Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 70(10): 2773-2786, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30840760

RESUMO

The influence of reduced glycine decarboxylase complex (GDC) activity on leaf atmosphere CO2 and 13CO2 exchange was tested in transgenic Oryza sativa with the GDC H-subunit knocked down in leaf mesophyll cells. Leaf measurements on transgenic gdch knockdown and wild-type plants were carried out in the light under photorespiratory and low photorespiratory conditions (i.e. 18.4 kPa and 1.84 kPa atmospheric O2 partial pressure, respectively), and in the dark. Under approximately current ambient O2 partial pressure (18.4 kPa pO2), the gdch knockdown plants showed an expected photorespiratory-deficient phenotype, with lower leaf net CO2 assimilation rates (A) than the wild-type. Additionally, under these conditions, the gdch knockdown plants had greater leaf net discrimination against 13CO2 (Δo) than the wild-type. This difference in Δo was in part due to lower 13C photorespiratory fractionation (f) ascribed to alternative decarboxylation of photorespiratory intermediates. Furthermore, the leaf dark respiration rate (Rd) was enhanced and the 13CO2 composition of respired CO2 (δ13CRd) showed a tendency to be more depleted in the gdch knockdown plants. These changes in Rd and δ13CRd were due to the amount and carbon isotopic composition of substrates available for dark respiration. These results demonstrate that impairment of the photorespiratory pathway affects leaf 13CO2 exchange, particularly the 13C decarboxylation fractionation associated with photorespiration.


Assuntos
Isótopos de Carbono/análise , Complexo Glicina Descarboxilase/genética , Oryza/genética , Fotossíntese , Proteínas de Plantas/genética , Respiração Celular , Complexo Glicina Descarboxilase/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
2.
Methods Mol Biol ; 1653: 31-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28822124

RESUMO

The determination of enzyme activities in organ or organellar extracts is an important means of investigating metabolic networks and allows testing the success of enzyme-targeted genetic engineering. It also delivers information on intrinsic enzyme parameters such as kinetic properties or impact of effector molecules. This chapter provides protocols on how to assess activities of the enzymes of the core photorespiratory pathway, from 2-phosphoglycolate phosphatase to glycerate 3-kinase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ensaios Enzimáticos/métodos , Regulação da Expressão Gênica de Plantas , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/enzimologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Ensaios Enzimáticos/instrumentação , Complexo Glicina Descarboxilase/genética , Complexo Glicina Descarboxilase/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Cinética , Oxirredução , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais , Transaminases/genética , Transaminases/metabolismo
3.
J Exp Bot ; 68(2): 191-206, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28110276

RESUMO

Evolution of C4 photosynthesis is not distributed evenly in the plant kingdom. Particularly interesting is the situation in the Brassicaceae, because the family contains no C4 species, but several C3-C4 intermediates, mainly in the genus Moricandia Investigation of leaf anatomy, gas exchange parameters, the metabolome, and the transcriptome of two C3-C4 intermediate Moricandia species, M. arvensis and M. suffruticosa, and their close C3 relative M. moricandioides enabled us to unravel the specific C3-C4 characteristics in these Moricandia lines. Reduced CO2 compensation points in these lines were accompanied by anatomical adjustments, such as centripetal concentration of organelles in the bundle sheath, and metabolic adjustments, such as the balancing of C and N metabolism between mesophyll and bundle sheath cells by multiple pathways. Evolution from C3 to C3-C4 intermediacy was probably facilitated first by loss of one copy of the glycine decarboxylase P-protein, followed by dominant activity of a bundle sheath-specific element in its promoter. In contrast to recent models, installation of the C3-C4 pathway was not accompanied by enhanced activity of the C4 cycle. Our results indicate that metabolic limitations connected to N metabolism or anatomical limitations connected to vein density could have constrained evolution of C4 in Moricandia.


