Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.462
Filtrar
1.
Cells ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38607086

RESUMO

Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.


Assuntos
GTP Fosfo-Hidrolases , Mitocôndrias , Humanos , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Biológico , Microtúbulos/metabolismo
2.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566081

RESUMO

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Assuntos
Metformina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Astrócitos/metabolismo , Neurônios Dopaminérgicos , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
3.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588427

RESUMO

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Assuntos
Proteínas de Drosophila , Junção Neuromuscular , Animais , Humanos , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Drosophila/fisiologia , Neurônios/metabolismo , Autofagia/genética , Plasticidade Neuronal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , GTP Fosfo-Hidrolases/metabolismo
4.
BMC Med Genomics ; 17(1): 94, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641846

RESUMO

BACKGROUND: Copy number variations (CNVs) have emerged as significant contributors to the elusive genetic causality of inherited eye diseases. In this study, we describe a case with optic atrophy and a brain aneurysm, in which a de novo CNV 3q29 deletion was identified. CASE PRESENTATION: A 40-year-old female patient was referred to our department after undergoing aneurysm transcatheter arterial embolization for a brain aneurysm. She had no history of systemic diseases, except for unsatisfactory best-corrected visual acuity (BCVA) since elementary school. Electrophysiological tests confirmed the findings in retinal images, indicating optic nerve atrophy. Chromosomal microarray analysis revealed a de novo deletion spanning 960 kb on chromosome 3q29, encompassing OPA1 and six neighboring genes. Unlike previously reported deletions in this region associated with optic atrophy, neuropsychiatric disorders, and obesity, this patient displayed a unique combination of optic atrophy and a brain aneurysm. However, there is no causal relationship between the brain aneurysm and the CNV. CONCLUSION: In conclusion, the optic atrophy is conclusively attributed to the OPA1 deletion, and the aneurysm could be a coincidental association. The report emphasizes the likelihood of underestimating OPA1 deletions due to sequencing technology limitations. Recognizing these constraints, healthcare professionals must acknowledge these limitations and consistently search for OPA1 variants/deletions in Autosomal Dominant Optic Atrophy (ADOA) patients with negative sequencing results. This strategic approach ensures a more comprehensive exploration of copy-number variations, ultimately enhancing diagnostic precision in the field of genetic disorders.


Assuntos
Aneurisma Intracraniano , Atrofia Óptica , Feminino , Humanos , Adulto , Mutação , Variações do Número de Cópias de DNA , Aneurisma Intracraniano/genética , Atrofia Óptica/genética , Fenótipo , Cromossomos , Linhagem , GTP Fosfo-Hidrolases/genética
5.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581012

RESUMO

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Assuntos
Adenilil Ciclases , GTP Fosfo-Hidrolases , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Transporte , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
6.
Medicine (Baltimore) ; 103(14): e37693, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579072

RESUMO

The selection of appropriate treatment modalities based on the presence or absence of mutations in KRAS, NRAS, BRAF, and the microsatellite instability (MSI) status has become a crucial consensus in colorectal cancer (CRC) therapy. However, the distribution pattern of these genetic mutations and the prevalence of MSI status in Chinese stage I-III CRCs remain unclear. We retrospectively analyzed clinicopathological features, mutations in the KRAS, NRAS, and BRAF genes, as well as MSI status of 411 patients with stage I-III CRC who underwent surgery from June 2020 to December 2022 in the First Affiliated Hospital of Nanjing Medical University. The mutation rates of KRAS, NRAS, and BRAF were 48.9%, 2.2%, and 3.2%, respectively, and the microsatellite instability-high rate was 9.5%. KRAS mutation was independently associated with mucinous adenocarcinoma. Multivariate analysis suggested that tumor location and mucinous adenocarcinoma were independently associated with BRAF mutation. Only T stage was associated with NRAS mutations in the univariate analysis. Multivariate analysis revealed that factors such as larger tumor size, tumor location, younger age, and poor differentiation were independently associated with microsatellite instability-high status. The results illustrate the mutation frequencies of KRAS, NRAS, BRAF genes and MSI status in stage I-III CRC from the eastern region of China. These findings further validate the associations between these genes status and various clinicopathological characteristics.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Instabilidade de Microssatélites , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos Retrospectivos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
7.
PLoS Genet ; 20(3): e1011169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437244

