Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.154
Filtrar
1.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570789

RESUMO

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Assuntos
Ácidos e Sais Biliares , Enterococcus faecium , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Ácido Desoxicólico/farmacologia , Proteômica , Ácido Cólico , Ácido Quenodesoxicólico/metabolismo , Enterococcus
2.
Immunity ; 57(4): 834-836, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599174

RESUMO

Various microbial metabolites promote cell transformation. In this issue of Immunity, Cong et al. show that deoxycholic acid (DCA), a microbial metabolite of bile, promotes tumor growth by suppressing antitumor CD8+ T cell responses via dysregulation of calcium efflux.


Assuntos
Ácido Desoxicólico , Neoplasias , Humanos , Bile , Apoptose , Ácidos e Sais Biliares
3.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479384

RESUMO

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico/farmacologia , Linfócitos T CD8-Positivos
4.
BMC Genomics ; 25(1): 239, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438836

RESUMO

BACKGROUND: Acute diarrhea, dehydration and death in piglets are all symptoms of transmissible gastroenteritis virus (TGEV), which results in significant financial losses in the pig industry. It is important to understand the pathogenesis and identify new antiviral targets by revealing the metabolic interactions between TGEV and host cells. RESULTS: We performed metabolomic and transcriptomic analyses of swine testicular cells infected with TGEV. A total of 1339 differential metabolites and 206 differentially expressed genes were detected post TEGV infection. The differentially expressed genes were significantly enriched in the HIF-1 signaling pathway and PI3K-Akt signaling. Integrated analysis of differentially expressed genes and differential metabolites indicated that they were significantly enriched in the metabolic processes such as nucleotide metabolism, biosynthesis of cofactors and purine metabolism. In addition, the results showed that most of the detected metabolites involved in the bile secretion was downregulated during TGEV infection. Furthermore, exogenous addition of key metabolite deoxycholic acid (DCA) significantly enhanced TGEV replication by NF-κB and STAT3 signal pathways. CONCLUSIONS: We identified a significant metabolite, DCA, related to TGEV replication. It added TGEV replication in host cells by inhibiting phosphorylation of NF-κB and STAT3. This study provided novel insights into the metabolomic and transcriptomic alterations related to TGEV infection and revealed potential molecular and metabolic targets for the regulation of TGEV infection.


Assuntos
NF-kappa B , Vírus da Gastroenterite Transmissível , Animais , Suínos , Fosforilação , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , Transcriptoma , Ácido Desoxicólico/farmacologia
5.
Gut Microbes ; 16(1): 2315632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375831

RESUMO

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Assuntos
Microbioma Gastrointestinal , Amido Resistente , Camundongos , Masculino , Feminino , Animais , Microbioma Gastrointestinal/fisiologia , Ácidos e Sais Biliares , Suplementos Nutricionais , Bactérias/genética , Ácido Desoxicólico
6.
Langmuir ; 40(10): 5228-5244, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38413419

RESUMO

The progressive escalation in the applications of bile salts in diverse fields has triggered research on their interaction with various biological macromolecules, especially with proteins. A proper understanding of the interaction process of bile salts, particularly in the lower concentrations range, with the serum albumin seems important since the normal serum concentration of bile salts is approximately in the micromolar range. The current study deals with a comprehensive and comparative analysis of the interaction of submicellar concentrations of sodium deoxycholate (NaDC) with two homologous transport proteins: bovine serum albumin (BSA) and human serum albumin (HSA). HSA and BSA with one and two tryptophans, respectively, provide the opportunity for an interesting comparison of tryptophan fluorescence behavior on interaction with NaDC. The study suggests a sequential interaction of NaDC in three discrete stages with the two proteins. A detailed study using warfarin and ibuprofen as site markers provides information about the sites of interaction, which is further confirmed by inclusive molecular dynamics simulation analysis. Moreover, the comparison of the thermodynamics and stability of the NaDC-serum albumin complexes confirms the stronger interaction of NaDC with BSA as compared to that with HSA. The differential interaction between the bile salt and the two serum albumins is further established from the difference in the extent of decrease in the esterase-like activity assay of the proteins in the presence of NaDC. Therefore, the present study provides important insight into the effect of submicellar concentrations of NaDC on the structure, stability, and activity of the two homologous serum albumins and thus can contribute not only to the general understanding of the complex nature of serum albumin-bile salt interactions but also to the design of more effective pharmaceutical formulations in the field of drug delivery and biomedical research.


