Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.486
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273497

RESUMO

The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.


Assuntos
Plasticidade Celular , Túbulos Renais Coletores , Sistema Renina-Angiotensina , Renina , Renina/metabolismo , Humanos , Animais , Túbulos Renais Coletores/metabolismo , Sistema Renina-Angiotensina/fisiologia , Vasopressinas/metabolismo
2.
Front Neural Circuits ; 18: 1448592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268350

RESUMO

Vasopressin (VP) plays a crucial role in social memory even at the level of the olfactory bulb (OB), where OB VP cells are activated during social interactions. However, it remains unclear how VP modulates olfactory processing to enable enhanced discrimination of very similar odors, e.g., rat body odors. Thus far, it has been shown that VP reduces firing rates in mitral cells (MCs) during odor presentation in vivo and decreases the amplitudes of olfactory nerve-evoked excitatory postsynaptic potentials (ON-evoked EPSPs) in external tufted cells in vitro. We performed whole-cell patch-clamp recordings and population Ca2+ imaging on acute rat OB slices. We recorded ON-evoked EPSPs as well as spontaneous inhibitory postsynaptic currents (IPSCs) from two types of projection neurons: middle tufted cells (mTCs) and MCs. VP bath application reduced the amplitudes of ON-evoked EPSPs and the frequencies of spontaneous IPSCs in mTCs but did not change those in MCs. Therefore, we analyzed ON-evoked EPSPs in inhibitory interneurons, i.e., periglomerular cells (PGCs) and granule cells (GCs), to search for the origin of increased inhibition in mTCs. However, VP did not increase the amplitudes of evoked EPSPs in either type of interneurons. We next performed two-photon population Ca2+ imaging in the glomerular layer and the superficial GC layer of responses to stronger ON stimulation than during patch-clamp experiments that should evoke action potentials in the measured cells. We observed that VP application increased ON-evoked Ca2+ influx in juxtaglomerular cells and GC somata. Thus, our findings indicate inhibition by VP on projection neurons via strong ON input-mediated inhibitory interneuron activity. This neural modulation could improve representation of odors, hence, better discriminability of similar odors, e.g., conspecific body odors.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Neurônios , Bulbo Olfatório , Vasopressinas , Animais , Bulbo Olfatório/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ratos , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ratos Wistar , Interneurônios/fisiologia , Interneurônios/efeitos dos fármacos
3.
Behav Brain Res ; 473: 115181, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39117148

RESUMO

Although pair bonding has been studied for several decades, only somewhat recently have researchers began studying the neural consequences of separation from a pair bond partner. Here we examined the impact of partner separation on the socially monogamous Mongolian gerbil. Using a within-subjects design, we assessed nonsocial, nonreproductive, and reproductive behavior in male gerbils pre- and post- either 4 weeks of cohabitation with or separation from a pair bond partner. We then conducted an immediate early gene study to examine the influence of partner separation on hypothalamic oxytocin and vasopressin neural responses to interactions with a novel, opposite-sex conspecific.


Assuntos
Gerbillinae , Hipotálamo , Ocitocina , Ligação do Par , Comportamento Sexual Animal , Vasopressinas , Animais , Masculino , Ocitocina/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Vasopressinas/metabolismo , Comportamento Sexual Animal/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Feminino
4.
Am J Physiol Renal Physiol ; 327(4): F591-F598, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024358