RESUMO

The basement membrane (BM) is an essential structural element of tissues, and its diversification participates in organ morphogenesis. However, the traffic routes associated with BM formation and the mechanistic modulations explaining its diversification are still poorly understood. Drosophila melanogaster follicular epithelium relies on a BM composed of oriented BM fibrils and a more homogenous matrix. Here, we determined the specific molecular identity and cell exit sites of BM protein secretory routes. First, we found that Rab10 and Rab8 define two parallel routes for BM protein secretion. When both routes were abolished, BM production was fully blocked; however, genetic interactions revealed that these two routes competed. Rab10 promoted lateral and planar-polarized secretion, whereas Rab8 promoted basal secretion, leading to the formation of BM fibrils and homogenous BM, respectively. We also found that the dystrophin-associated protein complex (DAPC) and Rab10 were both present in a planar-polarized tubular compartment containing BM proteins. DAPC was essential for fibril formation and sufficient to reorient secretion towards the Rab10 route. Moreover, we identified a dual function for the exocyst complex in this context. First, the Exo70 subunit directly interacted with dystrophin to limit its planar polarization. Second, the exocyst complex was also required for the Rab8 route. Altogether, these results highlight important mechanistic aspects of BM protein secretion and illustrate how BM diversity can emerge from the spatial control of distinct traffic routes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Membrana Basal/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Distrofina , Citoplasma/metabolismo , Epitélio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
8.
Anticancer Drugs ; 35(5): 462-465, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451831

RESUMO

Target therapy for metastatic colorectal cancer needs the determination of KRAS, NRAS, and BRAF mutation status to identify patients resistant to anti-EGFR treatment. RAS genes (KRAS/NRAS) are mutated in 40-60% of metastatic colorectal cancer and BRAF in 5-10%. The presence of a double mutation in RAS and BRAF is rare. Therefore, RAS and BRAF mutations were considered exclusive. Herein, we describe a novel concomitant NRAS/BRAF mutation identified in a series of 865 colorectal cancer patients.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , GTP Fosfo-Hidrolases/genética , Mutação , Proteínas de Membrana/genética
9.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512975

RESUMO

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Assuntos
Capsídeo , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Capsídeo/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Antivirais/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo
10.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534309

RESUMO

We aimed to review the molecular characteristics of metastatic melanoma and the role of surgery in metastasectomy for metastatic melanoma. We performed a systematic literature search on PubMed to identify relevant studies focusing on several mutations, including NRAS, BRAF, NF1, MITF, PTEN, TP53, CDKN2A, TERT, TMB, EGFR, and c-KIT. This was performed in the context of metastatic melanoma and the role of metastasectomy in the metastatic melanoma population. A comprehensive review of these molecular characteristics is presented with a focus on their prognosis and role in surgical metastasectomy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , GTP Fosfo-Hidrolases/genética , Melanoma/patologia , Melanoma/cirurgia , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia
11.
Nat Commun ; 15(1): 2488, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509071

RESUMO

Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by dynamin-like GTPase atlastin (ATL). This fundamental process relies on GTP-dependent domain rearrangements in the N-terminal region of ATL (ATLcyto), including the GTPase domain and three-helix bundle (3HB). However, its conformational dynamics during the GTPase cycle remain elusive. Here, we combine single-molecule FRET imaging and molecular dynamics simulations to address this conundrum. Different from the prevailing model, ATLcyto can form a loose crossover dimer upon GTP binding, which is tightened by GTP hydrolysis for membrane fusion. Furthermore, the α-helical motif between the 3HB and transmembrane domain, which is embedded in the surface of the lipid bilayer and self-associates in the crossover dimer, is required for ATL function. To recycle the proteins, Pi release, which disassembles the dimer, activates frequent relative movements between the GTPase domain and 3HB, and subsequent GDP dissociation alters the conformational preference of the ATLcyto monomer for entering the next reaction cycle. Finally, we found that two disease-causing mutations affect human ATL1 activity by destabilizing GTP binding-induced loose crossover dimer formation and the membrane-embedded helix, respectively. These results provide insights into ATL-mediated homotypic membrane fusion and the pathological mechanisms of related disease.