Assuntos
Ácido Desoxicólico , Albumina Sérica Humana , Triptofano , Humanos , Ácido Desoxicólico/química , Ligação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica
7.
Gut Microbes ; 16(1): 2323236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416424

RESUMO

Deoxycholic acid (DCA) serves essential functions in both physiological and pathological liver processes; nevertheless, the relationship among DCA, gut microbiota, and metabolism in chronic liver injury remain insufficiently understood. The primary objective of this study is to elucidate the potential of DCA in ameliorating chronic liver injury and evaluate its regulatory effect on gut microbiota and metabolism via a comprehensive multi-omics approach. Our study found that DCA supplementation caused significant changes in the composition of gut microbiota, which were essential for its antagonistic effect against CCl4-induced chronic liver injury. When gut microbiota was depleted with antibiotics, the observed protective efficacy of DCA against chronic liver injury became noticeably attenuated. Mechanistically, we discovered that DCA regulates the metabolism of bile acids (BAs), including 3-epi DCA, Apo-CA, and its isomers 12-KLCA and 7-KLCA, IHDCA, and DCA, by promoting the growth of A.muciniphila in gut microbiota. This might lead to the inhibition of the IL-17 and TNF inflammatory signaling pathway, thereby effectively countering CCl4-induced chronic liver injury. This study illustrates that the enrichment of A. muciniphila in the gut microbiota, mediated by DCA, enhances the production of secondary bile acids, thereby mitigating chronic liver injury induced by CCl4. The underlying mechanism may involve the inhibition of hepatic IL-17 and TNF signaling pathways. These findings propose a promising approach to alleviate chronic liver injury by modulating both the gut microbiota and bile acids metabolism.


Assuntos
Tetracloreto de Carbono , Microbioma Gastrointestinal , Tetracloreto de Carbono/toxicidade , Interleucina-17 , Multiômica , Fígado , Ácidos e Sais Biliares , Ácido Desoxicólico
8.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338326

RESUMO

Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.


Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo , Modelos Moleculares , Ácido Desoxicólico/farmacologia , Relação Estrutura-Atividade
9.
Skin Res Technol ; 30(2): e13601, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297988

RESUMO

RESULT: The review delves into the realm of reducing submental fat, presenting a comprehensive analysis of various lipolytic agents used in plastic surgery and dermatology. The introduction establishes the context by defining the key indicators of a youthful neck and emphasizing the significant influence of fat in the aging process, particularly in the submental area. The usage of aminophylline involves subcutaneous injections, facilitating fat breakdown by increasing cyclic adenosine monophosphate and inhibiting adenosine receptors. Hypotonic pharmacologic lipo-dissolution induces fat dissolution via injected compounds under pressure, while lipolytic lymphatic drainage employs hyaluronidase to reduce tissue viscosity, aiding fat circulation. Glycerophosphorylcholine containing choline alfoscerate claims to activate fat metabolism, whereas the utilization of phosphatidylcholine combined with deoxycholate lacks cosmetic approval due to safety concerns. Deoxycholic acid has FDA approval for submental fat reduction, yet its mechanisms remain incompletely understood. Understanding the complex anatomy and mechanisms of lipolytic agents is essential for safe and effective submental fat reduction, despite evolving practices and off-label utilization. Clinical guidelines and references support this discussion, offering insights for safer applications.


Assuntos
Tecido Adiposo , Técnicas Cosméticas , Humanos , Ácido Desoxicólico/farmacologia , Injeções Subcutâneas , Aminofilina/farmacologia , Gordura Subcutânea
10.
Nano Lett ; 24(5): 1642-1649, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278518

RESUMO

Excess fat accumulation is not only associated with metabolic diseases but also negatively impacts physical appearance and emotional well-being. Bile acid, the body's natural emulsifier, is one of the few FDA-approved noninvasive therapeutic options for double chin (submental fat) reduction. Synthetic sodium deoxycholic acid (NaDCA) causes adipose cell lysis; however, its side effects include inflammation, bruising, and necrosis. Therefore, we investigated if an endogenous bile acid, chenodeoxycholic acid (CDCA), a well-known signaling molecule, can be beneficial without many of the untoward effects. We first generated CDCA-loaded nanoparticles to achieve sustained and localized delivery. Then, we injected them into the subcutaneous fat depot and monitored adipocyte size and mitochondrial function. Unlike NaDCA, CDCA did not cause cytolysis. Instead, we demonstrate that a single injection of CDCA-loaded nanoparticles into the subcutaneous fat reduced the adipocyte size by promoting fat burning and mitochondrial respiration, highlighting their potential for submental fat reduction.