Assuntos
Evolução Biológica , Brassicaceae/metabolismo , Complexo Glicina Descarboxilase/genética , Fotossíntese , Folhas de Planta/anatomia & histologia , Brassicaceae/anatomia & histologia , Brassicaceae/genética , Dióxido de Carbono/metabolismo , Metaboloma , Filogenia , Folhas de Planta/metabolismo , Transcriptoma
4.
Genet Med ; 19(1): 104-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362913

RESUMO

PURPOSE: The study's purpose was to delineate the genetic mutations that cause classic nonketotic hyperglycinemia (NKH). METHODS: Genetic results, parental phase, ethnic origin, and gender data were collected from subjects suspected to have classic NKH. Mutations were compared with those in the existing literature and to the population frequency from the Exome Aggregation Consortium (ExAC) database. RESULTS: In 578 families, genetic analyses identified 410 unique mutations, including 246 novel mutations. 80% of subjects had mutations in GLDC. Missense mutations were noted in 52% of all GLDC alleles, most private. Missense mutations were 1.5 times as likely to be pathogenic in the carboxy terminal of GLDC than in the amino-terminal part. Intragenic copy-number variations (CNVs) in GLDC were noted in 140 subjects, with biallelic CNVs present in 39 subjects. The position and frequency of the breakpoint for CNVs correlated with intron size and presence of Alu elements. Missense mutations, most often recurring, were the most common type of disease-causing mutation in AMT. Sequencing and CNV analysis identified biallelic pathogenic mutations in 98% of subjects. Based on genotype, 15% of subjects had an attenuated phenotype. The frequency of NKH is estimated at 1:76,000. CONCLUSION: The 484 unique mutations now known in classic NKH provide a valuable overview for the development of genotype-based therapies.Genet Med 19 1, 104-111.


Assuntos
Aminometiltransferase/genética , Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Alelos , Di-Hidrolipoamida Desidrogenase/genética , Éxons/genética , Feminino , Testes Genéticos , Genótipo , Glicina/genética , Glicina/metabolismo , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/patologia , Íntrons , Masculino , Mutação de Sentido Incorreto
5.
Plant Cell Physiol ; 57(5): 919-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26903527

RESUMO

The glycine decarboxylase complex (GDC) plays a critical role in the photorespiratory C2 cycle of C3 species by recovering carbon following the oxygenation reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase. Loss of GDC from mesophyll cells (MCs) is considered a key early step in the evolution of C4 photosynthesis. To assess the impact of preferentially reducing GDC in rice MCs, we decreased the abundance of OsGDCH (Os10g37180) using an artificial microRNA (amiRNA) driven by a promoter that preferentially drives expression in MCs. GDC H- and P-proteins were undetectable in leaves of gdch lines. Plants exhibited a photorespiratory-deficient phenotype with stunted growth, accelerated leaf senescence, reduced chlorophyll, soluble protein and sugars, and increased glycine accumulation in leaves. Gas exchange measurements indicated an impaired ability to regenerate ribulose 1,5-bisphosphate in photorespiratory conditions. In addition, MCs of gdch lines exhibited a significant reduction in chloroplast area and coverage of the cell wall when grown in air, traits that occur during the later stages of C4 evolution. The presence of these two traits important for C4 photosynthesis and the non-lethal, down-regulation of the photorespiratory C2 cycle positively contribute to efforts to produce a C4 rice prototype.


Assuntos
Regulação da Expressão Gênica de Plantas , Complexo Glicina Descarboxilase/metabolismo , Oryza/genética , Fotossíntese , Ciclo do Carbono , Respiração Celular , Cloroplastos/metabolismo , Técnicas de Silenciamento de Genes , Complexo Glicina Descarboxilase/genética , Luz , MicroRNAs/genética , Oryza/enzimologia , Oryza/fisiologia , Oryza/efeitos da radiação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Mol Biochem Parasitol ; 206(1-2): 29-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794804