Assuntos
Proteínas de Drosophila , Humanos , Proteínas de Drosophila/metabolismo , Fusão de Membrana/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Hidrólise , Guanosina Trifosfato/metabolismo
12.
Neurobiol Dis ; 193: 106467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452947

RESUMO

Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Fenótipo , Proteínas Mitocondriais/metabolismo , Mutação
13.
Zhonghua Yan Ke Za Zhi ; 60(3): 226-233, 2024 Mar 11.
Artigo em Chinês | MEDLINE | ID: mdl-38462370

RESUMO

Autosomal dominant optic atrophy (ADOA) primarily affects retinal ganglion cells and their axons, resulting in varying degrees of central vision loss from childhood. Due to the rarity of ADOA in clinical practice, Chinese ophthalmologists currently lack sufficient understanding of the disease and experience non-standardized diagnostic procedures and high clinical and genetic misdiagnosis rates. To address these issues, the Ophthalmology Group of China Alliance for Rare Diseases/Beijing Society of Rare Disease Clinical Care and Accessibility and the Neuro-ophthalmology Group of Ophthalmology Branch of Chinese Medical Association have established an expert panel to form consensus opinions based on extensive discussions. This consensus would enhance the knowledge and diagnostic capabilities of Chinese clinicians regarding ADOA and promote awareness of related treatment principles and genetic counseling.


Assuntos
Atrofia Óptica Autossômica Dominante , Humanos , Criança , Atrofia Óptica Autossômica Dominante/genética , Consenso , GTP Fosfo-Hidrolases/genética , Células Ganglionares da Retina , Povo Asiático
14.
Eur J Cancer ; 202: 114008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479118

RESUMO

BACKGROUND: NRAS-mutant melanoma is an aggressive subtype with poor prognosis; however, there is no approved targeted therapy to date worldwide. METHODS: We conducted a multicenter, single-arm, phase II, pivotal registrational study that evaluated the efficacy and safety of the MEK inhibitor tunlametinib in patients with unresectable, stage III/IV, NRAS-mutant melanoma (NCT05217303). The primary endpoint was objective response rate (ORR) assessed by independent radiological review committee (IRRC) per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. The secondary endpoints included progression-free survival (PFS), disease control rate (DCR), duration of response(DOR), overall survival (OS) and safety. FINDINGS: Between November 2, 2020 and February 11, 2022, a total of 100 patients were enrolled. All (n = 100) patients received at least one dose of tunlametinib (safety analysis set [SAS]) and 95 had central laboratory-confirmed NRAS mutations (full analysis set [FAS]). In the FAS, NRAS mutations were observed at Q61 (78.9%), G12 (15.8%) and G13 (5.3%). The IRRC-assessed ORR was 35.8%, with a median DOR of 6.1 months. The median PFS was 4.2 months, DCR was 72.6% and median OS was 13.7 months. Subgroup analysis showed that in patients who had previously received immunotherapy, the ORR was 40.6%. No treatment-related deaths occurred. INTERPRETATION: Tunlametinib showed promising antitumor activity with a manageable safety profile in patients with advanced NRAS-mutant melanoma, including those who had prior exposure to immunotherapy. The findings warrant further validation in a randomized clinical trial.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Intervalo Livre de Progressão , Imunoterapia , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
15.
Int J Biol Macromol ; 264(Pt 1): 130504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442830