RESUMO

Vasopressin controls water permeability in the renal collecting duct by regulating the water channel protein, aquaporin-2 (AQP2). Phosphoproteomic studies have identified multiple proteins that undergo phosphorylation changes in response to vasopressin. The kinases responsible for the phosphorylation of most of these sites have not been identified. Here, we use large-scale Bayesian data integration to predict the responsible kinases for 51 phosphoproteomically identified vasopressin-regulated phosphorylation sites in the renal collecting duct. To do this, we applied Bayes' rule to rank the 515 known mammalian protein kinases for each site. Bayes' rule was applied recursively to integrate each of the seven independent datasets, each time using the posterior probability vector of a given step as the prior probability vector of the next step. In total, 30 of the 33 phosphorylation sites that increase with vasopressin were predicted to be phosphorylated by protein kinase A (PKA) catalytic subunit-α, consistent with prior studies implicating PKA in vasopressin signaling. Eighteen of the vasopressin-regulated phosphorylation sites were decreased in response to vasopressin and all but three of these sites were predicted to be targets of extracellular signal-regulated kinases, ERK1 and ERK2. This result implies that ERK1 and ERK2 are inhibited in response to vasopressin V2 receptor occupation, secondary to PKA activation. The six phosphorylation sites not predicted to be phosphorylated by PKA or ERK1/2 are potential targets of other protein kinases previously implicated in aquaporin-2 regulation, including cyclin-dependent kinase 18 (CDK18), calmodulin-dependent kinase 2δ (CAMK2D), AMP-activated kinase catalytic subunit-α-1 (PRKAA1) and CDC42 binding protein kinase ß (CDC42BPB).NEW & NOTEWORTHY Vasopressin regulates water transport in the renal collecting duct in part through phosphorylation or dephosphorylation of proteins that regulate aquaporin-2. Prior studies have identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. This study uses Bayesian data integration techniques to combine information from multiple prior proteomics and transcriptomics studies to predict the protein kinases that phosphorylate the 51 sites. Most of the regulated sites were predicted to be phosphorylated by protein kinase A or ERK1/ERK2.


Assuntos
Aquaporina 2 , Teorema de Bayes , Túbulos Renais Coletores , Vasopressinas , Fosforilação , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Animais , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Aquaporina 2/metabolismo , Aquaporina 2/genética , Transdução de Sinais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Proteômica/métodos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética
5.
Hypertens Res ; 47(9): 2393-2404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39039283

RESUMO

Chronic hypertensive pregnancy (CHP) is a growing health issue with unknown etiology. Vasopressin (VP), a nonapeptide synthesized in paraventricular (PVN) and supraoptic nucleus (SON), is a well-known neuroendocrine and autonomic modulator of the cardiovascular system, related to hypertension development. We quantified gene expression of VP and its receptors, V1aR and V1bR, within the PVN and SON in CHP and normal pregnancy, and assessed levels of secreted plasma VP. Also, we evaluated autonomic cardiovascular adaptations to CHP using spectral indices of blood pressure (BPV) and heart rate (HRV) short-term variability, and spontaneous baroreflex sensitivity (BRS). Experiments were performed in female spontaneously hypertensive rats (SHRs) and in normotensive Wistar rats (WRs). Animals were equipped with a radiotelemetry probe for continuous hemodynamic recordings before and during pregnancy. BPV, HRV and BRS were assessed using spectral analysis and the sequence method, respectively. Plasma VP was determined by ELISA whilst VP, V1aR, and V1bR gene expression was analyzed by real-time-quantitative PCR (RT-qPCR). The results show that non-pregnant SHRs exhibit greater VP, V1aR, and V1bR gene expression in both PVN and SON respectively, compared to Wistar dams. Pregnancy decreased VP gene expression in the SON of SHRs but increased it in the PVN and SON of WRs. Pregnant SHRs exhibited a marked drop in plasma VP concentration associated with BP normalization. This triggered marked tachycardia, heart rate variability increase, and BRS increase in pregnant SHRs. It follows that regardless of BP normalization in late pregnancy, SHRs exhibit cardiovascular vulnerability and compensate by recruiting vagal mechanisms. Pregnant SHR dams have reduced expression of VP in SON associated with increased V1bR expression, lower plasma VP, normal BP during late pregnancy and marked signs of enhanced sympathetic cardiac stimulation (increased HR and LFHR variability) and recruitment of vagal mechanisms (enhancement of BRS and HFHR variability).


Assuntos
Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Vasopressinas , Animais , Feminino , Gravidez , Ratos , Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/sangue , Vasopressinas/metabolismo
6.
Mol Metab ; 87: 101982, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960129