RESUMO

Osmotically inducible protein (OsmC) and organic hydroperoxide resistance protein (Ohr) are small, thiol-dependent peroxidases that comprise a family of prokaryotic protective proteins central to the defense against deleterious effects of organic hydroperoxides, which are reactive molecules that are formed during interactions between the host immune system and pathogens. Trichomonas vaginalis, a sexually transmitted parasite of humans, possesses OsmC homologues in its hydrogenosomes, anaerobic mitochondrial organelles that harbor enzymes and pathways that are sensitive to oxidative damage. The glycine decarboxylase complex (GDC), which consists of four proteins (i.e., L, H, P and T), is in eukaryotes exclusively mitochondrial enzymatic system that catalyzes oxidative decarboxylation and deamination of glycine. However, trichomonad hydrogenosomes contain only the L and H proteins, whose physiological functions are unknown. Here, we found that the hydrogenosomal L and H proteins constitute a lipoate-dependent redox system that delivers electrons from reduced nicotinamide adenine dinucleotide (NADH) to OsmC for the reductive detoxification of peroxides. Our searches of genome databases revealed that, in addition to prokaryotes, homologues of OsmC/Ohr family proteins with predicted mitochondrial localization are present in various eukaryotic lineages. Therefore, we propose that the novel OsmC-GDC-based redox system may not be limited to T. vaginalis.


Assuntos
Complexo Glicina Descarboxilase/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/metabolismo , Sequência de Aminoácidos , Cultura Axênica , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Complexo Glicina Descarboxilase/genética , Cinética , Desentoxicação Metabólica Fase I/genética , Mitocôndrias/ultraestrutura , Oxirredução , Peroxidases/genética , Filogenia , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trichomonas vaginalis/genética , Trichomonas vaginalis/ultraestrutura
7.
Mitochondrion ; 19 Pt B: 357-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24444663

RESUMO

Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic anhydrase, respectively. This results in the removal of these products from the glycine decarboxylase multienzyme active sites and in the maintenance of their concentrations at levels sufficiently low to prevent substrate inhibition of the reaction.


Assuntos
Complexo Glicina Descarboxilase/metabolismo , Redes e Vias Metabólicas , Plantas/enzimologia , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Malato Desidrogenase/metabolismo , NAD/metabolismo
8.
Plant Cell Environ ; 36(8): 1476-89, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23421602

RESUMO

Glycine decarboxylase complex (GDC) is a multi-protein complex, comprising P-, H-, T- and L-protein subunits, which plays a major role in photorespiration in plants. While structural analysis has demonstrated that the H subunit of GDC (GDCH) plays a pivotal role in GDC, research on the role of GDCH in biological processes in plants is seldom reported. Here, the function of GDCH, stresses resulting from GDCH-knockdown and the interactions of these stresses with other cellular processes were studied in rice plants. Under high CO(2), the OsGDCH RNA interference (OsGDCH-RNAi) plants grew normally, but under ambient CO(2), severely suppressed OsGDCH-RNAi plants (SSPs) were non-viable, which displayed a photorespiration-deficient phenotype. Under ambient CO(2), chlorophyll loss, protein degradation, lipid peroxidation and photosynthesis decline occurred in SSPs. Electron microscopy studies showed that chloroplast breakdown and autophagy took place in these plants. Reactive oxygen species (ROS), including O2(-) and H(2)O(2), accumulated and the antioxidant enzyme activities decreased in the leaves of SSPs under ambient CO(2). The expression of transcription factors and senescence-associated genes (SAGs), which was up-regulated in SSPs after transfer to ambient CO(2), was enhanced in wild-type plants treated with H(2)O(2). Evidences demonstrate ROS induce senescence in SSPs, and transcription factors OsWRKY72 may mediate the ROS-induced senescence.


Assuntos
Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Oryza/fisiologia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Carbono/farmacologia , Respiração Celular , Senescência Celular , Clorofila/metabolismo , Complexo Glicina Descarboxilase , Proteína H do Complexo Glicina Descarboxilase/genética , Proteína H do Complexo Glicina Descarboxilase/metabolismo , Peroxidação de Lipídeos , Especificidade de Órgãos , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/ultraestrutura , Estresse Oxidativo , Fenótipo , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Hum Mol Genet ; 21(7): 1496-503, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22171071

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.