Assuntos
Ácido Quenodesoxicólico , Ácido Desoxicólico , Ácido Desoxicólico/efeitos adversos , Adipócitos , Injeções , Mitocôndrias
11.
J Drugs Dermatol ; 23(1): 1325-1331, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206149

RESUMO

BACKGROUND: A phase 4, prospective, open-label, multicenter study showed that treatment with deoxycholic acid injections (ATX-10) followed by a hyaluronic acid filler (VYC-20L) is safe and effective for reducing submental fullness and improving jawline definition. OBJECTIVE: To quantify changes in the jawline and submental area using 3-dimensional (3D) photogrammetry and conduct an immunohistochemical analysis of submental tissue.  Methods: Participants received 1 to 6 ATX-101 treatments (8 weeks apart) followed by VYC-20L (optional touch-up after 14 days). Changes from baseline in jawline and submental volumes, submental major and minor strain events, submental skin displacement, and submental angles were quantified using photogrammetry. Submental skin biopsies (N=13) were excised for histologic analysis. Treatment-emergent adverse events (TEAEs) were monitored. RESULTS: Fifty-three participants were treated. From baseline to the final study visit, the mean volume increased for the jawline and decreased for the submental area. There was a larger percentage change from baseline in the minor versus major strain event, indicating greater skin surface compression than expansion within the submental area. Mean change from baseline in submental skin position indicated superior and posterior movement from a lateral perspective, while the mean submental angle decreased between baseline and exit. Collagen I and III expression significantly increased from baseline (P<0.05). All participants reported at least 1 TEAE; the majority were mild or moderate in severity. CONCLUSIONS: Dual-modality treatment with ATX-101 and VYC-20L reduces submental fat and improves jawline definition with quantifiable changes in jawline volume, submental volume, strain, skin displacement, and angle, as well as collagen expression. J Drugs Dermatol. 2024;23(1):1325-1331.        doi:10.36849/JDD.7458.


Assuntos
Colágeno , Mandíbula , Humanos , Estudos Prospectivos , Biópsia , Ácido Desoxicólico
12.
Colloids Surf B Biointerfaces ; 234: 113736, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215603

RESUMO

Irinotecan (CPT-11) is used as a first or second-line chemotherapy drug for the treatment and management of colorectal cancers. In vitro studies have shown that 7-ethyl-10-hydroxycamptothecin (SN38), the active metabolite of CPT-11, displays promising anticancer efficacy. However, its poor aqueous solubility and hydrolytic degradation result in its lower oral bioavailability and impracticable clinical application. To overcome these limitations, a novel amphiphilic chitosan derivative, deoxycholic acid decorated N'-nonyl-trimethyl chitosan, was synthesized. Nano-micelles loaded with SN38 were subsequently prepared to enhance the bioavailability and anti-tumor efficacy of the drug through oral administration. The nano-micelles demonstrated improved dilution stability, enhanced greater mucosal adherence, significant P-gp efflux inhibition, and increased drug transport in the intestine by paracellular and transcellular pathways. Consequently, both the in vivo pharmacokinetic profile and therapeutic efficacy of SN38 against cancer were substantially improved via the micellar system. Thus, the developed polymeric micelles can potentially enhance the SN38 oral absorption for cancer therapy, offering prospective avenues for further exploration.


Assuntos
Quitosana , Neoplasias , Humanos , Irinotecano , Micelas , Estudos Prospectivos , Administração Oral , Neoplasias/tratamento farmacológico , Ácido Desoxicólico , Portadores de Fármacos/uso terapêutico
13.
Mycoses ; 67(1): e13674, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986630

RESUMO

BACKGROUND: The efficacy and side effects of voriconazole plus 5-flucytosine (Vori + 5-FC) versus amphotericin B deoxycholate plus 5-flucytosine (AmBd + 5-FC) as an induction treatment for cryptococcal meningitis are unknown. METHODS: Forty-seven patients treated with Vori + 5-FC and 92 patients treated with AmBd + 5-FC were included in the current study after propensity score matching (PSM) at a ratio of 1:2. Two-week laboratory test results and 90-day mortality were compared between the two groups. RESULTS: After 2 weeks of induction treatment, the CSF Cryptococcus sterile culture rate was 57.1% in the Vori + 5-FC group and 76.5% in the AmBd + 5-FC group (p = .026). No difference was found in the normalization of CSF indicators (glucose, total protein, intracranial pressure and India ink sterile rate) between the two groups. Both the Vori + 5FC regimen and AmBd + 5-FC regimen obviously decreased haemoglobin concentrations, platelet counts and serum potassium levels (all p ≤ .010). Notably, the Vori + 5FC regimen did not influence serum creatinine levels (p = .263), while AmBd + 5FC increased serum creatinine levels (p = .019) after 2-week induction treatment. The Vori + 5-FC group and AmBd + 5-FC group had similar 90-day cumulative survival rates (89.9% vs. 87.8%, p = .926). CONCLUSION: The Vori + 5-FC regimen was associated with low 2-week CSF sterile culture and was not superior to AmBd + 5-FC as induction therapy in terms of the 90-day cumulative survival rate of CM patients.