RESUMO

OBJECTIVE: Hepatic Ca2+ signaling has been identified as a crucial key factor in driving gluconeogenesis. The involvement of mitochondria in hormone-induced Ca2+ signaling and their contribution to metabolic activity remain, however, poorly understood. Moreover, the molecular mechanism governing the mitochondrial Ca2+ efflux signaling remains unresolved. This study investigates the role of the Na+/Ca2+ exchanger, NCLX, in modulating hepatic mitochondrial Ca2+ efflux, and examines its physiological significance in hormonal hepatic Ca2+ signaling, gluconeogenesis, and mitochondrial bioenergetics. METHODS: Primary mouse hepatocytes from both an AAV-mediated conditional hepatic-specific and a total mitochondrial Na+/Ca2+ exchanger, NCLX, knockout (KO) mouse models were employed for fluorescent monitoring of purinergic and glucagon/vasopressin-dependent mitochondrial and cytosolic hepatic Ca2+ responses in cultured hepatocytes. Isolated liver mitochondria and permeabilized primary hepatocytes were used to analyze the ion-dependence of Ca2+ efflux. Utilizing the conditional hepatic-specific NCLX KO model, the rate of gluconeogenesis was assessed by first monitoring glucose levels in fasted mice, and subsequently subjecting the mice to a pyruvate tolerance test while monitoring their blood glucose. Additionally, cultured primary hepatocytes from both genotypes were assessed in vitro for glucagon-dependent glucose production and cellular bioenergetics through glucose oxidase assay and Seahorse respirometry, respectively. RESULTS: Analysis of Ca2+ responses in isolated liver mitochondria and cultured primary hepatocytes from NCLX KO versus WT mice showed that NCLX serves as the principal mechanism for mitochondrial calcium extrusion in hepatocytes. We then determined the role of NCLX in glucagon and vasopressin-induced Ca2+ oscillations. Consistent with previous studies, glucagon and vasopressin triggered Ca2+ oscillations in WT hepatocytes, however, the deletion of NCLX resulted in selective elimination of mitochondrial, but not cytosolic, Ca2+ oscillations, underscoring NCLX's pivotal role in mitochondrial Ca2+ regulation. Subsequent in vivo investigation for hepatic NCLX role in gluconeogenesis revealed that, as opposed to WT mice which maintained normoglycemic blood glucose levels when fasted, conditional hepatic-specific NCLX KO mice exhibited a faster drop in glucose levels, becoming hypoglycemic. Furthermore, KO mice showed deficient conversion of pyruvate to glucose when challenged under fasting conditions. Concurrent in vitro assessments showed impaired glucagon-dependent glucose production and compromised bioenergetics in KO hepatocytes, thereby underscoring NCLX's significant contribution to hepatic glucose metabolism. CONCLUSIONS: The study findings demonstrate that NCLX acts as the primary Ca2+ efflux mechanism in hepatocytes. NCLX is indispensable for regulating hormone-induced mitochondrial Ca2+ oscillations, mitochondrial metabolism, and sustenance of hepatic gluconeogenesis.


Assuntos
Sinalização do Cálcio , Cálcio , Glucagon , Gluconeogênese , Hepatócitos , Camundongos Knockout , Trocador de Sódio e Cálcio , Animais , Camundongos , Hepatócitos/metabolismo , Cálcio/metabolismo , Glucagon/metabolismo , Masculino , Trocador de Sódio e Cálcio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Fígado/metabolismo , Vasopressinas/metabolismo , Células Cultivadas , Glucose/metabolismo , Camundongos Endogâmicos C57BL
7.
Biol Psychiatry ; 95(8): 785-799, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38952926

RESUMO

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown. Methods: Using the Magel2 knocked-out (KO) mouse model of PWS (crossed with CRE-dependent transgenic lines), we devised optogenetic, physiological and pharmacological strategies in a social-fear-conditioning paradigm. Pathway specific roles of OXT and AVP signaling were investigated converging on the lateral septum (LS), a region which receives dense hypothalamic inputs. Results: OXT and AVP signaling promoted inhibitory synaptic transmission in the LS, which failure in Magel2KO mice disinhibited somatostatin (SST) neurons and disrupted social-fear extinction. The source of OXT and AVP deficits mapped specifically in the supraoptic nucleus→LS pathway of Magel2KO mice disrupting social-fear extinction, which could be corrected by optogenetic or pharmacological inhibition of SST-neurons in the LS. Interestingly, LS SST-neurons also gated the expression of aggressive behavior, possibly as part of functional units operating beyond local septal circuits. Conclusions: SST cells in the LS play a crucial role in integration and expression of disrupted neuropeptide signals in autism, thereby altering the balance in expression of safety versus fear. Our results uncover novel mechanisms underlying dysfunction in a socially-aversive context, and provides a new framework for future treatments in autism-spectrum disorders.