Assuntos
Aminometiltransferase/genética , Proteína H do Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Mutação , Defeitos do Tubo Neural/genética , Animais , Complexo Glicina Descarboxilase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto
10.
Mol Biochem Parasitol ; 172(2): 156-60, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20403390

RESUMO

The glycine cleavage complex (GCV) is a potential source of the one carbon donor 5,10-methylene-tetrahydrofolate (5,10-CH(2)-THF) in the malaria parasite Plasmodium falciparum. One carbon (C1) donor units are necessary for amino acid and nucleotide biosynthesis, and for the initiation of mitochondrial and plastid translation. In other organisms, GCV activity is closely coordinated with the activity of serine hydroxymethyltransferase (SHMT) enzymes. P. falciparum contains cytosolic and mitochondrial SHMT isoforms, and thus, the subcellular location of the GCV is an important indicator of its role in malaria metabolism. To determine the subcellular localization of the GCV, we used a modified version of the published method for mycobacteriophage integrase-mediated recombination in P. falciparum to generate cell lines containing one of the component proteins of the GCV, the H-protein, fused to GFP. Here, we demonstrate that this modification results in rapid generation of chromosomally integrated transgenic parasites, and we show that the H-protein localizes to the mitochondrion.


Assuntos
DNA Mitocondrial/genética , Genética Microbiana/métodos , Complexo Glicina Descarboxilase/genética , Integrases/metabolismo , Micobacteriófagos/genética , Plasmodium falciparum/genética , Recombinação Genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Integrases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Mol Biochem Parasitol ; 170(1): 17-27, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19961881

RESUMO

The mitochondrial glycine cleavage complex (GCC) is an important part of cellular metabolism due to its role in the maintenance and balance of activated one-carbon units for a wide range of biosynthetic processes. In the protozoan parasite Leishmania, little is known about these metabolic processes. However, the importance of amino acid catabolism, especially for the clinically relevant amastigote form of this parasite, is becoming increasingly clear. Using a bioinformatics approach, we have identified orthologs of the genes encoding the four loosely associated GCC subunits (GCVP, GCVT, GCVH, and GCVL) in the visceral species Leishmania infantum. We report here that all GCC genes are expressed in L. infantum and that several are enriched in the intracellular amastigote stage. To further assess the regulation of GCC components throughout the life cycle of Leishmania, we focused on the T-protein component GCVT. GCVT is encoded by two almost identical tandemly arranged gene copies that have very divergent 3'UTRs. Using two different reporter gene systems, we demonstrate that the divergent GCVT 3'UTRs are responsible for the differential regulation of GCVT-1 and GCVT-2 isogenes at the protein level in both developmental forms of L. infantum. The GCVT-1 3'UTR is responsive to heat stress, resulting in higher expression of GCVT-1 in promastigotes, whereas the GCVT-2 3'UTR harbors a SIDER2 retroposon, which contributes to the amastigote-specific expression of GCVT-2 protein. Interestingly, our data indicate that expression of most GCC genes is inducible upon excess glycine and that this regulation is not conferred by 5'- or 3'-untranslated regions. Altogether, these data suggest a complex and multilayered regulation of the GCC both at the mRNA and protein levels throughout the L. infantum life cycle.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Complexo Glicina Descarboxilase/genética , Leishmania infantum/crescimento & desenvolvimento , Subunidades Proteicas/genética , Proteínas de Protozoários/genética , Animais , Complexo Glicina Descarboxilase/metabolismo , Leishmania infantum/genética , Leishmania infantum/metabolismo , Estágios do Ciclo de Vida , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo , Regiões não Traduzidas
12.
Physiol Plant ; 134(4): 559-74, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18823329