Assuntos
Anfotericina B , Ácido Desoxicólico , Flucitosina , Meningite Criptocócica , Humanos , Flucitosina/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Antifúngicos/efeitos adversos , Voriconazol/uso terapêutico , Creatinina/uso terapêutico , Quimioterapia Combinada , Fluconazol/uso terapêutico , Combinação de Medicamentos
14.
Life Sci ; 336: 122302, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016577

RESUMO

AIMS: Deoxynivalenol (DON), namely vomitoxin, is one of the most prevalent fungal toxins in cereal crops worldwide. However, the underlying toxic mechanisms of DON remain largely unknown. MAIN METHODS: DON exposure-caused changes in the murine plasma metabolome and gut microbiome were investigated by an LC-MS/MS-based nontargeted metabolomics approach and sequencing of 16S rRNA in fecal samples, respectively. Cellular models were then used to validate the findings from the metabolomics study. KEY FINDINGS: DON exposure increased intestinal barrier permeability evidenced by its-mediated decrease in colonic Claudin 5 and E-cadherin, as well as increases in colonic Ifn-γ, Cxcl9, Cxcl10, and Cxcr3. Furthermore, DON exposure resulted in a significant increase in murine plasma levels of deoxycholic acid (DCA). Also, DON exposure led to gut microbiota dysbiosis, which was associated with DON exposure-caused increase in plasma DCA. In addition, we found not only DON but also DCA dose-dependently caused a significant increase in the levels of IFN-γ, CXCL9, CXCL10, and/or CXCR3, as well as a significant decrease in the expression levels of Claudin 5 and/or E-cadherin in the human colonic epithelial cells (NCM460). SIGNIFICANCE: DON-mediated increase in DCA contributes to DON-caused intestinal injury. DCA may be a potential therapeutic target for DON enterotoxicity.


Assuntos
Enteropatias , Espectrometria de Massas em Tandem , Humanos , Camundongos , Animais , Cromatografia Líquida , RNA Ribossômico 16S , Claudina-5 , Caderinas , Ácido Desoxicólico/toxicidade
15.
Plant Foods Hum Nutr ; 79(1): 38-47, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938455

RESUMO

Amaranth is a dicotyledonous plant, now considered a health-promoting food. It has been rediscovered by the worldwide food industry, which is increasingly becoming aware of the many uses and benefits provided by amaranth in various food preparations. Amaranth dietary fibers, soluble and insoluble fractions, obtained from flour, protein isolate, and beverage were physicochemically characterized and their potential bile acid binding capacity was evaluated. Primary bile acids binding to fiber might contribute to a hypocholesterolemic effect, while the binding of secondary bile acids could minimize the cytotoxic effect that these metabolites exert on the colon. Amaranth fiber fractions were capable of sequestering cholate, taurocholate, deoxycholate, and bovine bile, with a percentage depending not only on the origin and the type of amaranth fiber evaluated but also on the bile acid studied. Flour fiber and the protein isolate insoluble fractions were the most efficient for binding bile and bile acids with uptake values between 29 and 100% relative to cholestyramine. Moreover, deoxycholate, a hydrophobic secondary bile acid, was the most captured by all the fractions, reaching 100% uptake with total and insoluble fibers of the three amaranth products. These results would suggest that the main effect through which amaranth fiber binds bile acids corresponds to an adsorptive effect mediated by hydrophobic interactions.