Assuntos
Modelos Animais de Doenças , Extinção Psicológica , Medo , Camundongos Knockout , Neurônios , Ocitocina , Síndrome de Prader-Willi , Somatostatina , Vasopressinas , Animais , Ocitocina/farmacologia , Somatostatina/farmacologia , Somatostatina/metabolismo , Medo/efeitos dos fármacos , Medo/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Síndrome de Prader-Willi/fisiopatologia , Síndrome de Prader-Willi/tratamento farmacológico , Vasopressinas/metabolismo , Agressão/efeitos dos fármacos , Agressão/fisiologia , Masculino , Comportamento Social , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Optogenética , Camundongos Endogâmicos C57BL , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas
8.
Clin Neurol Neurosurg ; 244: 108432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986366

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) necessitates reliable biomarkers to improve patient care. This study explored copeptin as a potential biomarker in TBI and its relation to vasopressin (ADH) in such patients. METHODS: A cross-sectional study was conducted on 50 TBI patients. Exclusion criteria included specific medical conditions and recent traumatic events. Copeptin and ADH testing were performed within 30 days post-trauma. Patient data, Glasgow Coma Scale (GCS) scores, imaging results, and the need for surgical intervention were obtained from medical charts. RESULTS: Copeptin levels negatively correlated with GCS scores (ρ = - 0.313, p = 0.027), indicating a potential association with trauma severity. Copeptin levels (mean: 3.22 pmol/L, median 2.027 pmol/L, SD = 3.15) tended to be lower than those found in the normal population, suggesting possible neuroendocrine dysfunction post-TBI. ADH levels (mean: 67.93 pmol/L, median 56.474 pmol/L SD = 47.67) were higher than the normal range and associated with the need for surgery (p = 0.048). Surprisingly, copeptin and ADH levels negatively correlated (r = - 0.491; p < 0.001), potentially due to differences in degradation processes and physiological variations in TBI patients. CONCLUSION: Copeptin shows potential as a predictive biomarker for assessing TBI severity and predicting patient outcome. However, its complex relationship with ADH in TBI requires further investigation. Careful interpretation is needed due to potential variations in excretion dynamics and metabolism. Larger studies on TBI patient cohorts are essential to validate copeptin as a reliable biomarker and improve patient care in TBI.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Glicopeptídeos , Humanos , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico , Glicopeptídeos/sangue , Biomarcadores/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Idoso , Escala de Coma de Glasgow , Adulto Jovem , Vasopressinas/sangue , Adolescente
9.
Acta Physiol (Oxf) ; 240(9): e14200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39034759

RESUMO

Hormones are specific molecules measured in biological fluids by elaborate analytical systems requiring meticulous attention. Variation between laboratories can be expected. However, recently published measurements of AVP, OXT, and BNP in human plasma under basal/control conditions include numbers which, between publications, vary by 100-10 000-fold. Generally, the methods descriptions are scant, at best, and provide no information about quality control measures. Clearly, two results describing the same basal hormone concentration by numbers three orders of magnitude apart are incongruent providing reason for concern. Basal concentrations of bioactive AVP, OXT, and BNP in human plasma are in the order of 1-10 pmol/L. Therefore, assay systems applied to plasma must be able to measure concentrations of less than 1 pmol/L with appropriate specificity and accuracy. Basal concentrations of AVP, OXT, and BNP above 100 pmol/L should be reconsidered, as such results do not reflect bioactive hormone levels in humans, rats, or mice. Any concentration above 1000 pmol/L is of concern because such levels of bioactive hormone may be seen only under extreme conditions, if at all.


Assuntos
Peptídeo Natriurético Encefálico , Ocitocina , Vasopressinas , Humanos , Ocitocina/sangue , Peptídeo Natriurético Encefálico/sangue , Vasopressinas/sangue , Animais , Hormônios Peptídicos/sangue
10.
Front Endocrinol (Lausanne) ; 15: 1346082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982989

