Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 17(4): e13786, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38558534

RESUMO

Current noninvasive liver tests measure fibrosis, inflammation, or steatosis and do not measure function. The HepQuant platform of noninvasive tests uniquely assesses both liver function and physiology through the hepatic uptake of stable isotopes of cholate. However, the prototypical HepQuant SHUNT test (SHUNT V1.0) is cumbersome to administer, requiring intravenous and oral administration of cholate and six peripheral venous blood samples over 90 min. To alleviate the burden of test administration, we explored whether an oral only (DuO) version, and other simplified versions, of the test could provide reproducible measurements of liver function. DuO requires only oral dosing and two blood samples over 60 min. The simplified SHUNT test versions were SHUNT V1.1 (oral and IV dosing but four blood samples) and SHUNT V2.0 (oral and IV dosing but only two blood samples over 60 min). In this paper, we describe the reproducibility of DuO and the simplified SHUNT tests relative to that of SHUNT V1.0; equivalency is described in a separate paper. Data from two studies comprising 236 SHUNT tests in 94 subjects were analyzed retrospectively by each method. All simplified methods were highly reproducible across test parameters with intraclass correlation coefficients >0.93 for test parameters Disease Severity Index (DSI) and Hepatic Reserve. DuO and SHUNT V2.0 improved reproducibility in measuring portal-systemic shunting (SHUNT%). These simplified tests, particularly DuO and SHUNT V2.0, are easier to administer and less invasive, thus, having the potential to be more widely accepted by care providers administering the test and by patients receiving the test.


Assuntos
Colatos , Fígado , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Testes de Função Hepática
2.
Histol Histopathol ; 39(1): 79-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37017203

RESUMO

BACKGROUND AND AIMS: Liver biopsy can provide critical information in patients with drug-induced liver injury (DILI). Our study aimed to compare the histopathological features of DILI at different time points from the onset to liver biopsy. METHODS: We conducted a single-centre retrospective observational study. The clinical and follow-up data were extracted, and the pathological slides were reviewed. RESULTS: 129 patients were included. The median age was 52 and 75% were women. They were divided into <1 month, 1-3 months, and >3 months groups according to the durations from onset of the disorder to liver biopsy. The aminotransferase, alkaline phosphatase, and bilirubin levels showed no significant differences at onset but significantly decreased with time among the three groups (all p<0.05) at the time of liver biopsy. Histological injury patterns were significantly different among the three groups (p<0.01). Hepatocellular, canalicular, and cholestasis of Kupffer cells were significantly less frequent in the >3 months group (p<0.01). For patients taking herbs, bridging necrosis and cholestatic injury were significantly more frequent in the <1 month group (p<0.01). Furthermore, ductopenia, cholate stasis, and foam-like cells were equally distributed in the three groups but were significantly associated with poor prognosis. CONCLUSIONS: Biopsy time significantly affects liver pathology: the earlier, the more acute cholestatic-hepatitic pattern, the later, the more chronic injury patterns. The prognostic features (ductopenia, cholate stasis, and foam-like cells) occurred equally in all three groups. Our study provides valuable information for liver pathologists aiding in their better interpretation of the liver biopsy from patients with DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Fígado/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/patologia , Biópsia , Colatos/efeitos adversos
3.
Arterioscler Thromb Vasc Biol ; 43(11): 2165-2178, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37675637

