Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 926
Filtrar
1.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309503

RESUMO

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Canal de Sódio Disparado por Voltagem NAV1.5 , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293
2.
Physiology (Bethesda) ; 39(1): 18-29, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962894

RESUMO

The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Ubiquitina , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032389

RESUMO

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Assuntos
Astrócitos , Permeabilidade da Membrana Celular , Conexina 43 , Ubiquitina-Proteína Ligases Nedd4 , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Humanos , Camundongos , Conexina 43/genética , Mutação de Sentido Incorreto , Proteostase , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Epilepsia
4.
Cell Biol Int ; 48(3): 325-333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108119

RESUMO

Deoxyribonuclease 1-like 3 (DNASE1L3) has been shown to play nonnegligible roles in several types of carcinomas. Nevertheless, the biological function, clinical relevance, and influence of DNASE1L3 in colorectal cancer (CRC) remain obscure. Immunohistochemistry was adopted to examine DNASE1L3 and CDKN1A expression in CRC tissue, and the clinical significance of DNASE1L3 was assessed. Cell counting kit-8, colony formation, and transwell assays were employed for assessing tumor proliferation and migration. The mechanisms underlying the impact of DNASE1L3 were explored via western blot analysis, co-immunoprecipitation, and ubiquitination assay. It was observed that DNASE1L3 was downregulated in CRC tissues and was tightly associated with patient prognosis. DNASE1L3 impaired CRC cell proliferation and migration through elevating CDKN1A via suppressing CDKN1A ubiquitination. Meanwhile, DNASE1L3 was positively related to CDKN1A. In mechanism, DNASE1L3 and CDKN1A interacted with the E3 ubiquitin ligase NEDD4. Moreover, DNASE1L3 was competitively bound to NEDD4, thus repressing NEDD4-mediated CDKN1A ubiquitination and degradation. These discoveries implied the potential mechanisms of DNASE1L3 during tumorigenesis, suggesting that DNASE1L3 may serve as a new potential therapeutic agent for CRC.


Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Desoxirribonucleases/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
J Biol Chem ; 300(1): 105593, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145746

RESUMO

Neural precursor cell expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, is commonly upregulated in human hepatocellular carcinoma (HCC) and functions as an oncogenic factor in the progression of HCC, but the molecular mechanism needs be further explored. In this study, we found that NEDD4 could facilitate the proliferation of HCC cells, which was associated with regulating the ERK signaling. Further investigation showed that protocadherin 17 (PCDH17) was a potential substrate of NEDD4, and restoration of PCDH17 could block the facilitation of ERK signaling and HCC cells proliferation induced by NEDD4 overexpression. Whereafter, we confirmed that NEDD4 interacted with PCDH17 and promoted the Lys33-linked polyubiquitination and degradation of it via the proteasome pathway. Finally, NEDD4 protein level was found to be inversely correlated with that of PCDH17 in human HCC tissues. In conclusion, these results suggest that NEDD4 acts as an E3 ubiquitin ligase for PCDH17 ubiquitination and degradation thereby promoting the proliferation of HCC cells through regulating the ERK signaling, which may provide novel evidence for NEDD4 to be a promising therapeutic target for HCC.


Assuntos
Caderinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ubiquitina-Proteína Ligases Nedd4 , Humanos , Carcinoma Hepatocelular/patologia , Proliferação de Células , Neoplasias Hepáticas/patologia , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitinação , Caderinas/metabolismo
6.
Immunol Lett ; 264: 36-45, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940007

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a serious medical problem, and promising strategy is limited. Macrophage initiated brain inflammatory injury following ICH, but the molecular mechanism had not been well identified. E3 ligase Nedd4L is implicated in the pathogenesis of the inflammatory immune response. METHODS: In the present study, we detected the levels of Nedd4L in macrophages following ICH. Furthermore, Macrophage M1 polarization, pro-inflammatory cytokine production, BBB disruption, brain water content and neurological function were examined in ICH mice. RESULTS: Here, we demonstrated that E3 ligase Nedd4L levels of macrophage increased following ICH, promoted M1 polarization inflammation by TRAF3. Nedd4L promoted BBB disruption, as well as neurological deficits. Inhibition of Nedd4L significantly attenuated M1 polarization in vivo. Inhibition of Nedd4L decreased TRAF3 and TBK1 levels, and subsequent phosphorylation of p38 and NF-κB p65 subunit following ICH. CONCLUSIONS: Our data demonstrated that Nedd4L was involved in the pathogenesis of ICH, which promoted inflammatory responses and exacerbated brain damage by TRAF3 following ICH.


Assuntos
Encéfalo , Hemorragia Cerebral , Ubiquitina-Proteína Ligases Nedd4 , Fator 3 Associado a Receptor de TNF , Animais , Camundongos , Encéfalo/imunologia , Encéfalo/patologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Macrófagos/enzimologia , Macrófagos/imunologia , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo
7.
Sci Rep ; 13(1): 17903, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863970

RESUMO

Nedd4 (Nedd4-1) is an E3 ubiquitin ligase involved in crucial biological processes such as growth factor receptor signaling. While canonical Nedd4-1 comprises a C2-WW(4)-HECT domain architecture, alternative splicing produces non-canonical isoforms that are poorly characterized. Here we characterized Nedd4-1(NE), a primate-specific isoform of Nedd4-1 that contains a large N-terminal Extension (NE) that replaces most of the C2 domain. We show that Nedd4-1(NE) mRNA is ubiquitously expressed in human tissues and cell lines. Moreover, we found that Nedd4-1(NE) is more active than the canonical Nedd4-1 isoform, likely due to the absence of a C2 domain-mediated autoinhibitory mechanism. Additionally, we identified two Thr/Ser phosphoresidues in the NE region that act as binding sites for 14-3-3 proteins, and show that phosphorylation on these sites reduces substrate binding. Finally, we show that the NE region can act as a binding site for the RPB2 subunit of RNA polymerase II, a unique substrate of Nedd4-1(NE) but not the canonical Nedd4-1. Taken together, our results demonstrate that alternative splicing of the ubiquitin ligase Nedd4-1 can produce isoforms that differ in their catalytic activity, binding partners and substrates, and mechanisms of regulation.


Assuntos
Proteínas 14-3-3 , Processamento Alternativo , Animais , Humanos , Proteínas 14-3-3/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Fosforilação , Primatas , Ligação Proteica , Isoformas de Proteínas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
J Nutr Biochem ; 120: 109413, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423323

RESUMO

The ubiquitin-proteasomal pathway regulates the functional expression of many membrane transporters in a variety of cellular systems. Nothing is currently known about the role of ubiquitin E3 ligase, neural precursor cell-expressed developmentally down-regulated gene 4 (Nedd4-1) and the proteasomal degradation pathway in regulating human vitamin C transporter-2 (hSVCT2) in neuronal cells. hSVCT2 mediates the uptake of ascorbic acid (AA) and is the predominantly expressed vitamin C transporter isoform in neuronal systems. Therefore, we addressed this knowledge gap in our study. Analysis of mRNA revealed markedly higher expression of Nedd4-1 in neuronal samples than that of Nedd4-2. Interestingly, Nedd4-1 expression in the hippocampus was higher in patients with Alzheimer's disease (AD) and age-dependently increased in the J20 mouse model of AD. The interaction of Nedd4-1 and hSVCT2 was confirmed by coimmunoprecipitation and colocalization. While the coexpression of Nedd4-1 with hSVCT2 displayed a significant decrease in AA uptake, siRNA-mediated knockdown of Nedd4-1 expression up-regulated the AA uptake. Further, we mutated a classical Nedd4 protein interacting motif ("PPXY") within the hSVCT2 polypeptide and observed markedly decreased AA uptake due to the intracellular localization of the mutated hSVCT2. Also, we determined the role of the proteasomal degradation pathway in hSVCT2 functional expression in SH-SY5Y cells and the results indicated that the proteasomal inhibitor (MG132) significantly up-regulated the AA uptake and hSVCT2 protein expression level. Taken together, our findings show that the regulation of hSVCT2 functional expression is at least partly mediated by the Nedd4-1 dependent ubiquitination and proteasomal pathways.


Assuntos
Neuroblastoma , Transportadores de Sódio Acoplados à Vitamina C , Animais , Humanos , Camundongos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Epiteliais/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/genética , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Cell Biol Int ; 47(10): 1688-1701, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37415495

RESUMO

Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) is an E3 ubiquitin ligase that recognizes substrates via protein-protein interactions and takes part in tumor development. This study aims to clarify NEDD4's functions in diffuse large B-cell lymphoma (DLBCL) and its downstream mechanisms. Collection of 53 DLBCL tissues and adjacent normal lymphoid tissues, and detection of NEDD4 and Forkhead box protein A1 (FOXA1) in the tissues were conducted. The selection of DLBCL cells was for FARAGE, and test of cells' advancement was after transfection. Analysis of NEDD4 and FOXA1's link, and test of Wnt/ß-catenin pathway were implemented. In vivo tumor xenograft experiments were put into effect. Detection of the pathological conditions of tumor tissues and the positive Ki67 in the family was implemented. It came out NEDD4 was reduced in DLBCL tissues and cell lines, and FOXA1 was elevated; Enhancing NEDD4 or repressing FOXA1 refrained DLBCL cells' advancement; NEDD4 could combine with FOXA1 and trigger its ubiquitination and degradation; NEDD4 inactivates the Wnt/ß-catenin pathway by motivating FOXA1 ubiquitination; NEDD4 enhancement refrained DLBCL growth in vivo. In conclusion, the E3 ubiquitin ligase NEDD4 accelerates FOXA1 ubiquitination but refrains DLBCL cell proliferation via the Wnt/ß-Catenin pathway.


Assuntos
Linfoma Difuso de Grandes Células B , Ubiquitina-Proteína Ligases , Humanos , beta Catenina/metabolismo , Proliferação de Células , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Hypertens Pregnancy ; 42(1): 2232029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37417251

RESUMO

OBJECTIVE: To assess changes in expression of renal epithelial sodium channel (ENaC) and NEDD4L, a ubiquitin ligase, in urinary extracellular vesicles (UEV) of pre-eclamptic women compared to normal pregnant controls. METHODS: Urine was collected from pre-eclamptic women (PE, n = 20) or during normal pregnancy (NP, n = 20). UEV were separated by differential ultracentrifugation. NEDD4L, α-ENaC and γ-ENaC were identified by immunoblotting. RESULTS: There was no difference in the expression of NEDD4L (p = 0.17) and α-ENaC (p = 0.10). PE subjects showed increased expression of γ-ENaC by 6.9-fold compared to NP (p < 0.0001). CONCLUSION: ENaC expression is upregulated in UEV of pre-eclamptic subjects but was not associated with changes in NEDD4L.


Assuntos
Vesículas Extracelulares , Ubiquitina-Proteína Ligases Nedd4 , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Canais Epiteliais de Sódio/metabolismo , Vesículas Extracelulares/metabolismo , Rim , Pré-Eclâmpsia/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética
11.
Biochem Pharmacol ; 214: 115641, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307883

RESUMO

Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Neoplasias , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/tratamento farmacológico , Ubiquitina/metabolismo
12.
BMC Cancer ; 23(1): 526, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291499

RESUMO

NEDD4 family represent an important group of E3 ligases, which regulate various cellular pathways of cell proliferation, cell junction and inflammation. Emerging evidence suggested that NEDD4 family members participate in the initiation and development of tumor. In this study, we systematically investigated the molecular alterations as well as the clinical relevance regarding NEDD4 family genes in 33 cancer types. Finally, we found that NEDD4 members showed increased expression in pancreas cancer and decreased expression in thyroid cancer. NEDD4 E3 ligase family genes had an average mutation frequency in the range of 0-32.1%, of which HECW1 and HECW2 demonstrated relatively high mutation rate. Breast cancer harbors large amount of NEDD4 copy number amplification. NEDD4 family members interacted proteins were enriched in various pathways including p53, Akt, apoptosis and autophagy, which were confirmed by further western blot and flow cytometric analysis in A549 and H1299 lung cancer cells. In addition, expression of NEDD4 family genes were associated with survival of cancer patients. Our findings provide novel insight into the effect of NEDD4 E3 ligase genes on cancer progression and treatment in the future.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neoplasias/genética , Proteínas do Tecido Nervoso/genética
13.
Mol Biol Cell ; 34(9): ar93, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223976

RESUMO

The α-arrestin ARRDC3 is a recently discovered tumor suppressor in invasive breast cancer that functions as a multifaceted adaptor protein to control protein trafficking and cellular signaling. However, the molecular mechanisms that control ARRDC3 function are unknown. Other arrestins are known to be regulated by posttranslational modifications, suggesting that ARRDC3 may be subject to similar regulatory mechanisms. Here we report that ubiquitination is a key regulator of ARRDC3 function and is mediated primarily by two proline-rich PPXY motifs in the ARRDC3 C-tail domain. Ubiquitination and the PPXY motifs are essential for ARRDC3 function in regulating GPCR trafficking and signaling. Additionally, ubiquitination and the PPXY motifs mediate ARRDC3 protein degradation, dictate ARRDC3 subcellular localization, and are required for interaction with the NEDD4-family E3 ubiquitin ligase WWP2. These studies demonstrate a role for ubiquitination in regulating ARRDC3 function and reveal a mechanism by which ARRDC3 divergent functions are controlled.


Assuntos
Arrestina , Arrestinas , Arrestina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Arrestinas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
14.
J Am Chem Soc ; 145(14): 7748-7752, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010382

RESUMO

Monoubiquitination of proteins governs diverse physiological processes, and its dysregulation is implicated in multiple pathologies. The difficulty of preparing sufficient material often complicates the biophysical studies of monoubiquitinated recombinant proteins. Here we describe a robust avidity-based method that overcomes this problem. As a proof-of-concept, we produced milligram quantities of two monoubiquitinated targets, Parkinson's protein α-synuclein and ESCRT-protein ALIX, using NEDD4-family E3 ligases. Monoubiquitination hotspots were identified by quantitative chemical proteomics. Using FRAP and dye-binding assays, we uncovered strikingly opposite effects of monoubiquitination on the phase separation and fibrillization properties of these two amyloidogenic proteins, reflecting differences in their intermolecular interactions, thereby providing unique insights into the impact of monoubiquitination on protein aggregation.


Assuntos
Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4 , Proteínas Recombinantes
15.
PLoS One ; 18(4): e0283908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023120

RESUMO

Long-term memory formation requires de novo RNA and protein synthesis. By using the differential display-polymerase chain reaction strategy, we have presently identified the Nedd4 family interacting protein 1 (Ndfip1) cDNA fragment that is differentially expressed between the slow learners and the fast learners from the water maze learning task in rats. Further, the fast learners show decreased Ndfip1 mRNA and protein expression levels than the slow learners. Spatial training similarly decreases the Ndfip1 mRNA and protein expression levels. Conversely, the Ndfip1 conditional heterozygous (cHet) mice show enhanced spatial memory performance compared to the Ndfip1flox/WT control mice. Result from co-immunoprecipitation experiment indicates that spatial training decreases the association between Ndfip1 and the E3 ubiquitin ligase Nedd4 (Nedd4-1), and we have shown that both Beclin 1 and PTEN are endogenous ubiquitination targets of Nedd4 in the hippocampus. Further, spatial training decreases endogenous Beclin 1 and PTEN ubiquitination, and increases Beclin 1 and PTEN expression in the hippocampus. On the other hand, the Becn1 conditional knockout (cKO) mice and the Pten cKO mice both show impaired spatial learning and memory performance. Moreover, the expression level of Beclin 1 and PTEN is higher in the Ndfip1 cHet mice compared with the Ndfip1flox/WT control mice. Here, we have identified Ndfip1 as a candidate novel negative regulation for spatial memory formation and this is associated with increased ubiquitination of Beclin 1 and PTEN in the hippocampus.


Assuntos
Proteínas de Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte , Animais , Camundongos , Ratos , Proteína Beclina-1/metabolismo , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/metabolismo , Memória Espacial , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Mol Med ; 29(1): 34, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918822

RESUMO

The homologous to the E6-AP carboxyl terminus (HECT)-type E3 ubiquitin ligases are the selective executers in the protein ubiquitination, playing a vital role in modulation of the protein function and stability. Evidence shows the regulatory role of HECT-type E3 ligases in various steps of the autophagic process. Autophagy is an intracellular digestive and recycling process that controls the cellular hemostasis. Defective autophagy is involved in tumorigenesis and has been detected in various types of cancer cells. A growing body of findings indicates that HECT-type E3 ligases, in particular members of the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) including NEDD4-1, NEDD4-L, SMURFs, WWPs, and ITCH, play critical roles in dysregulation or dysfunction of autophagy in cancer cells. The present review focuses on NEDD4 E3 ligases involved in defective autophagy in cancer cells and discusses their autophagic function in different cancer cells as well as substrates and the signaling pathways in which they participate, conferring a basis for the cancer treatment through the modulating of these E3 ligases.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitinação , Proteínas/metabolismo , Autofagia , Neoplasias/terapia
17.
J Am Chem Soc ; 145(11): 6039-6044, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897111

RESUMO

Phosphatase and tensin homologue (PTEN) tumor suppressor protein is a PIP3 lipid phosphatase that is subject to multifaceted post-translational modifications. One such modification is the monoubiquitination of Lys13 that may alter its cellular localization but is also positioned in a manner that could influence several of its cellular functions. To explore the regulatory influence of ubiquitin on PTEN's biochemical properties and its interaction with ubiquitin ligases and a deubiquitinase, the generation of a site-specifically and stoichiometrically ubiquitinated protein could be beneficial. Here, we describe a semisynthetic method that relies upon sequential expressed protein ligation steps to install ubiquitin at a Lys13 mimic in near full-length PTEN. This approach permits the concurrent installation of C-terminal modifications in PTEN, thereby facilitating an analysis of the interplay between N-terminal ubiquitination and C-terminal phosphorylation. We find that the N-terminal ubiquitination of PTEN inhibits its enzymatic function, reduces its binding to lipid vesicles, modulates its processing by NEDD4-1 E3 ligase, and is efficiently cleaved by the deubiquitinase, USP7. Our ligation approach should motivate related efforts for uncovering the effects of ubiquitination of complex proteins.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/química , PTEN Fosfo-Hidrolase/química , Enzimas Desubiquitinantes/metabolismo , Lipídeos
18.
Pathol Oncol Res ; 29: 1610931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825281

RESUMO

Gastric cancer (GC) is one of the most pernicious gastrointestinal tumors with extraordinarily high incidence and mortality. Ubiquitination modification of cellular signaling proteins has been shown to play important roles in GC tumorigenesis, progression, and prognosis. The E3 ubiquitin ligase is the crucial enzyme in the ubiquitination reaction and determines the specificity of ubiquitination substrates, and thus, the cellular effects. The HECT E3 ligases are the second largest E3 ubiquitin ligase family characterized by containing a HECT domain that has E3 ubiquitin ligase activity. The HECT E3 ubiquitin ligases have been found to engage in GC progression. However, whether HECT E3 ligases function as tumor promoters or tumor suppressors in GC remains controversial. In this review, we will focus on recent discoveries about the role of the HECT E3 ubiquitin ligases, especially members of the NEDD4 and other HECT E3 ligase subfamilies, in GC.


Assuntos
Neoplasias Gástricas , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Carcinogênese , Ubiquitinas , Ubiquitina-Proteína Ligases Nedd4/química , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo
19.
Int Immunopharmacol ; 114: 109595, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36700774

RESUMO

Methotrexate (MTX) is used to treat rheumatoid arthritis, acute leukemia, and psoriasis. MTX can cause certain side effects, such as myelosuppression, while the exact mechanism of myelosuppression caused by MTX is unknown. Notch signaling pathway has been considered to be essential to regulate hematopoietic stem cell (HSC) regeneration and homeostasis, thus contributing to bone marrow hematopoiesis. However, whether MTX affects Notch signaling remains unexplored. Here, our study provides evidence that MTX strongly suppresses the Notch signaling pathway. We found that MTX inhibited the interaction between Nedd4 with Numb, thus restricting K48-linked polyubiquitination of Numb and stabilizing Numb proteins. This in turn inhibited the Notch signaling pathway by reducing Notch1 protein levels. Interestingly, we found that a monomeric drug, Triptolide, is capable of alleviating the inhibitory effect of MTX on Notch signaling pathway. This study promotes our understanding of MTX-mediated regulation of Notch signaling and could provide ideas to alleviate MTX-induced myelosuppression.


Assuntos
Metotrexato , Receptores Notch , Proteínas de Membrana/metabolismo , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Receptor Notch1 , Receptores Notch/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
20.
J Virol ; 96(21): e0119522, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36286484

RESUMO

Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.


Assuntos
Vírus da Hepatite A , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Hepatovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Hepatite A/fisiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...