RESUMO

Introduction: Blood pressure (BP) regulation is a complex process involving several factors, among which water-sodium balance holds a prominent place. Arginin-vasopressin (AVP), a key player in water metabolism, has been evoked in hypertension development since the 1980s, but, to date, the matter is still controversial. Hyaluronic acid metabolism has been reported to be involved in renal water management, and AVP appears to increase hyaluronidase activity resulting in decreased high-molecular-weight hyaluronan content in the renal interstitium, facilitating water reabsorption in collecting ducts. Hence, our aim was to evaluate urinary hyaluronidase activity in response to an oral water load in hypertensive patients (HT, n=21) compared to normotensive subjects with (NT+, n=36) and without (NT-, n=29) a family history of hypertension, and to study its association with BP and AVP system activation, expressed by serum copeptin levels and urine Aquaporin 2 (AQP2)/creatinine ratio. Methods: Eighty-six Caucasian men were studied. Water load test consisted in oral administration of 15-20 ml of water/kg body weight over 40-45 min. BP, heart rate, serum copeptin, urine hyaluronidase activity and AQP2 were monitored for 4 hours. Results: In response to water drinking, BP raised in all groups with a peak at 20-40 min. Baseline levels of serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio were similar among groups and all decreased after water load, reaching their nadir at 120 min and then gradually recovering to baseline values. Significantly, a blunted reduction in serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio was observed in NT+ compared to NT- subjects. A strong positive correlation was also found between urinary hyaluronidase activity and AQP2/creatinine ratio, and, although limited to the NT- group, both parameters were positively associated with systolic BP. Discussion: Our results demonstrate for the first time the existence in men of a close association between urinary hyaluronidase activity and vasopressinergic system and suggest that NT+ subjects have a reduced ability to respond to water loading possibly contributing to the blood volume expansion involved in early-stage hypertension. Considering these data, AVP could play a central role in BP regulation by affecting water metabolism through both hyaluronidase activity and AQP2 channel expression.


Assuntos
Pressão Sanguínea , Hialuronoglucosaminidase , Hipertensão , Humanos , Masculino , Hialuronoglucosaminidase/urina , Hialuronoglucosaminidase/metabolismo , Hipertensão/metabolismo , Hipertensão/urina , Pessoa de Meia-Idade , Adulto , Aquaporina 2/urina , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Vasopressinas/metabolismo , Glicopeptídeos
11.
Eur J Endocrinol ; 191(1): S1-S13, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38996052

RESUMO

OBJECTIVE: Central diabetes insipidus or vasopressin deficiency (AVP-D) is the most frequent water balance disorder after transsphenoidal surgery (TSS) with variable prevalence amongst studies. We aimed to determine rates of newly developed transient or permanent AVP-D in patients with pituitary tumours treated with TSS. DESIGN AND METHODS: We performed systematic review of Medline, Embase, and Cochrane Library between January 1, 2000 and January 31, 2021 for studies reporting on outcomes for pituitary adenoma, craniopharyngioma, and Rathke's cleft cyst (RCC) after TSS and providing definition of post-operative AVP-D. We pooled the results as proportions with 95% confidence intervals (CIs) using Freeman-Tukey transformation random effects meta-analysis. RESULTS: From 11 694 studies, 51 were included. Rates of transient or permanent AVP-D were: 17% (95% CI, 13-21) and 3% (95% CI, 2-5) in total group, 16% (95% CI, 12-21) and 2% (95% CI, 2-3) in pituitary adenomas, 31% (95% CI, 24-39) and 30% (95% CI, 22-39) in craniopharyngiomas, and 35% (95% CI, 16-57) and 14% (95% CI, 6-23) in RCCs, respectively. Based on diagnostic criteria, rates of transient or permanent AVP-D were: For hypotonic polyuria, 14% (95% CI, 8-22) and 3% (95% CI, 1-4), for hypotonic polyuria and hypernatraemia, 21% (95% CI, 13-29) and 5% (95% CI, 2-11), and for desmopressin administration, 22% (95% CI, 15-29) and 9% (95% CI, 0-30), respectively. CONCLUSIONS: Following TSS, a small proportion of patients with pituitary adenoma have permanent AVP-D (2%), but prevalence reaches 30% in ones with craniopharyngioma and 14% in those with RCC. Diagnostic criteria for post-operative AVP-D remain variable affecting reported rates of this condition.