Assuntos
Ácidos e Sais Biliares , Fibras na Dieta , Animais , Bovinos , Fibras na Dieta/análise , Ácido Taurocólico , Ácido Desoxicólico
16.
Int J Radiat Biol ; 100(1): 87-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37540505

RESUMO

OBJECTIVE: Radiogenic skin injury (RSI) is a common complication during cancer radiotherapy or accidental exposure to radiation. The aim of this study is to investigate the metabolism of bile acids (BAs) and their derivatives during RSI. METHODS: Rat skin tissues were irradiated by an X-ray linear accelerator. The quantification of BAs and their derivatives were performed by liquid chromatography-mass spectrometry (LC-MS)-based quantitative analysis. Key enzymes in BA biosynthesis were analyzed from single-cell RNA sequencing (scRNA-Seq) data of RSI in the human patient and animal models. The in vivo radioprotective effect of deoxycholic acid (DCA) was detected in irradiated SD rats. RESULTS: Twelve BA metabolites showed significant differences during the progression of RSI. Among them, the levels of cholic acid (CA), DCA, muricholic acid (MCA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), glycohyodeoxycholic acid (GHCA), 12-ketolithocholic acid (12-ketoLCA) and ursodeoxycholic acid (UDCA) were significantly elevated in irradiated skin, whereas lithocholic acid (LCA), tauro-ß-muricholic acid (Tß-MCA) and taurocholic acid (TCA) were significantly decreased. Additionally, the results of scRNA-Seq indicated that genes involved in 7a-hydroxylation process, the first step in BA synthesis, showed pronounced alterations in skin fibroblasts or keratinocytes. The alternative pathway of BA synthesis is more actively altered than the classical pathway after ionizing radiation. In the model of rat radiogenic skin damage, DCA promoted wound healing and attenuated epidermal hyperplasia. CONCLUSIONS: Ionizing radiation modulates the metabolism of BAs. DCA is a prospective therapeutic agent for the treatment of RSI.


Assuntos
Ácidos e Sais Biliares , Metabolismo dos Lipídeos , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Ácido Desoxicólico/farmacologia , Radiação Ionizante
17.
J Ethnopharmacol ; 321: 117568, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092317

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liansu capsule could alleviate dyspeptic symptoms; however, the mechanisms underlying its role in treating functional dyspepsia (FD) remain unclear. AIM OF THE STUDY: To elucidate the mechanism underlying the efficacy of Liansu capsule in alleviating FD symptoms. MATERIALS AND METHODS: Thirty-six male mice were randomly divided into the following six groups: control, model, low-strength Liansu, moderate-strength Liansu, high-strength Liansu, and domperidone groups. Small intestine propulsion rate, gastric residual rate and histopathological analysis were performed to evaluate efficacy of Liansu capsule. Levels of interleukin-1ß, interleukin-6, tumor necrosis factor α, phosphorylation of p65, ghrelin and gastrin were verified by real-time quantitative polymerase chain reaction and immunofluorescence assays. Targeted metabolomic analyses, western blotting and immunofluorescence assays were used to explore the mechanism of Liansu capsule in ameliorating FD. RESULTS: The Liansu capsule significantly ameliorated the symptoms of FD, and markedly increased the levels of ghrelin and gastrin. Moreover, Liansu capsule significantly downregulated the levels of the proinflammatory cytokine interleukin-1ß, interleukin-6, tumor necrosis factor α, and inhibited the phosphorylation of p65. Targeted metabolomic analyses showed that Liansu capsule significantly reduced the levels of deoxycholic acid and hyodeoxycholic acid, which were significantly elevated in the model group. Furthermore, these results showed that deoxycholic acid and hyodeoxycholic acid markedly promoted the levels of Takeda G-protein-coupled receptor 5 (TGR5), phosphorylated signal transducer and activator of transcription 3 (STAT3), and Kruppel-like factor 5 (KLF5) in vitro. whereas, Liansu capsule significantly reduced the levels of TGR5, phosphorylated STAT3, and KLF5. CONCLUSION: Our findings indicated that Liansu capsule improved FD by regulating the deoxycholic acid/hyodeoxycholic acid-TGR5-STAT3-KLF5 axis. The findings reveal a novel mechanism underlying the role of Liansu capsule, which may be a promising therapeutic strategy for FD.