RESUMO

Long non-coding RNA FENDRR possesses both anti-fibrotic and anti-cancer properties, but its significance in the development of premalignant oral submucous fibrosis (OSF) remains unclear. Here, we showed that FENDRR was downregulated in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs), and overexpression of FENDRR mitigated various myofibroblasts hallmarks, and vice versa. In the course of investigating the mechanism underlying the implication of FENDRR in myofibroblast transdifferentiation, we found that FENDRR can directly bind to miR-214 and exhibit its suppressive effect on myofibroblast activation via titrating miR-214. Moreover, we showed that mitofusin 2 (MFN2), a protein that is crucial to the fusion of mitochondria, was a direct target of miR-214. Our data suggested that FENDRR was positively correlated with MFN2 and MFN2 was required for the inhibitory property of FENDRR pertaining to myofibroblast phenotypes. Additionally, our results showed that the FENDRR/miR-214 axis participated in the arecoline-induced reactive oxygen species (ROS) accumulation and myofibroblast transdifferentiation. Building on these results, we concluded that the aberrant downregulation of FENDRR in OSF may be associated with chronic exposure to arecoline, leading to upregulation of ROS and myofibroblast activation via the miR-214-mediated suppression of MFN2.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Miofibroblastos/metabolismo , Arecolina/efeitos adversos , Arecolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Fibroblastos , MicroRNAs/genética , MicroRNAs/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
16.
Toxicon ; 240: 107636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316294

RESUMO

Ample evidence indicates that bufalin (BFN), a cardiotonic steroid in Bufo toad toxin, possesses a potent anticancer activity mainly by stimulating apoptosis in cancer cells. Human red blood cells (RBCs) undergo eryptosis which contributes to a plethora of pathological conditions. No reports, however, have examined the potential toxicity of BFN to RBCs. This study aims to characterize the biochemical mechanisms governing the influence of BFN on the physiology and lifespan of RBCs. Isolated RBCs from healthy volunteers were exposed to anticancer concentrations of commercially available BFN from the skin of Bufo gargarizans (10-200 µM) for 24 h at 37 °C. Photometric assays were used to estimate hemolysis and hemolytic markers, and flow cytometry was used to detect eryptotic markers. Phosphatidylserine externalization was captured by fluorescein isothiocyante-labeled annexin V, cellular dimensions by light scatter patterns, and intracellular Ca2+ and reactive oxygen species (ROS) by fluorogenic dyes Fluo4/AM and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. BFN caused Ca2+-independent hemolysis and release of LDH, AST, CK, and K+, and increased annexin V-bound cells, cytosolic Ca2+, cell shrinkage, and ROS levels. BFN also disrupted Na+ and Mg2+ trafficking, and was sensitive to PEG 8000, sucrose, SB203580, and NSC 23766. In whole blood, BFN depleted hemoglobin stores, increased fragmented RBCs, and was selectively toxic to reticulocytes, lymphocytes, and platelets. In conclusion, BFN elicits premature RBC death, subject to regulation by p38 MAPK and Rac1 GTPase, and is detrimental to other peripheral blood cells. Altogether, these novel findings prompt cautious consideration of the toxin in anticancer therapy.


Assuntos
Bufanolídeos , GTP Fosfo-Hidrolases , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Espécies Reativas de Oxigênio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hemólise , Anexina A5/metabolismo , Longevidade , Eritrócitos , Cálcio/metabolismo , Fosfatidilserinas/metabolismo , Estresse Oxidativo
17.
J Phys Chem B ; 128(7): 1573-1585, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350435