RESUMO

BACKGROUND: SR-B1 (scavenger receptor class B type 1)/LDLR (low-density lipoprotein receptor) double knockout mice fed a high-fat, high-cholesterol diet containing cholate exhibit coronary artery disease characterized by occlusive coronary artery atherosclerosis, platelet accumulation in coronary arteries, and myocardial fibrosis. Platelets are involved in atherosclerosis development, and PAR (protease-activated receptor) 4 has a prominent role in platelet function in mice. However, the role of PAR4 on coronary artery disease in mice has not been tested. METHODS: We tested the effects of a PAR4 inhibitory pepducin (RAG8) on diet-induced aortic sinus and coronary artery atherosclerosis, platelet accumulation in atherosclerotic coronary arteries, and myocardial fibrosis in SR-B1/LDLR double knockout mice. SR-B1/LDLR double knockout mice were fed a high-fat, high-cholesterol diet containing cholate and injected daily with 20 mg/kg of either the RAG8 pepducin or a control reverse-sequence pepducin (SRQ8) for 20 days. RESULTS: Platelets from the RAG8-treated mice exhibited reduced thrombin and PAR4 agonist peptide-mediated activation compared with those from control SRQ8-treated mice when tested ex vivo. Although aortic sinus atherosclerosis levels did not differ, RAG8-treated mice exhibited reduced coronary artery atherosclerosis, reduced platelet accumulation in atherosclerotic coronary arteries, and reduced myocardial fibrosis. These protective effects were not accompanied by changes in circulating lipids, inflammatory cytokines, or immune cells. However, RAG8-treated mice exhibited reduced VCAM-1 (vascular cell adhesion molecule 1) protein levels in nonatherosclerotic coronary artery cross sections and reduced leukocyte accumulation in atherosclerotic coronary artery cross sections compared with those from SRQ8-treated mice. CONCLUSIONS: The PAR4 inhibitory RAG8 pepducin reduced coronary artery atherosclerosis and myocardial fibrosis in SR-B1/LDLR double knockout mice fed a high-fat, high-cholesterol diet containing cholate. Furthermore, RAG8 reduced VCAM-1 in nonatherosclerotic coronary arteries and reduced leukocyte and platelet accumulation in atherosclerotic coronary arteries. These findings identify PAR4 as an attractive target in reducing coronary artery disease development, and the use of RAG8 may potentially be beneficial in cardiovascular disease.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Colatos , Colesterol , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
Eur J Med Chem ; 261: 115788, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37703709

RESUMO

Clostridioides difficile infection (CDI) is a major identifiable cause of antibiotic-associated diarrhea. In our previous study (J. Med. Chem., 2018, 61, 6759-6778), we have identified N-phenyl-cholan-24-amide as a potent inhibitor of spore germination. The most potent compounds in our previous work are N-arylamides. We were interested in the role that the conformation of the amide plays in activity. Previous research has shown that secondary N-arylamides exist exclusively in the coplanar trans conformation while tertiary N-methyl-N-arylamides exist in a non-planar, cis conformation. The N-methyl-N-phenyl-cholan-24-amide was 17-fold less active compared to the parent compounds suggesting the importance of the orientation of the phenyl ring. To lock the phenyl ring into a trans conformation, cyclic tertiary amides were prepared. Indoline and quinoline cholan-24-amides were both inhibitors of spore germination; however, the indoline analogs were most potent. Isoindoline and isoquinoline amides were inactive. We found that the simple indoline derivative gave an IC50 value of 1 µM, while the 5'-fluoro-substituted compound (5d) possessed an IC50 of 400 nM. To our knowledge, 5d is the most potent known spore germination inhibitor described to date. Taken together, our results indicate that the trans, coplanar conformation of the phenyl ring is required for potent inhibition.


Assuntos
Clostridioides difficile , Clostridioides , Amidas/farmacologia , Colatos , Esporos Bacterianos/fisiologia
5.
Int J Antimicrob Agents ; 62(5): 106973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741586

RESUMO

Potentially significant drug candidates often face elimination from consideration due to the lack of an effective method for systemic delivery. The poor solubility of these candidates has posed a major obstacle for their development as oral pills or injectables. Niclosamide, a host-directed antiviral, is a good example. In this study, a nanoformulation technology that allows for the non-covalent formulation of niclosamide with cholic acids was developed. This formulation enables efficient systemic delivery through endocytosis and enterohepatic circulation of bile-acid-coated nanoparticles. The oral bioavailability of niclosamide-delivery nanoparticles (NDNs) was significantly enhanced to 38.3%, representing an eight-fold increase compared with pure niclosamide. Consequently, the plasma concentration of niclosamide for the NDN formulation reached 1179.6 ng/mL, which is 11 times higher than the therapeutic plasma level. This substantial increase in plasma level contributed to the complete resolution of clinical symptoms in animals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This nanoformulation not only provides an orally deliverable antiviral drug for SARS-CoV-2 with improved pharmaceutical bioavailability, but also offers a solution to the systemic delivery challenges faced by potentially significant drug candidates.


