Salvia officinalis , Antioxidantes/farmacologia , Luteolina , Simulação de Acoplamento Molecular , Benzeno , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...