Assuntos
Diabetes Insípido Neurogênico , Neoplasias Hipofisárias , Complicações Pós-Operatórias , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/epidemiologia , Humanos , Diabetes Insípido Neurogênico/epidemiologia , Diabetes Insípido Neurogênico/etiologia , Diabetes Insípido Neurogênico/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Craniofaringioma/cirurgia , Vasopressinas/deficiência , Adenoma/cirurgia , Adenoma/epidemiologia , Procedimentos Neurocirúrgicos/efeitos adversos
12.
Sci Rep ; 14(1): 15738, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977766

RESUMO

The relationship between VISmax and mortality in patients undergoing major abdominal surgery remains unclear. This study aims to evaluate the association between VISmax and both short-term and long-term all-cause mortality in patients undergoing major abdominal surgery, VISmax was calculated (VISmax = dopamine dose [µg/kg/min] + dobutamine dose [µg/kg/min] + 100 × epinephrine dose [µg/kg/min] + 10 × milrinone dose [µg/kg/min] + 10,000 × vasopressin dose [units/kg/min] + 100 × norepinephrine dose [µg/kg/min]) using the maximum dosing rates of vasoactives and inotropics within the first 24 h postoperative ICU admission. The study included 512 patients first admitted to the intensive care unit (ICU) who were administered vasoactive drugs after major abdominal surgery. The data was extracted from the medical information mart in intensive care-IV database. VISmax was stratified into five categories: 0-5, > 5-15, > 15-30, > 30-45, and > 45. Compared to patients with the lowest VISmax (≤ 5), those with the high VISmax (> 45) had an increased risk of 30-day mortality (hazard ratio [HR] 3.73, 95% CI 1.16-12.02; P = 0.03) and 1-year mortality (HR 2.76, 95% CI 1.09-6.95; P = 0.03) in fully adjusted Cox models. The ROC analysis for VISmax predicting 30-day and 1-year mortality yielded AUC values of 0.69 (95% CI 0.64-0.75) and 0.67 (95% CI 0.62-0.72), respectively. In conclusion, elevated VISmax within the first postoperative 24 h after ICU admission was associated with increased risks of both short-term and long-term mortality in patients undergoing major abdominal surgery.


Assuntos
Abdome , Vasoconstritores , Humanos , Masculino , Feminino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Abdome/cirurgia , Vasoconstritores/administração & dosagem , Vasoconstritores/uso terapêutico , Unidades de Terapia Intensiva , Cardiotônicos/administração & dosagem , Norepinefrina , Epinefrina/administração & dosagem , Dobutamina/administração & dosagem , Dopamina , Vasopressinas , Milrinona/administração & dosagem
13.
Peptides ; 179: 171270, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969236

RESUMO

The neurohormones oxytocin (OT) and arginine vasopressin (AVP) are involved in social behaviors and psychiatric conditions. However, more research on nonhuman primates with complex social behaviors is needed. We studied two closely-related primate species with divergent social and mating systems; hamadryas baboons (Papio hamadryas, n=38 individuals) and anubis baboons (Papio anubis, n=46). We measured OT in cerebrospinal fluid (CSF, n=75), plasma (n=81) and urine (n=77), and AVP in CSF (n=45), and we collected over 250 hours of focal behavioral observations. Using Bayesian multivariate models, we found no clear species difference in hormone levels; the strongest support was for hamadryas having higher CSF OT levels than anubis (posterior probability [PP] for females = 0.75, males = 0.84). Looking at nine specific behaviors, OT was associated with affiliative behaviors (approach, proximity, grooming, PP ∼ 0.85 - 1.00), albeit inconsistently across sources of measurement (CSF, plasma, and urine, which were uncorrelated with each other). Most behaviors had low repeatability (R ∼ 0 - 0.2), i.e. they did not exhibit stable between-individual differences (or "personality"), and different behaviors did not neatly coalesce into higher-order factors (or "behavioral syndromes"), which cautions against the use of aggregate behavioral measures and highlights the need to establish stable behavioral profiles when testing associations with baseline hormone levels. In sum, we found some associations between peptides and social behavior, but also many null results, OT levels from different sources were uncorrelated, and our behavioral measures did not indicate clear individual differences in sociability.


