Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(3): 116, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538289

RESUMO

BACKGROUND: The Mammalian Target of Rapamycin (mTOR) signaling pathway regulates protein phosphorylation and exerts control over major cellular processes. mTOR is activated by the small G-protein Ras Homolog Enriched in Brain (Rheb), which is encoded by the Rheb1 and Rheb-like-1 (RhebL1) genes. There is currently a paucity of information on the role of RhebL1, and specifically its involvement in viral infection. In the present study we investigated the role of RhebL1 during human influenza A/NWS/33 (NWS/33) (H1N1) virus infection of rhesus monkey-kidney (LLC-MK2) cells and human type II alveolar epithelial (A549) cells. METHODS: To assess the efficiency of NWS/33 virus replication, the expression of viral nucleoprotein was examined by indirect immunofluorescence (IIF) and the viral yield by fifty percent tissue culture infectious dose assay. An RNA-mediated RNA interference approach was used to investigate the role of RhebL1 during NWS/33 infection. RhebL1 expression was evaluated by IIF, Western blotting, and enzyme-linked immunosorbent assays. A two-tailed Student's t-test was applied to evaluate differences between groups. RESULTS: RhebL1 was differentially expressed in the cell models used in this study. Silencing of the RhebL1 gene led to increased NWS/33 virus infection in A549 cells, but not in LLC-MK2 cells. Moreover, the expression of hyperphosphorylated cytokeratin 8, a marker of NWS/33 virus infection efficiency, increased in A549 cells depleted of RhebL1 but remained almost unchanged in LLC-MK2 cells. CONCLUSIONS: These are the first results showing involvement of the endogenous RhebL1 protein during viral infection. Our data suggests that RhebL1 exerts a host cell-dependent modulatory role during influenza virus infection. RhebL1 appears to be a restrictive factor against NWS/33 virus replication in A549 cells, but not in LLC-MK2.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Encéfalo/metabolismo , Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Macaca mulatta , Animais
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338768

RESUMO

Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Encéfalo/metabolismo , Neoplasias/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Sirolimo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
3.
Curr Med Sci ; 43(6): 1195-1200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153629

RESUMO

OBJECTIVE: This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3 (LOXL3) affects the autophagy in chondrocytes in osteoarthritis (OA), specifically through the activation of mammalian target of rapamycin complex 1 (mTORC1). METHODS: To establish an OA model, rats underwent anterior cruciate ligament transection (ACLT). Chondrocytes were isolated from cartilage tissues and cultured. Western blotting was performed to assess the expression of LOXL3, Rheb, phosphorylation of p70S6K (p-p70S6K, a downstream marker of mTORC1), and autophagy markers. The autophagy of chondrocytes was observed using an immunofluorescence assay. RESULTS: The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage, in comparison to those from the normal cartilage. The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K, as well as an increase in the expression of autophagy-related proteins. Additionally, the effect of LOXL3 could be reversed through the silencing of Rheb. The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy. CONCLUSION: LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.


Assuntos
Aminoácido Oxirredutases , Condrócitos , Osteoartrite , Animais , Ratos , Autofagia/genética , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Osteoartrite/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Aminoácido Oxirredutases/genética
4.
J Biol Chem ; 299(12): 105455, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949232

RESUMO

The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-akt , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Humanos , Proliferação de Células , Guanosina Trifosfato/metabolismo , Imunoprecipitação , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
5.
Protein Sci ; 32(8): e4731, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462942

RESUMO

The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Neuropeptídeos , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Humanos , Guanosina Trifosfato , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor
6.
Cell Rep ; 42(7): 112801, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463107

RESUMO

How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.


Assuntos
Bainha de Mielina , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Animais , Camundongos , Diferenciação Celular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo
7.
Neurology ; 101(2): 78-82, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37015817