Assuntos
Colatos , Niclosamida , Animais , SARS-CoV-2 , Solubilidade , Antivirais
6.
J Antibiot (Tokyo) ; 76(6): 335-345, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37016015

RESUMO

Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea and has been declared an urgent threat by the CDC. C. difficile forms dormant and resistant spores that serve as infectious vehicles for CDI. To cause disease, C. difficile spores recognize taurocholate and glycine to trigger the germination process. In contrast to other sporulating bacteria, C. difficile spores are postulated to use a protease complex, CspABC, to recognize its germinants. Since spore germination is required for infection, we have developed anti-germination approaches for CDI prophylaxis. Previously, the bile salt analog CaPA (an aniline-substituted cholic acid) was shown to block spore germination and protect rodents from CDI caused by multiple C. difficile strains and isolates. In this study, we found that CaPA is an alternative substrate inhibitor of C. difficile spore germination. By competing with taurocholate for binding, CaPA delays C. difficile spore germination and reduces spore viability, thus diminishing the number of outgrowing vegetative bacteria. We hypothesize that the reduction of toxin-producing bacterial burden explains CaPA's protective activity against murine CDI. Previous data combined with our results suggests that CaPA binds tightly to C. difficile spores in a CspC-dependent manner and irreversibly traps spores in an alternative, time-delayed, and low yield germination pathway. Our results are also consistent with kinetic data suggesting the existence of at least two distinct bile salt binding sites in C. difficile spores.


Assuntos
Clostridioides difficile , Clostridioides , Animais , Camundongos , Clostridioides/metabolismo , Esporos Bacterianos/metabolismo , Colatos/farmacologia , Colatos/metabolismo , Ácido Taurocólico/farmacologia , Ácido Taurocólico/metabolismo , Ácidos e Sais Biliares/farmacologia , Ácidos e Sais Biliares/metabolismo , Proteínas de Bactérias/metabolismo
7.
Microbiology (Reading) ; 169(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947574

RESUMO

Staphylococcus aureus is a common colonizer of the human gut and in doing so it must be able to resist the actions of the host's innate defences. Bile salts are a class of molecules that possess potent antibacterial activity that control growth. Bacteria that colonize and survive in that niche must be able to resist the action of bile salts, but the mechanisms by which S. aureus does so are poorly understood. Here we show that FadB is a bile-induced oxidoreductase which mediates bile salt resistance and when heterologously expressed in Escherichia coli renders them resistant. Deletion of fadB attenuated survival of S. aureus in a model of the human distal colon.


Assuntos
Colatos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Ácidos e Sais Biliares/farmacologia , Oxirredutases
8.
Transl Res ; 252: 53-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35948199

RESUMO

The HepQuant SHUNT test quantifies hepatic functional impairment from the simultaneous clearance of cholate from the systemic and portal circulations for the purpose of monitoring treatment effects or for predicting risk for clinical outcome. Compartmental models are defined by distribution volumes and transfer rates between volumes to estimate parameters not defined by noncompartmental analyses. Previously, a noncompartmental analysis method, called the minimal model (MM), demonstrated reproducible and reliable measures of liver function (Translational Research 2021). The aim of this study was to compare the reproducibility and reliability of a new physiologically based compartmental model (CM) vs the MM. Data were analyzed from 16 control, 16 nonalcoholic steatohepatitis (NASH), and 16 hepatitis C virus (HCV) subjects, each with 3 replicate tests conducted on 3 separate days. The CM describes transfer of cholates between systemic, portal, and liver compartments with assumptions from measured or literature-derived values and unknown parameters estimated by nonlinear least-squares regression. The CM was compared to the MM for 6 key indices of hepatic disease in terms of intraclass correlation coefficient (ICC) with a lower acceptable limit of 0.7. The CM correlated well with the MM for disease severity index (DSI) with R2 (95% confidence interval) of 0.96 (0.94-0.98, P < 0.001). Acceptable reproducibility (ICC > 0.7) was observed for 6/6 and 5/6 hepatic disease indices for CM and MM, respectively. SHUNT, a measure of the absolute bioavailability, had ICC of 0.73 (0.60-0.83, P = 0.3095) for MM and 0.84 (0.76-0.90, P = 0.0012) for CM. The CM, but not the MM, allowed determination of anatomic shunt and hepatic extraction and improved the within individual reproducibility.