Assuntos
Ocitocina , Papio hamadryas , Comportamento Social , Animais , Ocitocina/sangue , Ocitocina/líquido cefalorraquidiano , Ocitocina/urina , Masculino , Feminino , Papio anubis , Personalidade , Comportamento Animal/fisiologia , Arginina Vasopressina/sangue , Arginina Vasopressina/líquido cefalorraquidiano , Vasopressinas/sangue , Vasopressinas/líquido cefalorraquidiano , Teorema de Bayes
14.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000501

RESUMO

A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.


Assuntos
Doenças Cardiovasculares , Sistema Hipotálamo-Hipofisário , Doenças Metabólicas , Sistema Hipófise-Suprarrenal , Vasopressinas , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Vasopressinas/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Doenças Metabólicas/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo
15.
PLoS One ; 19(6): e0304227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870103

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is a common complication of septic shock and together these conditions carry a high mortality risk. In septic patients who develop severe AKI, renal cortical perfusion is deficient despite normal macrovascular organ blood flow. This intra-renal perfusion abnormality may be amenable to pharmacological manipulation, which may offer mechanistic insight into the pathophysiology of septic AKI. The aim of the current study is to investigate the effects of vasopressin and angiotensin II on renal microcirculatory perfusion in a cohort of patients with septic shock. METHODS AND ANALYSIS: In this single centre, mechanistically focussed, randomised controlled study, 45 patients with septic shock will be randomly allocated to either of the study vasopressors (vasopressin or angiotensin II) or standard therapy (norepinephrine). Infusions will be titrated to maintain a mean arterial pressure (MAP) target set by the attending clinician. Renal microcirculatory assessment will be performed for the cortex and medulla using contrast-enhanced ultrasound (CEUS) and urinary oxygen tension (pO2), respectively. Renal macrovascular flow will be assessed via renal artery ultrasound. Measurement of systemic macrovascular flow will be performed through transthoracic echocardiography (TTE) and microvascular flow via sublingual incident dark field (IDF) video microscopy. Measures will be taken at baseline, +1 and +24hrs following infusion of the study drug commencing. Blood and urine samples will also be collected at the measurement time points. Longitudinal data will be compared between groups and over time. DISCUSSION: Vasopressors are integral to the management of patients with septic shock. This study aims to further understanding of the relationship between this therapy, renal perfusion and the development of AKI. In addition, using CEUS and urinary pO2, we hope to build a more complete picture of renal perfusion in septic shock by interrogation of the constituent parts of the kidney. Results will be published in peer-reviewed journals and presented at academic meetings. TRIAL REGISTRATION: The REPERFUSE study was registered on Clinical Trials.gov (NCT06234592) on the 30th Jan 24.


Assuntos
Injúria Renal Aguda , Microcirculação , Choque Séptico , Vasoconstritores , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Angiotensina II/administração & dosagem , Rim/efeitos dos fármacos , Rim/fisiopatologia , Rim/irrigação sanguínea , Microcirculação/efeitos dos fármacos , Norepinefrina/administração & dosagem , Norepinefrina/uso terapêutico , Circulação Renal/efeitos dos fármacos , Choque Séptico/tratamento farmacológico , Choque Séptico/fisiopatologia , Vasoconstritores/uso terapêutico , Vasoconstritores/administração & dosagem , Vasopressinas/administração & dosagem , Vasopressinas/uso terapêutico
16.
Sci Adv ; 10(25): eadn8350, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905332

RESUMO

The suprachiasmatic nucleus (SCN) sets the phase of oscillation throughout the brain and body. Anatomical evidence reveals a portal system linking the SCN and the organum vasculosum of the lamina terminalis (OVLT), begging the question of the direction of blood flow and the nature of diffusible signals that flow in this specialized vasculature. Using a combination of anatomical and in vivo two-photon imaging approaches, we unequivocally show that blood flows unidirectionally from the SCN to the OVLT, that blood flow rate displays daily oscillations with a higher rate at night than in the day, and that circulating vasopressin can access portal vessels. These findings highlight a previously unknown central nervous system communication pathway, which, like that of the pituitary portal system, could allow neurosecretions to reach nearby target sites in OVLT, avoiding dilution in the systemic blood. In both of these brain portal pathways, the target sites relay signals broadly to both the brain and the rest of the body.