Assuntos
Dispepsia , Masculino , Camundongos , Animais , Dispepsia/tratamento farmacológico , Grelina/uso terapêutico , Fator de Necrose Tumoral alfa , Gastrinas , Interleucina-6 , Interleucina-1beta , Ácido Desoxicólico
18.
Pharm Res ; 41(2): 335-353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114803

RESUMO

OBJECTIVE: Oral administration of insulin is a potential candidate for managing diabetes. However, it is obstructed by the gastrointestinal tract barriers resulting in negligible oral bioavailability. METHODS: This investigation presents a novel nanocarrier platform designed to address these challenges. In this regard, the process involved amination of sodium alginate by ethylene diamine, followed by its conjugation with deoxycholic acid. RESULTS: The resulting DCA@Alg@INS nanocarrier revealed a significantly high insulin loading content of 63.6 ± 1.03% and encapsulation efficiency of 87.6 ± 3.84%, with a particle size of 206 nm and zeta potentials of -3 mV. In vitro studies showed sustained and pH-dependent release profiles of insulin from nanoparticles. In vitro cellular studies, confocal laser scanning microscopy and flow cytometry analysis confirmed the successful attachment and internalization of DCA@Alg@INS nanoparticles in Caco-2 cells. Furthermore, the DCA@Alg@INS demonstrated a superior capacity for cellular uptake and permeability coefficient relative to the insulin solution, exhibiting sixfold and 4.94-fold enhancement, respectively. According to the uptake mechanism studies, the results indicated that DCA@Alg@INS was mostly transported through an energy-dependent active pathway since the uptake of DCA@Alg@INS by cells was significantly reduced in the presence of NaN3 by ~ 92% and at a low temperature of 4°C by ~ 94%. CONCLUSIONS: Given the significance of administering insulin through oral route, deoxycholic acid-modified alginate nanoparticles present a viable option to surmount various obstacles presented by the gastrointestinal.


Assuntos
Insulina , Nanopartículas , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Amidas , Alginatos , Células CACO-2 , Insulina Regular Humana , Administração Oral , Endocitose , Ácido Desoxicólico , Portadores de Fármacos
19.
AAPS PharmSciTech ; 24(8): 224, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946092

RESUMO

Subcutaneous injections of phosphatidylcholine (PC), sodium deoxycholate (NADC), and a mixture of them were found to be an effective option for treating cellulite. However, it is noteworthy that the injection of NADC may result in inflammation as well as necrosis in the injection area. The preparation of a sustained release formulation based on lipid-liquid crystal that controls the release of NADC could be a potential solution to address the issue of inflammation and necrosis at the site of injection. To present a practical and validated approach for accurately determining the concentration of NADC in LLC formulations, spectrofluorimetry was used based on the International Council for Harmonization (ICH) Q2 guidelines. Based on the validation results, the fluorometric technique has been confirmed as a reliable, efficient, and economical analytical method for quantifying NADC concentrations. The method demonstrated favorable attributes of linearity, precision, and accuracy, with an r2 value of 0.999. Furthermore, it exhibited excellent interday and intraday repeatability, with RSD values below 4%. The recovery percentages ranged from 97 to 100%, indicating the method's ability to accurately measure NADC concentrations. The subcutaneous injection of the LLC-NADC demonstrated a reduction in inflammation and tissue necrosis in skin tissue, along with an increase in fat lysis within 30 days, when compared to the administration of only NADC solution. Moreover, the histopathological assessment confirmed that the use of the LLC formulation did not result in any detrimental side effects for kidney or heart tissue.


Assuntos
Cristais Líquidos , Humanos , Preparações de Ação Retardada , Cristais Líquidos/química , Ácido Desoxicólico/química , Lipídeos , Inflamação , Necrose
20.
Cell Rep ; 42(11): 113386, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948181

RESUMO

Paclitaxel leads to peripheral neuropathy (paclitaxel-induced peripheral neuropathy [PIPN]) in approximately 50% of cancer patients. At present, there are no effective treatment strategies for PIPN, the mechanisms of which also remain unclear. In this study, we performed microbiome and metabolome analysis of feces and serum from breast cancer patients with different PIPN grades due to paclitaxel treatment. Our analysis reveals that levels of deoxycholic acid (DCA) are highly increased because of ingrowth of Clostridium species, which is associated with severe neuropathy. DCA, in turn, elevates serum level of C-C motif ligand 5 (CCL5) and induces CCL5 receptor 5 (CCR5) overexpression in dorsal root ganglion (DRG) through the bile acid receptor Takeda G-protein-coupled receptor 5 (TGR5), contributing to neuronal hyperexcitability. Consistent with this, administration of CCR5 antagonist maraviroc suppresses the development of neuropathic nociception. These results implicate gut microbiota/bile acids/CCR5 signaling in the induction of PIPN, thus suggesting a target for PIPN treatment.


Assuntos
Neoplasias da Mama , Neuralgia , Humanos , Feminino , Paclitaxel/efeitos adversos , Neuralgia/induzido quimicamente , Maraviroc , Ácido Desoxicólico , Receptores CCR5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...