RESUMO

OBJECTIVE: To describe a child meeting diagnostic criteria for tuberous sclerosis complex (TSC) carrying a pathogenic somatic variant in RHEB, but no pathogenic variants in the 2 known TSC genes, TSC1 or TSC2. METHODS: We present the clinical and imaging findings in a child presenting with drug-resistant focal seizures and multiple cortical tubers, a subependymal giant cell astrocytoma and multiple subependymal nodules in 1 cerebral hemisphere. Targeted panel sequencing and exome sequencing were performed on genomic DNA derived from blood and resected tuber tissue. RESULTS: The child satisfied clinical diagnostic criteria for TSC, having 3 major features, only 2 of which are required for diagnosis. Genetic testing did not identify pathogenic variants or copy number variations in TSC1 or TSC2 but identified a pathogenic somatic RHEB variant (NM_005614.4:c.104_105delACinsTA [p.Tyr35Leu]) in the cortical tuber. DISCUSSION: RHEB is a partner of the TSC1/2 complex in the mechanistic target of rapamycin pathway. Somatic variants in RHEB are associated with focal cortical dysplasia and hemimegalencephaly. We propose that variants in RHEB may explain some of the genetically undiagnosed TSC cases and may be the third gene for TSC, or TSC3.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Criança , Proteínas Supressoras de Tumor/genética , Mutação/genética , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Variações do Número de Cópias de DNA , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética
8.
Mol Biol Cell ; 34(4): ar23, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735494

RESUMO

The mechanistic target of rapamycin (mTOR) kinase regulates a major signaling pathway in eukaryotic cells. In addition to regulation of mTORC1 at lysosomes, mTORC1 is also localized at other locations. However, little is known about the recruitment and activation of mTORC1 at nonlysosomal sites. To identify regulators of mTORC1 recruitment to nonlysosomal compartments, novel interacting partners with the mTORC1 subunit, Raptor, were identified using immunoprecipitation and mass spectrometry. We show that one of the interacting partners, Arf5, is a novel regulator of mTORC1 signaling at plasma membrane ruffles. Arf5-GFP localizes with endogenous mTOR at PI3,4P2-enriched membrane ruffles together with the GTPase required for mTORC1 activation, Rheb. Knockdown of Arf5 reduced the recruitment of mTOR to membrane ruffles. The activation of mTORC1 at membrane ruffles was directly demonstrated using a plasma membrane-targeted mTORC1 biosensor, and Arf5 was shown to enhance the phosphorylation of the mTORC1 biosensor substrate. In addition, endogenous Arf5 was shown to be required for rapid activation of mTORC1-mediated S6 phosphorylation following nutrient starvation and refeeding. Our findings reveal a novel Arf5-dependent pathway for recruitment and activation of mTORC1 at plasma membrane ruffles, a process relevant for spatial and temporal regulation of mTORC1 by receptor and nutrient stimuli.


Assuntos
Complexos Multiproteicos , Neuropeptídeos , Membrana Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Ribosilação do ADP/metabolismo
9.
PLoS Genet ; 18(11): e1010483, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374919

RESUMO

The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.


Assuntos
Ustilago , Ustilago/genética , Feromônios/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Zea mays/metabolismo , Fungos/metabolismo , Cegueira , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Cell Death Dis ; 13(11): 1003, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36435842

RESUMO

The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.


Assuntos
Drosophila , Neuropeptídeos , Animais , Humanos , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteínas 14-3-3/metabolismo , Neuropeptídeos/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
11.
Methods Enzymol ; 675: 131-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220268

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient levels in the cell and based on the availability, regulates cellular growth and proliferation. Its activity is tightly modulated by two GTPase units, the Rag GTPases and the Rheb GTPase. The Rag GTPases are the central hub of amino acid sensing as they summarize the amino acid signals from upstream regulators and control the subcellular localization of mTORC1. Unique from canonical signaling GTPases, the Rag GTPases are obligatory heterodimers, and the two subunits coordinate their nucleotide loading states to regulate their functional states. Robust biochemical analysis is indispensable to understanding the molecular mechanism governing the GTPase cycle. This chapter discusses protocols for purifying and biochemically characterizing the Rag GTPase heterodimer. We described two purification protocols to recombinantly produce the Rag GTPase heterodimer in large quantities. We then described assays to quantitatively measure the nucleotide binding and hydrolysis by the Rag GTPases. These assays allow for a thorough investigation of this unique heterodimeric GTPase, and they could be applicable to investigations of other noncanonical GTPases.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Aminoácidos/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo
12.
Int J Biol Sci ; 18(10): 4187-4202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844793

RESUMO

Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Encéfalo/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Biochem Biophys Res Commun ; 621: 74-79, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35810594

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes. Although various therapeutic approaches have been developed, refractoriness of chemotherapy and relapse cause a poor prognosis of the disease and further therapeutic strategies are required. Here, we report that Ras homolog enriched in brain (RHEB), a critical regulator of mTOR complex 1 activity, is a potential target for T-ALL therapy. In this study, we established an sgRNA library that comprehensively targeted mTOR upstream and downstream pathways, including autophagy. CRISPR/Cas9 dropout screening revealed critical roles of mTOR-related molecules in T-ALL cell survival. Among the regulators, we focused on RHEB because we previously found that it is dispensable for normal hematopoiesis in mice. Transcriptome and metabolic analyses revealed that RHEB deficiency suppressed de novo nucleotide biosynthesis, leading to human T-ALL cell death. Importantly, RHEB deficiency suppressed tumor growth in both mouse and xenograft models. Our data provide a potential strategy for efficient therapy of T-ALL by RHEB-specific inhibition.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
DNA Cell Biol ; 41(7): 683-690, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35687365