Assuntos
Núcleo Supraquiasmático , Núcleo Supraquiasmático/fisiologia , Animais , Camundongos , Hipotálamo/metabolismo , Hipotálamo/irrigação sanguínea , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Encéfalo/metabolismo , Sistema Porta , Masculino , Vasopressinas/metabolismo , Vasopressinas/sangue , Circulação Cerebrovascular/fisiologia , Ritmo Circadiano/fisiologia
17.
Front Endocrinol (Lausanne) ; 15: 1345527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863930

RESUMO

Background: Given its putative roles in mediating prosocial behavior, attachment bonds, and stress physiology, oxytocin modulation has been hypothesized to be a biological correlate of the salubrious effects of meditation practice. Here we investigated the effects of a month-long silent meditation retreat on changes in oxytocin, and the related hormone and vasopressin, in relation to psychosocial changes in attachment style, anxiety, personality measures, and feelings of social connectedness with fellow meditators. Methods: Plasma oxytocin and vasopressin and self-report questionnaires were measured in retreat participants (n = 28) at the beginning of, and 3 weeks into, a residential meditation retreat. Control participants (n = 34), who were similar in age, gender, and meditation experience, were also assessed across a 3-week interval. Linear mixed effects models were used to assess outcomes. Results: The retreat group showed a small but significant decrease in oxytocin compared to controls who showed no change. In the retreat group, higher openness to experience at Time 1 predicted greater reductions in oxytocin during the retreat, and lower oxytocin at Time 2 was related to stronger feelings of personal connection with fellow meditators. The changes in oxytocin were not related to attachment style or anxiety. Vasopressin decreased over time across both groups, suggesting no specific effect of retreat. Conclusion: These preliminary findings suggest that meditation training in the context of a silent residential retreat may reduce circulating levels of oxytocin. We interpret this finding from multiple theoretical perspectives, discussing key measurement limitations and proposing future study designs that may help to differentiate the effects of different meditation practices and contexts on oxytocin signaling.


Assuntos
Meditação , Ocitocina , Vasopressinas , Humanos , Ocitocina/sangue , Meditação/psicologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Vasopressinas/sangue , Ansiedade/sangue , Ansiedade/psicologia
18.
Proc Natl Acad Sci U S A ; 121(26): e2314795121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905241

RESUMO

Oxytocin plays a critical role in regulating social behaviors, yet our understanding of its function in both neurological health and disease remains incomplete. Real-time oxytocin imaging probes with spatiotemporal resolution relevant to its endogenous signaling are required to fully elucidate oxytocin's role in the brain. Herein, we describe a near-infrared oxytocin nanosensor (nIROXT), a synthetic probe capable of imaging oxytocin in the brain without interference from its structural analogue, vasopressin. nIROXT leverages the inherent tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNT) and the molecular recognition capacity of an oxytocin receptor peptide fragment to selectively and reversibly image oxytocin. We employ these nanosensors to monitor electrically stimulated oxytocin release in brain tissue, revealing oxytocin release sites with a median size of 3 µm in the paraventricular nucleus of C57BL/6 mice, which putatively represents the spatial diffusion of oxytocin from its point of release. These data demonstrate that covalent SWCNT constructs, such as nIROXT, are powerful optical tools that can be leveraged to measure neuropeptide release in brain tissue.


Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , Nanotubos de Carbono , Imagem Óptica , Ocitocina , Vasopressinas , Animais , Ocitocina/metabolismo , Camundongos , Imagem Óptica/métodos , Vasopressinas/metabolismo , Nanotubos de Carbono/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Masculino , Receptores de Ocitocina/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
19.
Curr Opin Nephrol Hypertens ; 33(5): 512-517, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934092

RESUMO

PURPOSE OF REVIEW: Highlight the mechanisms through which vasopressin and hypertonic stress regulate protein metabolism. RECENT FINDINGS: Mammals have an 'aestivation-like' response in which hypertonic stress increases muscle catabolism and urea productionVasopressin can directly regulate ureagenesis in the liver and the kidneyIn humans chronic hypertonic stress is associated with premature aging, diabetes, cardiovascular disease, and premature mortality. SUMMARY: There is an evolutionarily conserved 'aestivation-like' response in humans in which hypertonic stress results in activation of the vasopressin system, muscle catabolism, and ureagenesis in order to promote water conservation.


Assuntos
Vasopressinas , Humanos , Animais , Vasopressinas/metabolismo , Ureia/metabolismo , Rim/metabolismo , Proteínas/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA