Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.594
Filtrar
1.
Cell Mol Life Sci ; 81(1): 118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448737

RESUMO

Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.


Assuntos
Axonema , Proteínas dos Microtúbulos , Sêmen , Humanos , Masculino , Animais , Camundongos , Feminino , Microscopia Crioeletrônica , Motilidade dos Espermatozoides , Espermatozoides , Flagelos
2.
Nat Commun ; 15(1): 2687, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538594

RESUMO

Centrosomes and cilia are microtubule-based superstructures vital for cell division, signaling, and motility. The once thought hollow lumen of their microtubule core structures was recently found to hold a rich meshwork of microtubule inner proteins (MIPs). To address the outstanding question of how distinct MIPs evolved to recognize microtubule inner surfaces, we applied computational sequence analyses, structure predictions, and experimental validation to uncover evolutionarily conserved microtubule- and MIP-binding modules named NWE, SNYG, and ELLEn, and PYG and GFG-repeat by their signature motifs. These modules intermix with MT-binding DM10-modules and Mn-repeats in 24 Chlamydomonas and 33 human proteins. The modules molecular characteristics provided keys to identify elusive cross-species homologs, hitherto unknown human MIP candidates, and functional properties for seven protein subfamilies, including the microtubule seam-binding NWE and ELLEn families. Our work defines structural innovations that underpin centriole and axoneme assembly and demonstrates that MIPs co-evolved with centrosomes and cilia.


Assuntos
Cílios , Proteínas dos Microtúbulos , Humanos , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Centríolos/metabolismo
3.
Neuroscience ; 544: 75-87, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423163

RESUMO

The cytoskeleton must be remodeled during neurite outgrowth, and Superior Cervical Ganglion 10 (SCG10) plays a critical role in this process by depolymerizing Microtubules (MTs), conferring highly dynamic properties to the MTs. However, the precise mechanism of action of SCG10 in the repair of injured neurons remains largely uncertain. Using transcriptomic identification, we discovered that SCG10 expression was downregulated in neurons after Spinal Cord Injury (SCI). Additionally, through mass spectrometry identification, immunoprecipitation, and pull-down assays, we established that SCG10 could interact with Adenosine Kinase (ADK). Furthermore, we developed an excitotoxicity-induced neural injury model and discovered that ADK suppressed injured neurite re-growth, whereas, through overexpression and small molecule interference experiments, SCG10 enhanced it. Moreover, we discovered ADK to be the upstream of SCG10. More importantly, the application of the ADK inhibitor called 5-Iodotubercidin (5-ITu) was found to significantly enhance the recovery of motor function in mice with SCI. Consequently, our findings suggest that ADK plays a negative regulatory role in the repair of injured neurons. Herein, we propose a molecular interaction model of the SCG10-ADK axis to regulate neuronal recovery.


Assuntos
Adenosina Quinase , Proteínas de Transporte , Camundongos , Animais , Proteínas de Transporte/metabolismo , Adenosina Quinase/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo
4.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206323

RESUMO

Kinesin-3 is a family of microtubule-dependent motor proteins that transport various cargos within the cell. However, the mechanism underlying kinesin-3 activations remains largely elusive. In this study, we compared the biochemical properties of two Caenorhabditis elegans kinesin-3 family proteins, KLP-6 and UNC-104. Both KLP-6 and UNC-104 are predominantly monomeric in solution. As previously shown for UNC-104, non-processive KLP-6 monomer is converted to a processive motor when artificially dimerized. We present evidence that releasing the autoinhibition is sufficient to trigger dimerization of monomeric UNC-104 at nanomolar concentrations, which results in processive movement of UNC-104 on microtubules, although it has long been thought that enrichment in the phospholipid microdomain on cargo vesicles is required for the dimerization and processive movement of UNC-104. In contrast, KLP-6 remains to be a non-processive monomer even when its autoinhibition is unlocked, suggesting a requirement of other factors for full activation. By examining the differences between KLP-6 and UNC-104, we identified a coiled-coil domain called coiled-coil 2 (CC2) that is required for the efficient dimerization and processive movement of UNC-104. Our results suggest a common activation mechanism for kinesin-3 family members, while also highlighting their diversification.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Proteínas do Tecido Nervoso , Animais , Proteínas de Caenorhabditis elegans/genética , Cinesinas/genética , Proteínas dos Microtúbulos , Proteínas do Tecido Nervoso/genética , Multimerização Proteica
5.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238086

RESUMO

The X-linked form of Opitz BBB/G syndrome (OS) is a monogenic disorder in which symptoms are established early during embryonic development. OS is caused by pathogenic variants in the X-linked gene MID1 Disease-associated variants are distributed across the entire gene locus, except for the N-terminal really interesting new gene (RING) domain that encompasses the E3 ubiquitin ligase activity. By using genome-edited human induced pluripotent stem cell lines, we here show that absence of isoforms containing the RING domain of MID1 causes severe patterning defects in human brain organoids. We observed a prominent neurogenic deficit with a reduction in neural tissue and a concomitant increase in choroid plexus-like structures. Transcriptome analyses revealed a deregulation of patterning pathways very early on, even preceding neural induction. Notably, the observed phenotypes starkly contrast with those observed in MID1 full-knockout organoids, indicating the presence of a distinct mechanism that underlies the patterning defects. The severity and early onset of these phenotypes could potentially account for the absence of patients carrying pathogenic variants in exon 1 of the MID1 gene coding for the N-terminal RING domain.


Assuntos
Esôfago , Hipertelorismo , Hipospadia , Células-Tronco Pluripotentes Induzidas , Proteínas Nucleares , Humanos , Encéfalo/metabolismo , Esôfago/anormalidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas dos Microtúbulos/química , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Horm Metab Res ; 56(2): 150-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935247

RESUMO

LINC00092 is poorly expressed in Thyroid cancer (TC), while its role in TC tumorigenesis is still elusive. This study aimed to reveal the role and regulatory mechanism of LINC00092 in TC.RNA immunoprecipitation and dual luciferase reporter assays were employed to ascertain the relationships among lipoma preferred partner (LPP), miR-542-3p, and LINC00092. qRT-PCR analysis was performed to detect their expression levels in TC. LPP protein productions were evaluated via western blotting. CCK-8, transwell, and colony formation assays were done to estimate TC cells' biological functions. A murine xenograft model was built to observe tumor formation in vivo.LINC00092 overexpression decreased the expression levels of miR-542-3p, and LPP was targeted by miR-542-3p. In TC cells and tissues, the elevation of miR-542-3p, and low amounts of LINC00092 and LPP can be observed. Both LINC00092 and SPAG6 were considered as the antineoplastic factors in TC since their overexpression dramatically repressed TC cells' invasive and proliferative potentials, while miR-542-3p exerted the opposite functions in TC. The ectopic expression of LINC00092 also suppressed tumor growth in vivo. In addition, it revealed that miR-542-3p upregulation reversed LINC00092 overexpression-mediated effects on TC cells. At the same time, the enhanced influences of TC cells caused by miR-542-3p upregulation could be attenuated by the enforced LPP.This study innovatively reveals that LINC00092 acts as an antineoplastic lncRNA to restrain the development of TC via regulating miR-542-3p/LPP. The findings of this study may provide a prospective drug target on LINC00092/miR-542-3p/LPP axis for the treatment of TC.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias da Glândula Tireoide/patologia , Movimento Celular/genética , Proteínas dos Microtúbulos
7.
Int J Hematol ; 119(2): 119-129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147275

RESUMO

Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-ß (TGF-ß)/Smad signaling pathway.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Fator de Crescimento Transformador beta , Masculino , Adulto , Humanos , Transdução de Sinais , Apoptose/genética , Proliferação de Células , Proteínas dos Microtúbulos/metabolismo
8.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126872

RESUMO

Male infertility is a worldwide population health concern. Asthenoteratozoospermia is a common cause of male infertility, but its etiology remains incompletely understood. No evidence indicates the relevance of CFAP52 mutations to human male infertility. Our whole-exome sequencing identified compound heterozygous mutations in CFAP52 recessively cosegregating with male infertility status in a non-consanguineous Chinese family. Spermatozoa of CFAP52-mutant patient mainly exhibited abnormal head-tail connection and deformed flagella. Cfap52-knockout mice resembled the human infertile phenotype, showing a mixed acephalic spermatozoa syndrome (ASS) and multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. The ultrastructural analyses further revealed a failure of connecting piece formation and a serious disorder of '9+2' axoneme structure. CFAP52 interacts with a head-tail coupling regulator SPATA6 and is essential for its stability. Expression of microtubule inner proteins and radial spoke proteins were reduced after the CFAP52 deficiency. Moreover, CFAP52-associated male infertility in humans and mice could be overcome by intracytoplasmic sperm injection (ICSI). The study reveals a prominent role for CFAP52 in sperm development, suggesting that CFAP52 might be a novel diagnostic target for male infertility with defects of sperm head-tail connection and flagella development.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto , Flagelos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Camundongos Knockout , Proteínas dos Microtúbulos , Cabeça do Espermatozoide , Cauda do Espermatozoide
9.
J Biol Chem ; 299(11): 105355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858676

RESUMO

Uncoordinated protein 45A (UNC-45A) is the only known ATP-independent microtubule (MT)-severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells, UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT-severing proteins on MT lattice curvature is largely undefined. Here, we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and total internal fluorescence microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT-straightening effects of the drug.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Paclitaxel , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
10.
Biochem Biophys Res Commun ; 682: 244-249, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826947

RESUMO

Microtubule dynamics is modulated by many cellular factors including stathmin family proteins. Vertebrate stathmins sequester two αß-tubulin heterodimers into a tight complex that cannot be incorporated in microtubules. Stathmins are regulated at the expression level during development and among tissues; they are also regulated by phosphorylation. Here, we study the dissociation kinetics of tubulin:stathmin assemblies in presence of different tubulin-binding proteins and identify a critical role of the C-terminus of the stathmin partner. Destabilizing this C-terminal region may represent an additional regulatory mechanism of the interaction with tubulin of stathmin proteins.