RESUMO

Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteócitos , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Deleção de Genes , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteogênese/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Microtomografia por Raio-X
15.
J Biol Chem ; 298(7): 102044, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595099

RESUMO

Eukaryotic translation initiation factor 3 subunit A (eIF3a), the largest subunit of the eIF3 complex, has been shown to be overexpressed in malignant cancer cells, potentially making it a proto-oncogene. eIF3a overexpression can drive cancer cell proliferation but contributes to better prognosis. While its contribution to prognosis was previously shown to be due to its function in suppressing synthesis of DNA damage repair proteins, it remains unclear how eIF3a regulates cancer cell proliferation. In this study, we show using genetic approaches that eIF3a controls cell proliferation by regulating glucose metabolism via the phosphorylation and activation of AMP-activated protein kinase alpha (AMPKα) at Thr172 in its kinase activation loop. We demonstrate that eIF3a regulates AMPK activation mainly by controlling synthesis of the small GTPase Rheb, largely independent of the well-known AMPK upstream liver kinase B1 and Ca2+/calmodulin-dependent protein kinase kinase 2, and also independent of mammalian target of rapamycin signaling and glucose levels. Our findings suggest that glucose metabolism in and proliferation of cancer cells may be translationally regulated via a novel eIF3a-Rheb-AMPK signaling axis.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator de Iniciação 3 em Eucariotos , Glucose , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Glucose/metabolismo , Humanos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo
16.
Cell Chem Biol ; 29(6): 1037-1045.e4, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294906

RESUMO

The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.


Assuntos
Neuropeptídeos , Serina-Treonina Quinases TOR , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Prenilação , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Oxid Med Cell Longev ; 2022: 8603427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222806

RESUMO

Ischemic stroke is a common disease of the central nervous system, and ischemic brain injury (IBI) is its main manifestation. Recently, extracellular vesicles (EVs) have been strongly related to the diagnosis and treatment of IBI. However, the underlying mechanism of their effects remains enigmatic. In the present study, we aimed to study how miR-155-5p plays a role in choroid plexus epithelial (CPE) cell-derived EVs in IBI pathology. We found that miR-155-5p expression was enriched in CPE cell-derived EVs, which were subsequently internalized by neurons, enabling the delivery of miR-155-5p into neurons. An inducible oxygen and glucose deprivation and reoxygenation (OGD/R) cell model was developed to mimic ischemic neuronal injury in vitro. miR-155-5p overexpression led to reduced neuron viability, promoted apoptosis, elevated autophagic proteins' expression, and activated NLR family pyrin domain-containing 3- (NLRP3-) related inflammasomes, thereby aggravating OGD-induced neuronal injury. A dual-luciferase reporter assay exhibited that miR-155-5p could inhibit the Ras homolog enriched in brain (Rheb) expression, a mechanism critical for miR-155-5p-mediated neuronal injury. Furthermore, a mouse IBI model was developed using the transient middle cerebral artery occlusion (tMCAO) method. Animal experiments verified that miR-155p delivery via CPE cell-derived EVs aggravated IBI by suppressing Rheb expression. In conclusion, miR-155-5p in CPE-derived EVs can aggravate IBI pathology by suppressing Rheb expression and promoting NLRP3-mediated inflammasomes, suggesting its role as a potential therapeutic target in IBI.


Assuntos
Autofagia , Isquemia Encefálica/patologia , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Vesículas Extracelulares/genética , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Inflamassomos/metabolismo , Inflamação , Camundongos , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais
18.
Gene ; 820: 146209, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35093450