RESUMO

The Rho GTPase binding domain of Plexin-B1 (RBD) prevails in solution as dimer. Under appropriate circumstances, it binds the small GTPase Rac1 to yield the complex RBD-Rac1. Here, we study RBD dimerization and complex formation from a symmetry-based perspective using data derived from 1 µs long MD simulations. The quantities investigated are the local potentials, u(MD), prevailing at the N-H sites of the protein. These potentials are statistical in character providing an empirical description of the local structure. To establish more methodical description, a method for approximating them by explicit functions, u(simulated), was developed in the preceding article in this journal issue. These functions are combinations of analytical Wigner functions, DL,K, belonging to the D2h point group. The D2h subgroups Ag and B2u are found to dominate u(simulated); the B1u subgroup contributes in some cases. The Ag (B2u) functions have axial or rhombic symmetry. For the first time, local potentials in proteins can be quantitatively characterized in terms of their strength (rhombicity) evaluated by axial Ag (rhombic Ag and B2u) contributions. Until now, the chain-segment [ß3-L3-ß4] and to some extent the α2-helix have been associated with GTPase binding. Here, we find that this process causes an increase (decrease) in the potential strength of ß3 and ß4 (the preceding L2 loop and the remote chain-segment [(α2-helix)-(α2/ß5-turn)-(ß5-strand)]), suggesting effects of counterbalancing and allostery. There is evidence for the L2 loop being associated with RBD-GTPase binding. Until now only the L4 loop has been associated with RBD dimerization. The latter process is found to cause an increase (decrease) in the potential strength and rhombicity of the L4 loop (the adjacent chain-segment [(α2-helix)-(α2/ß5-turn)-(ß5-strand)]), suggesting counterbalancing activity. On average, the RBD dimer features stronger local potentials than RBD-Rac1. The novel information inherent in these findings is mesoscopic in character. Prospects of interest include exploring relation to atomistic force-field parameters.


Assuntos
Simulação de Dinâmica Molecular , Receptores de Superfície Celular , Receptores de Superfície Celular/química , Ligação Proteica , Dimerização , GTP Fosfo-Hidrolases/metabolismo , Sítios de Ligação
18.
Cancer Biol Ther ; 25(1): 2306674, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372700

RESUMO

DIRAS family GTPase 1 (DIRAS1) has been reported as a potential tumor suppressor in other human cancer. However, its expression pattern and role in cervical cancer remain unknown. Knockdown of DIRAS1 significantly promoted the proliferation, growth, migration, and invasion of C33A and SiHa cells cultured in vitro. Overexpression of DIRAS1 significantly inhibited the viability and motility of C33A and SiHa cells. Compared with normal cervical tissues, DIRAS1 mRNA levels were significantly lower in cervical cancer tissues. DIRAS1 protein expression was also significantly reduced in cervical cancer tissues compared with para-cancerous tissues. In addition, DIRAS1 expression level in tumor tissues was significantly negatively correlated with the pathological grades of cervical cancer patients. DNA methylation inhibitor (5-Azacytidine) and histone deacetylation inhibitor (SAHA) resulted in a significant increase in DIRAS1 mRNA levels in C33A and SiHa cells, but did not affect DIRAS1 protein levels. FTO inhibitor (FB23-2) significantly down-regulated intracellular DIRAS1 mRNA levels, but significantly up-regulated DIRAS1 protein levels. Moreover, the down-regulation of METTL3 and METTL14 expression significantly inhibited DIRAS1 protein expression, whereas the down-regulation of FTO and ALKBH5 expression significantly increased DIRAS1 protein expression. In conclusion, DIRAS1 exerts a significant anti-oncogenic function and its expression is significantly downregulated in cervical cancer cells. The m6A modification may be a key mechanism to regulate DIRAS1 mRNA stability and protein translation efficiency in cervical cancer.


Assuntos
Adenina/análogos & derivados , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Azacitidina/farmacologia , RNA Mensageiro/genética , Metiltransferases , GTP Fosfo-Hidrolases , Proteínas Supressoras de Tumor , Dioxigenase FTO Dependente de alfa-Cetoglutarato
19.
Adv Sci (Weinh) ; 11(14): e2307749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311582

RESUMO

The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for ß-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSC70 , Gotículas Lipídicas , Metabolismo dos Lipídeos , Miócitos Cardíacos , Humanos , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Coração , Miócitos Cardíacos/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(10): e2318615121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416685

RESUMO

The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.


Assuntos
GTP Fosfo-Hidrolases , Complexo de Golgi , Complexo de Golgi/metabolismo , Fatores de Ribosilação do ADP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...