Assuntos
Estatmina , Tubulina (Proteína) , Proteínas dos Microtúbulos/análise , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo
11.
J Cell Biochem ; 124(9): 1223-1240, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37661636

RESUMO

Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.


Assuntos
Doença de Alzheimer , Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Neoplasias/tratamento farmacológico , Carcinogênese , Proteínas dos Microtúbulos , Microtúbulos
12.
Cancer Sci ; 114(11): 4445-4458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37681349

RESUMO

Sperm-associated antigen 6 (SPAG6) has been identified as an oncogene or tumor suppressor in various types of human cancer. However, the role of SPAG6 in BCR::ABL1 negative myeloproliferative neoplasms (MPNs) remains unclear. Herein, we found that SPAG6 was upregulated at the mRNA level in primary MPN cells and MPN-derived leukemia cell lines. The SPAG6 protein was primarily located in the cytoplasm around the nucleus and positively correlated with ß-tubulin expression. In vitro, forced expression of SPAG6 increased cell clone formation and promoted G1 to S cell cycle progression. Downregulation of SPAG6 promoted apoptosis, reduced G1 to S phase transition, and impaired cell proliferation and cytokine release accompanied by downregulated signal transducer and activator of transcription 1 (STAT1) expression. Furthermore, the inhibitory effect of interferon-α (INF-α) on the primary MPN cells with high SPAG6 expression was decreased. Downregulation of SPAG6 enhanced STAT1 induction, thus enhancing the proapoptotic and cell cycle arrest effects of INF-α both in vitro and in vivo. Finally, a decrease in SPAG6 protein expression was noted when the STAT1 signaling was blocked. Chromatin immunoprecipitation assays indicated that STAT1 protein could bind to the SPAG6 promoter, while the dual-luciferase reporter assay indicated that STAT1 could promote the expression of SPAG6. Our results substantiate the relationship between upregulated SPAG6, increased STAT1, and reduced sensitivity to INF-α response in MPN.


Assuntos
Interferon-alfa , Neoplasias , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/genética , Proteínas/metabolismo , Transdução de Sinais/genética , Genes Supressores de Tumor , Regiões Promotoras Genéticas , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Neoplasias/genética , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo
13.
Nat Commun ; 14(1): 5225, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633952

RESUMO

Motility of pathogenic protozoa depends on flagella (synonymous with cilia) with axonemes containing nine doublet microtubules (DMTs) and two singlet microtubules. Microtubule inner proteins (MIPs) within DMTs influence axoneme stability and motility and provide lineage-specific adaptations, but individual MIP functions and assembly mechanisms are mostly unknown. Here, we show in the sleeping sickness parasite Trypanosoma brucei, that FAP106, a conserved MIP at the DMT inner junction, is required for trypanosome motility and functions as a critical interaction hub, directing assembly of several conserved and lineage-specific MIPs. We use comparative cryogenic electron tomography (cryoET) and quantitative proteomics to identify MIP candidates. Using RNAi knockdown together with fitting of AlphaFold models into cryoET maps, we demonstrate that one of these candidates, MC8, is a trypanosome-specific MIP required for parasite motility. Our work advances understanding of MIP assembly mechanisms and identifies lineage-specific motility proteins that are attractive targets to consider for therapeutic intervention.


Assuntos
Cílios , Flagelos , Microtúbulos , Aclimatação , Axonema , Proteínas dos Microtúbulos
14.
Dev Biol ; 503: 95-110, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37557946