Assuntos
Modelos Epidemiológicos , Hepatopatia Gordurosa não Alcoólica , Humanos , Reprodutibilidade dos Testes , Fígado , Testes de Função Hepática , Colatos
9.
Food Res Int ; 161: 111756, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192871

RESUMO

Many studies have shown that caffeic acid phenethyl ester (CAPE) has various functions, such as antioxidant, anti-inflammatory and anticancer activity, but its low bioavailability and stability limit its application. In this study, the colorectal targeted delivery system for CAPE based on a solid-in-oil-in-water (S/O/W) multilayer emulsion was prepared using CAPE-loaded nanoparticles as the solid phase, coconut oil as the oil phase, and a mixture of lecithin and sodium caseinate as the aqueous phase. The stability of the O/W interfacial layer was improved by using a sodium casein-lecithin mixture as the aqueous surface layer in the preparation. This S/O/W emulsion is a spherical droplet with an S/O/W trilayer structure with a particle size of 155.5 ± 0.72 nm and a polydispersity index (PDI) of 0.24 ± 0.01. The Fourier transform infrared (FTIR) results confirmed that CAPE was successfully loaded into the S/O/W emulsion. This S/O/W emulsion was able to maintain a stable liquid state at pH 6.00-7.4 or cholate concentration of 0-50 mg/mL but showed a gel state at pH 2.0-3.0. The storage experiments demonstrated that the S/O/W emulsion was stable for 15 days at 4 °C, but was prone to agglomeration and emulsion breakage at 25 °C. The in vivo digestion process indicated that the S/O/W emulsion was gradually digested in the digestive tract and released solid phase nanoparticles in the large intestine. Therefore, this newly developed targeted delivery system can effectively deliver CAPE to the colorectum and achieve a 12-hour delayed release, which improved the bioavailability and activity of CAPE.


Assuntos
Caseínas , Lecitinas , Antioxidantes/química , Ácidos Cafeicos , Colatos , Óleo de Coco , Digestão , Emulsões/química , Álcool Feniletílico/análogos & derivados , Sódio , Água/química
10.
J Mater Chem B ; 10(39): 8033-8045, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106623

RESUMO

Cytoskeletal movement is a compulsory necessity for proper cell functioning and is largely controlled by actin filament dynamics. The actin dynamics can be fine-tuned by various natural and artificial materials including cationic proteins, polymers, liposomes, and lipids, although most of the synthetic substrates have toxicity issues. Herein, we show actin nucleation and stabilization with a synthetic family of cholic acid (CA)-conjugated cationic macromolecules. Architectural conjugation of CA is designed by attaching it to the polymer chain end, as well as to the side chain of the polymer. The side-chain cholate content is also varied in the copolymer, which results in self-aggregation in aqueous media above a certain critical aggregation concentration (CAC). Below the CAC, the in vitro actin dynamics modulation behaviour is studied using a pyrene actin fluorescence assay, actin co-sedimentation assay, dynamic light scattering (DLS), and transmission electron microscopy (TEM). These polymers are nontoxic to HeLa cells, and the 2% cholate conjugated cationic copolymer showed maximum enhancement of G-actin nucleation, as well as F-actin stabilization. We further develop a theoretical model to elucidate the underlying dynamics of the actin polymerization process under the influence of cationic copolymers with cholate pendants. Finally, we proposed macromolecular self-aggregation as a unique tool for modulating actin dynamics, as revealed from the experimental findings and theoretical modelling.


Assuntos
Actinas , Polímeros , Actinas/metabolismo , Cátions , Colatos , Células HeLa , Humanos , Lipídeos , Lipossomos , Polímeros/química , Pirenos/química
11.
J Bacteriol ; 204(9): e0023622, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36000836

RESUMO

Actinobacterial MaoC family enoyl coenzyme A (CoA) hydratases catalyze the addition of water across the double bond of CoA esters during steroid side chain catabolism. We determined that heteromeric MaoC type hydratases, exemplified by ChsH1-ChsH2Mtb of Mycobacterium tuberculosis and CasM-CasORjost from Rhodococcus jostii RHA1, are specific toward a 3-carbon side chain steroid metabolite, consistent with their roles in the last ß-oxidation cycle of steroid side chain degradation. Hydratases containing two fused MaoC domains are responsible for the degradation of longer steroid side chains. These hydratases, encoded in the cholesterol degradation gene clusters of M. tuberculosis and R. jostii RHA1, have broad specificity and were able to catalyze the hydration of the 5-carbon side chain of both cholesterol and bile acid metabolites. Surprisingly, the homologous hydratases from the bile acid degradation pathway have low catalytic efficiencies or no activity toward the 5-carbon side chain bile acid metabolites, cholyl-enoyl-CoA, lithocholyl-enoyl-CoA, and chenodeoxycholyl-enoyl-CoA. Instead, these hydratases preferred a cholate metabolite with oxidized steroid rings and a planar ring structure. Together, the results suggest that ring oxidation occurs prior to side chain degradation in the actinobacterial bile acid degradation pathway. IMPORTANCE Characterization of the substrate specificity of hydratases described here will facilitate the development of specific inhibitors that may be useful as novel therapeutics against M. tuberculosis and to metabolically engineer bacteria to produce steroid pharmaceuticals with desired steroid rings and side chain structures.


Assuntos
Hidrolases , Mycobacterium tuberculosis , Carbono/metabolismo , Colatos/metabolismo , Colesterol/metabolismo , Hidrolases/metabolismo , Mycobacterium tuberculosis/enzimologia , Esteroides/química , Esteroides/metabolismo , Especificidade por Substrato
12.
Small ; 18(38): e2202694, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962759

RESUMO

A reactive oxygen species (ROS) responsive cleavable hierarchical metallic supra-nanostructure (HMSN) is reported. HMSN structured with thin branches composed of primary gold (Au) nanocrystals and silver (Ag) nano-linkers is synthesized by a one-pot aqueous synthesis with a selected ratio of Au/Ag/cholate. ROS responsive degradability of HMSN is tested in the presence of endogenous and exogeneous ROS. Significant ROS-responsive structural deformation of HMSN is observed in the ROS exposure with hydrogen peroxide (H2 O2 ) solution. The ROS responsiveness of HMSN is significantly comparable with negligible structural changes of conventional spherical gold nanoparticles. The demonstrated ROS responsive degradation of HMSN is further confirmed in various in vitro ROS conditions of each cellular endogenous ROS and exogeneous ROS generated by photodynamic therapy (PDT) or X-ray radiation. Then, in vivo ROS responsive degradability of HMSN is further evaluated with intratumoral injection of HMSN and exogeneous ROS generation via PDT in a mouse tumor model. Additional in vivo biodistribution and toxicity of intravenously administrated HMSN at 30-day post-injection are investigated for potential in vivo applications. The observed ROS responsive degradability of HMSN will provide a promising option for a type of ROS responsive-multifunctional nanocarriers in cancer treatment and various biomedical applications.


Assuntos
Neuropatia Hereditária Motora e Sensorial , Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Colatos , Ouro/química , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Camundongos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Prata , Distribuição Tecidual
13.
Biochim Biophys Acta Biomembr ; 1864(6): 183884, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182589

RESUMO

Nanodiscs are used to stabilize membrane proteins in a lipid environment and enable investigations of the function and structure of these. Membrane proteins are often only available in small amounts, and thus the stability and ease of use of the nanodiscs are essential. We have recently explored circularizing and supercharging membrane scaffolding proteins (MSPs) for nanodisc formation and found increased temporal stability at elevated temperatures. In the present study, we investigate six different supercharged MSPs and their ability to form nanodiscs: three covalently circularized and the three non-circularized, linear versions. Using standard reconstitution protocols using cholate as the reconstitution detergent, we found that two of the linear constructs formed multiple lipid-protein species, whereas adding n-Dodecyl-B-D-maltoside (DDM) with the cholate in the reconstitution gave rise to single-species nanodisc formation for these MSPs. For all MSPs, the formed nanodiscs were analyzed by small-angle X-ray scattering (SAXS), which showed similar structures for each MSP, respectively, suggesting that the structures of the formed nanodiscs are independent of the initial DDM content, as long as cholate is present. Lastly, we incorporated the membrane protein proteorhodopsin into the supercharged nanodiscs and observed a considerable increase in incorporation yield with the addition of DDM. For the three circularized MSPs, a single major species appeared in the size exclusion chromatography (SEC) chromatogram, suggesting monodisperse nanodiscs with proteorhodopsin incorporated, which is in strong contrast to the samples without DDM showing almost no incorporation and high polydispersity.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Colatos , Detergentes/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Cells ; 10(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201437

RESUMO

Cytochrome c oxidase (CytOx), the oxygen-accepting and rate-limiting enzyme of mitochondrial respiration, binds with 10 molecules of ADP, 7 of which are exchanged by ATP at high ATP/ADP-ratios. These bound ATP and ADP can be exchanged by cholate, which is generally used for the purification of CytOx. Many crystal structures of isolated CytOx were performed with the enzyme isolated from mitochondria using sodium cholate as a detergent. Cholate, however, dimerizes the enzyme isolated in non-ionic detergents and induces a structural change as evident from a spectral change. Consequently, it turns off the "allosteric ATP-inhibition of CytOx", which is reversibly switched on under relaxed conditions via cAMP-dependent phosphorylation and keeps the membrane potential and ROS formation in mitochondria at low levels. This cholate effect gives an insight into the structural-functional relationship of the enzyme with respect to ATP inhibition and its role in mitochondrial respiration and energy production.


Assuntos
Colatos/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Bovinos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Ratos , Espectrofotometria Ultravioleta
15.
Transl Res ; 233: 5-15, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33400995

RESUMO

The HepQuant SHUNT test quantifies liver function and blood flow using systemic and portal clearances of cholate. The test can identify the risk of well-compensated patients to develop complications of cirrhosis. To confirm the reliability of a single HepQuant SHUNT test we defined its within-individual reproducibility. Healthy subjects (n = 16), 16 with nonalcoholic steatohepatitis (NASH), and 16 with chronic hepatitis C virus (HCV) underwent 3 HepQuant SHUNT tests on 3 separate days within 30 days. The test involves simultaneous administration of 20 mg 13C-cholate IV and 40 mg d4-cholate PO, and subsequent collection of 3 mL blood samples at 5, 20, 45, 60, and 90 minutes. Clearances are expressed as systemic and portal hepatic filtration rate. Portal-systemic shunting (SHUNT), a disease severity index (DSI), and an estimate of DSI (STAT) are calculated from the clearances. Reproducibility was determined by the intraclass correlation coefficient (ICC > 0.70) and Bland-Altman analysis. Equal numbers of NASH and HCV patients had either early (F0-F2) or advanced (F3/F4) stages of fibrosis. All F3/F4 subjects were clinically compensated. The intraclass correlation coefficient (ICC) for DSI was 0.94 (0.90-0.96 95% confidence interval) indicating excellent reproducibility. The other test parameters had ICCs ranging from 0.74 (SHUNT) to 0.90 (STAT). In Bland-Altman analysis, the mean of differences between measurements of DSI was 0.13 with standard deviation 2.12. The excellent reproducibility of the HepQuant SHUNT test, particularly DSI, supports the use this minimally invasive, blood-based test as a reliable test of liver function and physiology.


Assuntos
Testes de Função Hepática/métodos , Fígado/fisiologia , Adulto , Isótopos de Carbono , Colatos/administração & dosagem , Colatos/sangue , Colatos/química , Deutério , Feminino , Voluntários Saudáveis , Hepatite C Crônica/fisiopatologia , Humanos , Fígado/irrigação sanguínea , Circulação Hepática/fisiologia , Testes de Função Hepática/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Valores de Referência , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Pesquisa Translacional Biomédica , Adulto Jovem
16.
Drug Metab Dispos ; 48(8): 662-672, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499339