RESUMO

Young poplar trees (Populus tremula Michx. x Populus alba L. clone INRA 717-1B4) were subjected to 120 ppb of ozone for 35 days in phytotronic chambers. Treated trees displayed precocious leaf senescence and visible symptoms of injury (dark brown/black upper surface stippling) exclusively observed on fully expanded leaves. In these leaves, ozone reduced parameters related to photochemistry (Chl content and maximum rate of photosynthetic electron transport) and photosynthetic CO(2) fixation [net CO(2) assimilation, Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase) activity and maximum velocity of Rubisco for carboxylation]. In fully expanded leaves, the rate of photorespiration as estimated from Chl fluorescence was markedly impaired by the ozone treatment together with the activity of photorespiratory enzymes (Rubisco and glycolate oxidase). Immunoblot analysis revealed a decrease in the content of serine hydroxymethyltransferase in treated mature leaves, while the content of the H subunit of the glycine decarboxylase complex was not modified. Leaves in the early period of expansion were exempt from visible symptoms of injury and remained unaffected as regards all measured parameters. Leaves reaching full expansion under ozone exposure showed potential responses of protection (stimulation of mitochondrial respiration and transitory stomatal closure). Our data underline the major role of leaf phenology in ozone sensitivity of photosynthetic processes and reveal a marked ozone-induced inhibition of photorespiration.


Assuntos
Ozônio/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Populus/metabolismo , Análise de Variância , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos dos fármacos , Clorofila/metabolismo , Complexo Glicina Descarboxilase/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Modelos Lineares , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Árvores/efeitos dos fármacos , Árvores/metabolismo
13.
J Exp Bot ; 58(7): 1761-70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17355947

RESUMO

In plants, the glycine decarboxylase complex (GDC) cooperates with serine hydroxymethyltransferase (SHMT) to mediate photorespiratory glycine-serine interconversion. GDC is also postulated to be an integral component of one-carbon (C1) metabolism in heterotrophic tissues, although molecular evidence in plants is scarce. An initial report of a xylem-specific isoform of GDC component H-protein, PtgdcH1, in aspen (Populus tremuloides Michx.) provided molecular evidence consistent with an important role for GDC in plant C1 metabolism. PtgdcH1 is phylogenetically distinct from the leaf-abundant photorespiratory PtgdcH3, but both isoforms restored GDC activity in a yeast H-protein knockout mutant, suggesting their functional equivalence. The Populus genome contains eight transcriptionally active GDC genes, encoding four H-proteins, two T-proteins, and single P- and L-proteins. The two Populus T-protein isoforms, PtgdcT1 and PtgdcT2, exhibited differential expression in leaves and xylem, similar to PtgdcH3 and PtgdcH1. In silico identification of AC elements in the promoters of xylem-abundant PtgdcH1 and PtgdcT2, as well as many lignin biosynthetic genes of Populus is consistent with a prominent role for GDC in methyl-intensive lignification during wood formation. The AC element is absent from Arabidopsis GDC promoters, and GDC expression has not been linked to secondary growth in this herbaceous annual. Taken together, the results suggest that the association of distinct H-protein and T-protein isoforms with photorespiration and C1 metabolism is a distinguishing feature of Populus, and may signify molecular adaptation of GDC to cope with the C1 demands of lignification in woody perennials.


Assuntos
Complexo Glicina Descarboxilase/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Carbono/metabolismo , Biologia Computacional , Teste de Complementação Genética , Genoma de Planta , Complexo Glicina Descarboxilase/genética , Complexo Glicina Descarboxilase/fisiologia , Lignina/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Populus/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Xilema/metabolismo
14.
J Exp Bot ; 58(15-16): 4203-12, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18182425