RESUMO

Tektins are a highly conserved family of coiled-coil domain containing proteins known to play a role in structure, stability and function of cilia and flagella. Tektin proteins are thought to form filaments which run the length of the axoneme along the inner surface of the A tubule of each microtubule doublet. Phylogenetic analyses suggest that the tektin family arose via duplications from a single tektin gene in a unicellular organism giving rise to four and five tektin genes in bilaterians and in spiralians, respectively. Although tektins are found in most metazoans, little is known about their expression and function outside of a handful of model species. Here we present the first comprehensive study of tektin family gene expression in any animal system, in the spiralian annelid Platynereis dumerilii. This indirect developing species retains a full ancient spiralian complement of five tektin genes. We show that all five tektins are expressed almost exclusively in known ciliary structures following the expression of the motile cilia master regulator foxJ1. The three older bilaterian tektin-1, tektin-2, and tektin-4 genes, show a high degree of spatial and temporal co-regulation, while the spiralian specific tektin-3/5A and tektin-3/5B show a delay in onset of expression in every ciliary structure. In addition, tektin-3/5B transcripts show a restricted subcellular localization to the most apical region near the multiciliary arrays. The exact recapitulation of the sequence of expression and localization of the five tektins at different times during larval development indicates the cooption of a fixed regulatory and cellular program during the formation of each ciliary band and multiciliated cell type in this spiralian.


Assuntos
Cílios , Proteínas dos Microtúbulos , Animais , Filogenia , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Cílios/metabolismo , Microtúbulos/metabolismo
15.
J Trace Elem Med Biol ; 79: 127251, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392679

RESUMO

BACKGROUND: Zinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis. OBJECTIVE: The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility. METHODS: 30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis. RESULTS: The experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. CONCLUSION: It was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.


Assuntos
Sêmen , Zinco , Camundongos , Masculino , Animais , Zinco/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Dieta , Proteínas dos Microtúbulos/metabolismo
16.
Cell ; 186(12): 2531-2543.e11, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295401

RESUMO

RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.


Assuntos
Cefalópodes , Dineínas , Animais , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , RNA/metabolismo , Cefalópodes/genética , Cefalópodes/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Proteínas dos Microtúbulos , Miosinas/metabolismo
17.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37295417

RESUMO

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Masculino , Humanos , Microscopia Crioeletrônica , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Microtúbulos/metabolismo , Cauda do Espermatozoide/química , Cauda do Espermatozoide/metabolismo , Proteínas dos Microtúbulos/química , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
18.
Cell ; 186(13): 2725-2727, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37352832

RESUMO

Inside sperm flagella, there are nine doublet microtubules composed of A and B tubules. In this issue of Cell, Leung et al. and Zhou et al. present high-resolution cryo-EM structures of doublet microtubules from mammalian sperms and show unprecedented structures of the A tubules, which are almost entirely occupied with tektin bundles.


Assuntos
Microtúbulos , Sêmen , Animais , Masculino , Microtúbulos/química , Proteínas dos Microtúbulos/química , Cauda do Espermatozoide/química , Flagelos , Mamíferos
19.
Microbiol Res ; 272: 127373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058783

RESUMO

BACKGROUND: Treatment of Candida albicans associated infections is often ineffective in the light of resistance, with an urgent need to discover novel antimicrobials. Fungicides require high specificity and can contribute to antifungal resistance, so inhibition of fungal virulence factors is a good strategy for developing new antifungals. OBJECTIVES: Examine the impact of four plant-derived essential oil components (1,8-cineole, α-pinene, eugenol, and citral) on C. albicans microtubules, kinesin motor protein Kar3 and morphology. METHODS: Microdilution assays were used to determine minimal inhibitory concentrations, microbiological assays assessed germ tube, hyphal and biofilm formation, confocal microscopy probed morphological changes and localization of tubulin and Kar3p, and computational modelling was used to examine the theoretical binding of essential oil components to tubulin and Kar3p. RESULTS: We show for the first time that essential oil components delocalize the Kar3p, ablate microtubules, and induce psuedohyphal formation with reduced biofilm formation. Single and double deletion mutants of kar3 were resistant to 1,8-cineole, sensitive to α-pinene and eugenol, but unimpacted by citral. Strains with homozygous and heterozygous Kar3p disruption had a gene-dosage effect for all essential oil components, resulting in enhanced resistance or susceptibility patterns that were identical to that of cik1 mutants. The link between microtubule (αß-tubulin) and Kar3p defects was further supported by computational modeling, showing preferential binding to αß-tubulin and Kar3p adjacent to their Mg2+-binding sites. CONCLUSION: This study highlights how essential oil components interfere with the localization of the kinesin motor protein complex Kar3/Cik1 and disrupt microtubules, leading to their destabilization which results in hyphal and biofilm defects.


Assuntos
Óleos Voláteis , Proteínas de Saccharomyces cerevisiae , Candida albicans/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Óleos Voláteis/farmacologia , Eugenol/metabolismo , Eucaliptol/metabolismo , Microtúbulos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas dos Microtúbulos/metabolismo
20.
Nat Commun ; 14(1): 2168, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061538

RESUMO

Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.


Assuntos
Tetrahymena thermophila , Tetrahymena , Tetrahymena thermophila/metabolismo , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Axonema/metabolismo , Citoesqueleto/metabolismo , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Tetrahymena/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...