RESUMO

OBJECTIVE: This study aimed to explore the specific molecular mechanism of the therapeutic effect of quercetin in knee osteoarthritis (KOA). METHODS: The KOA rat model was constructed by excising the medial meniscus and transecting the anterior meniscus. Joint injuries in rats were determined by Hematoxylin-Eosin (H&E) and Safranin O staining. The severity of KOA was then assessed according to the Osteoarthritis Research Society International (OARSI). The expressions of TSC2 and LC2B in joint tissue were measured by immunohistochemistry. Besides, chondrocytes treated with 10 ng/ml IL-1ß were used to construct a chondrocyte arthritis model, while those treated with 4 or 8 µM quercetin were served as treatment groups. MTT, flow cytometry and toluidine blue staining were used to detect cell viability, apoptosis and mucopolysaccharide synthesis, respectively. qRT-PCR or Western blot was performed to determine the expressions of MMP-13, collagen II, Aggrecan, TSC2, RHEB, mTOR, p-mTOR, ULK1, p-ULK1, LC3B-I, LC3B-II and P62 in chondrocytes. RESULTS: Quercetin alleviated the joint injury and suppressed the increase in MMP-13 expression and the decreases in collagen II and Aggrecan expressions in KOA rats. In addition, quercetin suppressed RHEB, p-mTOR, p-ULK1 and P62 expressions but promoted TSC2 and LC3BII expressions in KOA rats. Furthermore, quercetin could relieve the decrease of cell viability and the increase of apoptosis that induced by IL-1ß, and promote the synthesis of IL-1ß-inhibited mucopolysaccharide in chondrocytes. Nevertheless, siTSC2 partially offset the therapeutic effects of quercetin in chondrocytes. CONCLUSION: Quercetin alleviated KOA by mediating the TSC2-RHBE-mTOR signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite do Joelho/metabolismo , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Osteoartrite do Joelho/tratamento farmacológico , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
19.
J Biol Chem ; 297(6): 101428, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801548

RESUMO

Small GTPases cycle between an inactive GDP-bound and an active GTP-bound state to control various cellular events, such as cell proliferation, cytoskeleton organization, and membrane trafficking. Clarifying the guanine nucleotide-bound states of small GTPases is vital for understanding the regulation of small GTPase functions and the subsequent cellular responses. Although several methods have been developed to analyze small GTPase activities, our knowledge of the activities for many small GTPases is limited, partly because of the lack of versatile methods to estimate small GTPase activity without unique probes and specialized equipment. In the present study, we developed a versatile and straightforward HPLC-based assay to analyze the activation status of small GTPases by directly quantifying the amounts of guanine nucleotides bound to them. This assay was validated by analyzing the RAS-subfamily GTPases, including HRAS, which showed that the ratios of GTP-bound forms were comparable with those obtained in previous studies. Furthermore, we applied this assay to the investigation of psychiatric disorder-associated mutations of RHEB (RHEB/P37L and RHEB/S68P), revealing that both mutations cause an increase in the ratio of the GTP-bound form in cells. Mechanistically, loss of sensitivity to TSC2 (a GTPase-activating protein for RHEB) for RHEB/P37L, as well as both decreased sensitivity to TSC2 and accelerated guanine-nucleotide exchange for RHEB/S68P, is involved in the increase of their GTP-bound forms, respectively. In summary, the HPLC-based assay developed in this study provides a valuable tool for analyzing small GTPases for which the activities and regulatory mechanisms are less well understood.


Assuntos
Transtornos Mentais , Mutação de Sentido Incorreto , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Substituição de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/genética , Células HEK293 , Células HeLa , Humanos , Transtornos Mentais/enzimologia , Transtornos Mentais/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo
20.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638868

RESUMO

Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain microvascular endothelial cell proliferation and downregulated histone deacetylase 6 (HDAC6) expression. Furthermore, HDAC6 promoted microvascular endothelial cell proliferation and attenuated the inhibition of proliferation caused by clinorotation unloading. To comprehensively identify microRNAs (miRNAs) that are regulated by HDAC6, we analyzed differential miRNA expression in microvascular endothelial cells after transfection with HDAC6 siRNA and selected miR-155-5p, which was the miRNA with the most significantly increased expression. The ectopic expression of miR-155-5p inhibited microvascular endothelial cell proliferation and directly downregulated Ras homolog enriched in brain (RHEB) expression. Moreover, RHEB expression was downregulated under mechanical unloading and was essential for the miR-155-5p-mediated promotion of microvascular endothelial cell proliferation. Taken together, these results are the first to elucidate the role of HDAC6 in unloading-induced cell growth inhibition through the miR-155-5p/RHEB axis, suggesting that the HDAC6/miR-155-5p/RHEB pathway is a specific target for the preventative treatment of cardiovascular deconditioning.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Desacetilase 6 de Histona/metabolismo , MicroRNAs/biossíntese , Microvasos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Animais , Linhagem Celular , Células Endoteliais/citologia , Camundongos , Microvasos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...