RESUMO

In plants, betaine is synthesized upon abiotic stress via choline oxidation, in which choline monooxygenase (CMO) is a key enzyme. Although it had been thought that betaine synthesis is well regulated to protect abiotic stress, it is shown here that an exogenous supply of precursors such as choline, serine, and glycine in the betaine-accumulating plant Amaranthus tricolor further enhances the accumulation of betaine under salt stress, but not under normal conditions. Addition of isonicotinic acid hydrazide, an inhibitor of glycine decarboxylase, inhibited the salinity-induced accumulation of betaine. Salt-induced accumulation of A. tricolor CMO (AmCMO) and betaine was much slower in roots than in leaves, and a transient accumulation of proline was observed in the roots. Antisense expression of AmCMO mRNA suppressed the salt-induced accumulation of AmCMO and betaine, but increased the level of choline approximately 2- 3-fold. This indicates that betaine synthesis is highly regulated by AmCMO expression. The genomic DNA, including the upstream region (1.6 kbp), of AmCMO was isolated. Deletion analysis of the AmCMO promoter region revealed that the 410 bp fragment upstream of the translation start codon contains the sequence responsive to salt stress. These data reveal that the promoter sequence of CMO, in addition to precursor supply, is important for the accumulation of betaine in the betaine-accumulating plant A. tricolor.


Assuntos
Amaranthus/metabolismo , Betaína/metabolismo , Oxigenases/metabolismo , Cloreto de Sódio/farmacologia , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Elementos Antissenso (Genética) , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/farmacologia , Códon de Iniciação , Etanolamina/metabolismo , Expressão Gênica , Genes Reporter , Genoma de Planta , Glucuronidase/genética , Glucuronidase/metabolismo , Glicina/metabolismo , Complexo Glicina Descarboxilase/antagonistas & inibidores , Isoniazida/farmacologia , Oxigenases/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Serina/metabolismo
15.
Eukaryot Cell ; 5(12): 2062-71, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17158739

RESUMO

Trichomonas vaginalis is a unicellular eukaryote that lacks mitochondria and contains a specialized organelle, the hydrogenosome, involved in carbohydrate metabolism and iron-sulfur cluster assembly. We report the identification of two glycine cleavage H proteins and a dihydrolipoamide dehydrogenase (L protein) of the glycine decarboxylase complex in T. vaginalis with predicted N-terminal hydrogenosomal presequences. Immunofluorescence analyses reveal that both H and L proteins are localized in hydrogenosomes, providing the first evidence for amino acid metabolism in this organelle. All three proteins were expressed in Escherichia coli and purified to homogeneity. The experimental Km of L protein for the two H proteins were 2.6 microM and 3.7 microM, consistent with both H proteins serving as substrates of L protein. Analyses using purified hydrogenosomes showed that endogenous H proteins exist as monomers and endogenous L protein as a homodimer in their native states. Phylogenetic analyses of L proteins revealed that the T. vaginalis homologue shares a common ancestry with dihydrolipoamide dehydrogenases from the firmicute bacteria, indicating its acquisition via a horizontal gene transfer event independent of the origins of mitochondria and hydrogenosomes.


Assuntos
Complexo Glicina Descarboxilase/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/enzimologia , Sequência de Aminoácidos , Animais , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Genes de Protozoários , Complexo Glicina Descarboxilase/genética , Proteína H do Complexo Glicina Descarboxilase/genética , Proteína H do Complexo Glicina Descarboxilase/metabolismo , Cinética , Dados de Sequência Molecular , Organelas/enzimologia , Filogenia , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Trichomonas vaginalis/genética
16.
Plant Physiol ; 142(1): 333-42, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16877700

RESUMO

The occurrence of a photorespiratory 2-phosphoglycolate metabolism in cyanobacteria is not clear. In the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we have identified open reading frames encoding enzymes homologous to those forming the plant-like C2 cycle and the bacterial-type glycerate pathway. To study the route and importance of 2-phosphoglycolate metabolism, the identified genes were systematically inactivated by mutagenesis. With a few exceptions, most of these genes could be inactivated without leading to a high-CO(2)-requiring phenotype. Biochemical characterization of recombinant proteins verified that Synechocystis harbors an active serine hydroxymethyltransferase, and, contrary to higher plants, expresses a glycolate dehydrogenase instead of an oxidase to convert glycolate to glyoxylate. The mutation of this enzymatic step, located prior to the branching of phosphoglycolate metabolism into the plant-like C2 cycle and the bacterial-like glycerate pathway, resulted in glycolate accumulation and a growth depression already at high CO(2). Similar growth inhibitions were found for a single mutant in the plant-type C2 cycle and more pronounced for a double mutant affected in both the C2 cycle and the glycerate pathway after cultivation at low CO(2). These results suggested that cyanobacteria metabolize phosphoglycolate by the cooperative action of the C2 cycle and the glycerate pathway. When exposed to low CO(2), glycine decarboxylase knockout mutants accumulated far more glycine and lysine than wild-type cells or mutants with inactivated glycerate pathway. This finding and the growth data imply a dominant, although not exclusive, role of the C2 route in cyanobacterial phosphoglycolate metabolism.