RESUMO

This work aims to investigate how the bile acid metabolism of newborns differs from that of adults along the axis of primary, secondary, and tertiary bile acids (BAs). The total unconjugated BA profiles were quantitatively determined by enzyme digestion techniques in urine of 21 newborns born by cesarean section, 29 healthy parturient women, 30 healthy males, and 28 healthy nonpregnant females. As expected, because of a lack of developed gut microbiota, newborns exhibited poor metabolism of secondary BAs. Accordingly, the tertiary BAs contributed limitedly to the urinary excretion of BAs in newborns despite their tertiary-to-secondary ratios significantly increasing. As a result, the primary BAs of newborns underwent extensive oxidative metabolism, resulting in elevated urinary levels of some fetal-specific BAs, including 3-dehydroCA, 3ß,7α,12α-trihydroxy-5ß-cholan-24-oic acid, 3α,12-oxo-hydroxy-5ß-cholan-24-oic acid, and nine tetrahydroxy-cholan-24-oic acids (Tetra-BAs). Parturient women had significantly elevated urinary levels of tertiary BAs and fetal-specific BAs compared with female control, indicating that they may be excreted into amniotic fluid for maternal disposition. An in vitro metabolism assay in infant liver microsomes showed that four Tetra-BAs and 3-dehydroCA were hydroxylated metabolites of cholate, glycocholate, and particularly taurocholate. However, the recombinant cytochrome P450 enzyme assay found that the fetal-specific CYP3A7 did not contribute to these oxidation metabolisms as much as expected compared with CYP3A4. In conclusion, newborns show a BA metabolism pattern predominated by primary BA oxidations due to immaturity of secondary BA metabolism. Translational studies following this finding may bring new ideas and strategies for both pediatric pharmacology and diagnosis and treatment of perinatal cholestasis-associated diseases. SIGNIFICANCE STATEMENT: The prenatal BA disposition is different from adults because of a lack of gut microbiota. However, how the BA metabolism of newborns differs from that of adults along the axis of primary, secondary, and tertiary BAs remains poorly defined. This work demonstrated that the urinary BA profiles of newborns born by cesarean section are characterized by oxidative metabolism of primary BAs, in which the fetal-specific CYP3A7 plays a limited role in the downstream oxidation metabolism of cholate.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colatos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Recém-Nascido/metabolismo , Adulto , Fatores Etários , Ácidos e Sais Biliares/urina , Cesárea , Colatos/urina , Feminino , Voluntários Saudáveis , Humanos , Masculino , Troca Materno-Fetal , Microssomos Hepáticos , Oxirredução , Gravidez
17.
J Sep Sci ; 43(14): 2905-2913, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32307909

RESUMO

In this article, capillary electrophoresis was applied to investigate the chiral recognition mechanism for the enantioseparation on a well-known second-generation photodynamic therapy drug of benzoporphyrin derivative monoacid ring A, that is, verteporfin. In our previous study, cholate salts have been studied as the chiral selectors, which can realize baseline separation of the four verteporfin isomers. Aiming to reveal the chiral recognition mechanism, the separation effect of several kinds of chiral selectors was discussed. According to the results and references, the chiral separation mechanism of this system was concluded: the analytes selectively combine with the chiral micelles, that is, dynamic H-bonds interactions occur between the hydroxyl groups on the outer side of the cholate micelles and the ester/carboxy groups of the four isomers. In addition, the role of dimethyl formamide as an organic modifier was also researched, including reducing the effective mobility of the analytes and mobility of electroosmotic flow, and preventing them from adsorbing to the capillary wall and self-aggregating of verteporfin, which are pretty beneficial for separation. The method used in this article provides a direct and reliable solution to study the mechanism of chiral separation.


Assuntos
Colatos/química , Verteporfina/química , Eletroforese Capilar , Conformação Molecular , Sais/química , Estereoisomerismo
18.
Int J Nanomedicine ; 14: 4045-4057, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213814

RESUMO

Background: Quercetin (QUE) shows a potential antileukemic activity, but possesses poor solubility and low bioavailability. Purpose: This article explored the bile salt transport pathway for oral deliver of QUE using cholate-modified polymer-lipid hybrid nanoparticles (cPLNs) aiming to enhance its antileukemic effect. Methods: QUE-loaded cPLNs (QUE-cPLNs) were developed through a nanoprecipitation technique and characterized by particle size, entrapment efficiency (EE), microscopic morphology and in vitro drug release. In vitro cellular uptake and cytotoxicity of QUE-cPLNs were examined on Caco-2 and P388 cells; in vivo pharmacokinetics and antileukemic effect were evaluated using Sprague Dawley rats and leukemic model mice, respectively. Results: The prepared QUE-cPLNs possessed a particle size of 110 nm around with an EE of 96.22%. QUE-cPLNs resulted in significantly enhanced bioavailability of QUE, up to 375.12% relative to the formulation of suspensions. In addition, QUE-cPLNs exhibited excellent cellular uptake and internalization capability compared to cholate-free QUE-PLNs. The in vitro cytotoxic and in vivo antileukemic effects of QUE-cPLNs were also signally superior to free QUE and QUE-PLNs. Conclusion: These findings indicate that cPLNs are a promising nanocarrier able to improve the oral bioavailability and therapeutic index of QUE.


Assuntos
Antineoplásicos/farmacologia , Colatos/química , Lipídeos/química , Nanopartículas/química , Polímeros/química , Quercetina/administração & dosagem , Administração Oral , Animais , Área Sob a Curva , Células CACO-2 , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Humanos , Leucemia/patologia , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Quercetina/farmacocinética , Quercetina/farmacologia , Ratos Sprague-Dawley
19.
Environ Microbiol ; 21(2): 800-813, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30680854

RESUMO

Bile salts are steroid compounds from the digestive tract of vertebrates and enter the environment via defecation. Many aerobic bile-salt degrading bacteria are known but no bacteria that completely degrade bile salts under anoxic conditions have been isolated so far. In this study, the facultatively anaerobic Betaproteobacterium Azoarcus sp. strain Aa7 was isolated that grew with bile salts as sole carbon source under anoxic conditions with nitrate as electron acceptor. Phenotypic and genomic characterization revealed that strain Aa7 used the 2,3-seco pathway for the degradation of bile salts as found in other denitrifying steroid-degrading bacteria such as Sterolibacterium denitrificans. Under oxic conditions strain Aa7 used the 9,10-seco pathway as found in, for example, Pseudomonas stutzeri Chol1. Metabolite analysis during anaerobic growth indicated a reductive dehydroxylation of 7α-hydroxyl bile salts. Deletion of the gene hsh2 Aa7 encoding a 7-hydroxysteroid dehydratase led to strongly impaired growth with cholate and chenodeoxycholate but not with deoxycholate lacking a hydroxyl group at C7. The hsh2 Aa7 deletion mutant degraded cholate and chenodeoxycholate to the corresponding C19 -androstadienediones only while no phenotype change was observed during aerobic degradation of cholate. These results showed that removal of the 7α-hydroxyl group was essential for cleavage of the steroid skeleton under anoxic conditions.


Assuntos
Azoarcus/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Anaerobiose , Azoarcus/enzimologia , Azoarcus/genética , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/química , Colatos/metabolismo , Desnitrificação , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroides/metabolismo , Rhodocyclaceae/enzimologia , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Esteroides/química , Esteroides/metabolismo
20.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054875

RESUMO

Bile salts such as cholate are steroid compounds with a C5 carboxylic side chain and occur ubiquitously in vertebrates. Upon their excretion into soils and waters, bile salts can serve as growth substrates for diverse bacteria. Novosphingobium sp. strain Chol11 degrades 7-hydroxy bile salts via 3-keto-7-deoxy-Δ4,6 metabolites by the dehydration of the 7-hydroxyl group catalyzed by the 7α-hydroxysteroid dehydratase Hsh2. This reaction has not been observed in the well-studied 9-10-seco degradation pathway used by other steroid-degrading bacteria indicating that strain Chol11 uses an alternative pathway. A reciprocal BLASTp analysis showed that known side chain degradation genes from other cholate-degrading bacteria (Pseudomonas stutzeri Chol1, Comamonas testosteroni CNB-2, and Rhodococcus jostii RHA1) were not found in the genome of strain Chol11. The characterization of a transposon mutant of strain Chol11 showing altered growth with cholate identified a novel steroid-24-oyl-coenzyme A ligase named SclA. The unmarked deletion of sclA resulted in a strong growth rate decrease with cholate, while growth with steroids with C3 side chains or without side chains was not affected. Intermediates with a 7-deoxy-3-keto-Δ4,6 structure, such as 3,12-dioxo-4,6-choldienoic acid (DOCDA), were shown to be likely physiological substrates of SclA. Furthermore, a novel coenzyme A (CoA)-dependent DOCDA degradation metabolite with an additional double bond in the side chain was identified. These results support the hypothesis that Novosphingobium sp. strain Chol11 harbors an alternative pathway for cholate degradation, in which side chain degradation is initiated by the CoA ligase SclA and proceeds via reaction steps catalyzed by so-far-unknown enzymes different from those of other steroid-degrading bacteria.IMPORTANCE This study provides further evidence of the diversity of metabolic pathways for the degradation of steroid compounds in environmental bacteria. The knowledge about these pathways contributes to the understanding of the CO2-releasing part of the global C cycle. Furthermore, it is useful for investigating the fate of pharmaceutical steroids in the environment, some of which may act as endocrine disruptors.


Assuntos
Proteínas de Bactérias/genética , Colatos/metabolismo , Coenzima A Ligases/genética , Sphingomonadaceae/genética , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Redes e Vias Metabólicas , Sphingomonadaceae/metabolismo , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...