Assuntos
Glicolatos/metabolismo , Synechocystis/metabolismo , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/fisiologia , Dióxido de Carbono/metabolismo , Análise Mutacional de DNA , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Ácidos Glicéricos/metabolismo , Glicina/metabolismo , Complexo Glicina Descarboxilase/genética , Glicina Hidroximetiltransferase/metabolismo , Lisina/metabolismo , Mutação , Fases de Leitura Aberta , Serina/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
17.
Plant Biol (Stuttg) ; 7(1): 15-22, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15666206

RESUMO

In order to investigate the metabolic importance of glycine decarboxylase (GDC) in cyanobacteria, mutants were generated defective in the genes encoding GDC subunits and the serine hydroxymethyl-transferase (SHMT). It was possible to mutate the genes for GDC subunits P, T, or H protein in the cyanobacterial model strain Synechocystis sp. PCC 6803, indicating that GDC is not necessary for cell viability under standard conditions. In contrast, the SHMT coding gene was found to be essential. Almost no changes in growth, pigmentation, or photosynthesis were detected in the GDC subunit mutants, regardless of whether or not they were cultivated at ambient or high CO2 concentrations. The mutation of GDC led to an increased glycine/serine ratio in the mutant cells. Furthermore, supplementation of the medium with low glycine concentrations was toxic for the mutants but not for wild type cells. Conditions stimulating photorespiration in plants, such as low CO2 concentrations, did not induce but decrease the expression of the GDC and SHMT genes in Synechocystis. It appears that, in contrast to heterotrophic bacteria and plants, GDC is dispensable for Synechocystis and possibly other cyanobacteria.


Assuntos
Aminoácido Oxirredutases/metabolismo , Synechocystis/enzimologia , Aminoácido Oxirredutases/genética , Expressão Gênica , Complexo Glicina Descarboxilase , Proteína H do Complexo Glicina Descarboxilase , Glicina Desidrogenase (Descarboxilante) , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Mutação , Fotossíntese , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 101(21): 8239-44, 2004 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15146069

RESUMO

Inducible NO synthase (iNOS) activity is induced upon pathogen inoculation in resistant, but not susceptible, tobacco and Arabidopsis plants. It was shown recently that a variant form of the Arabidopsis P protein (AtvarP) has iNOS activity. P protein is part of the glycine decarboxylase complex (GDC). It is unclear whether P protein also has iNOS activity and, if so, whether AtvarP, P, or both, play a role in plant defense. Here, we show that iNOS activity is induced in both resistant and susceptible tomato leaves upon inoculation with the Pseudomonas syringae pv. tomato strain DC3000. Virus-induced gene-silencing targeting LevarP, a putative tomato ortholog of AtvarP, led to complete suppression of DC3000-induced iNOS activation and an approximately 80% reduction in GDC activity; it also increased disease-symptom severity and DC3000 growth in both resistant and susceptible tomato. To determine whether enhanced susceptibility exhibited by LevarP-silenced, susceptible tomato was due to loss of (i) iNOS activity, (ii) GDC activity, or (iii) both, GDC activity was inhibited with or without concurrent suppression of iNOS. Treatment with methotrexate inhibited both iNOS and GDC activities and resulted in increased susceptibility, comparable with that observed in LevarP-silenced plants. When normal iNOS activity was maintained in the presence of methotrexate by the addition of tetrahydrobiopterin, there was no change in susceptibility, despite a dramatic reduction in GDC activity. Together, these results indicate that iNOS contributes to host defense response against DC3000.


Assuntos
/análogos & derivados , Óxido Nítrico Sintase/deficiência , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Aminoácido Oxirredutases/biossíntese , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Inativação Gênica , Complexo Glicina Descarboxilase , Glicina Desidrogenase (Descarboxilante) , Solanum lycopersicum/genética , Metotrexato/farmacologia , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas syringae/classificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
19.
Biochim Biophys Acta ; 1676(3): 266-72, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14984933

RESUMO

The Gly decarboxylase complex (GDC) is abundant in mitochondria of C3 leaves and functions in photorespiratory carbon recovery. However, expression of GDC component proteins has generally been less evident in non-green tissues. Here we report an aspen (Populus tremuloides Michx.) PtgdcH1 gene, encoding a GDC subunit H-protein that is phylogenetically distinct from previously characterized photorespiratory H-proteins. Strong expression of PtgdcH1 in root tips and developing xylem suggests that GDC supports a very active C1 metabolism in non-photosynthetic tissues of aspen.


Assuntos
Aminoácido Oxirredutases/genética , Populus/metabolismo , Aminoácido Oxirredutases/biossíntese , Aminoácido Oxirredutases/química , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/análise , DNA Complementar/biossíntese , DNA Complementar/química , Regulação Enzimológica da Expressão Gênica , Complexo Glicina Descarboxilase , Proteína H do Complexo Glicina Descarboxilase , Glicina Desidrogenase (Descarboxilante) , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/enzimologia , Populus/enzimologia , Populus/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Alinhamento de Sequência
20.
J Biol Chem ; 279(8): 7072-81, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14645232

RESUMO

Glycine specifically induces genes encoding subunits of the glycine decarboxylase complex (GCV1, GCV2, and GCV3), and this is mediated by a fall in cytoplasmic levels of 5,10-methylenetetrahydrofolate caused by inhibition of cytoplasmic serine hydroxymethyltransferase. Here it is shown that this control system extends to genes for other enzymes of one-carbon metabolism and de novo purine biosynthesis. Northern analysis of the response to glycine demonstrated that the induction of the GCV genes and the induction of other amino acid metabolism genes are temporally distinct. The genome-wide response to glycine revealed that several other genes are rapidly co-induced with the GCV genes, including SHM2, which encodes cytoplasmic serine hydroxymethyltransferase. These results were refined by examining transcript levels in an shm2Delta strain (in which cytoplasmic 5,10-methylenetetrahydrofolate levels are reduced) and a met13Delta strain, which lacks the main methylenetetrahydrofolate reductase activity of yeast and is effectively blocked at consumption of 5,10-methylene tetrahydrofolate for methionine synthesis. Glycine addition also caused a substantial transient disturbance to metabolism, including a sequence of changes in induction of amino acid biosynthesis and respiratory chain genes. Analysis of the glycine response in the shm2Delta strain demonstrated that apart from the one-carbon regulon, most of these transient responses were not contingent on a disturbance to one-carbon metabolism. The one-carbon response is distinct from the Bas1p purine biosynthesis regulon and thus represents the first example of transcriptional regulation in response to activated one-carbon status.


Assuntos
Carbono/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Aminoácido Oxirredutases/fisiologia , Northern Blotting , Carbono/química , Divisão Celular , Citoplasma/enzimologia , Citoplasma/metabolismo , DNA/metabolismo , DNA Complementar/metabolismo , Inibidores Enzimáticos/farmacologia , Glicina/química , Complexo Glicina Descarboxilase , Glicina Desidrogenase (Descarboxilante) , Glicina Hidroximetiltransferase/antagonistas & inibidores , Modelos Biológicos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Purinas/química , RNA/química , Proteínas de Saccharomyces cerevisiae , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...