Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Cancer Med ; 13(4): e7082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457248

RESUMO

BACKGROUND: Tumor metastasis and recurrence are major causes of mortality in patients with hepatocellular carcinoma (HCC) that is still lack of effective therapeutic targets and drugs. Previous reports implied that ras homolog family member C (RhoC) plays a toxic role on metastasis and proliferation of cancer. METHODS: In this research, the correlation between RhoC and metastasis ability was confirmed by in vitro experiments and TCGA database. We explored whether quercetin could inhibit cell migration or invasion by transwell assay. Real-time PCR, overexpression and ubiquitination assay, etc. were applied in mechanism study. Primary HCC cells and animal models including patient-derived xenografts (PDXs) were employed to evaluate the anti-metastasis effects of quercetin. RESULTS: Clinical relevance and in vitro experiments further confirmed the level of RhoC was positively correlated with invasion and metastasis ability of HCC. Then we uncovered that quercetin could attenuate invasion and metastasis of HCC by downregulating RhoC's level in vitro, in vivo and PDXs. Furthermore, mechanistic investigations displayed quercetin hindered the E3 ligase expression of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) leading to enhancement of RhoC's ubiquitination and proteasomal degradation. CONCLUSIONS: Our research has revealed the novel mechanisms quercetin regulates degradation of RhoC level by targeting SMURF2 and identified quercetin may be a potential compound for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Quercetina/farmacologia , Invasividade Neoplásica/genética , Proteína de Ligação a GTP rhoC/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Ubiquitina-Proteína Ligases/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403351

RESUMO

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Proteína de Ligação a GTP rhoC/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Sorafenibe , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Movimento Celular , Proliferação de Células
3.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 40-44, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715435

RESUMO

The current study was carried out to analyze the characteristics of colon polyps canceration observed by colonoscopy combined with ME-NBI (Magnifying Endoscopy combined with Narrow-Band Imaging) and its correlation with RhoC (Ras homolog gene family, member C) protein expression. For this purpose, A total of 300 patients with colorectal polyps and cancerous lesions (192 colorectal polyps and 200 cancerous lesions) who were treated in the digestive endoscopy room of the hospital and underwent colonoscopy were selected, and they were divided into polyp group and malignant lesion according to the diagnosis results. groups, 150 cases in each group. There were 75 patients with non-adenomatous polyps and 75 patients with adenomatous polyps in the polyp group; 75 patients with high-grade neoplasia and cancerous changes in the malignant group. The microvascular structure and surface structure of the lesions were observed by colonoscopy, and the correlation between microvascular morphological characteristics and RhoC protein expression was analyzed. Results showed that the probability of positive RhoC protein expression in the polyp group was significantly lower than that in the malignant transformation group, and the difference was statistically significant (P<0.05). In the malignant transformation group, the positive rate of RhoC expression in mucosal and submucosal superficial infiltration of 150 patients with colon polyp carcinoma was lower than that in submucosal deep infiltration, and the difference was statistically significant (P<0.05). NICE (National Institute for Clinical Excellence) type 2 was diagnosed as colorectal superficial submucosal The sensitivity, specificity, and accuracy of colorectal submucosal invasion were 73.1%, 84.6%, and 83.2%, respectively; the sensitivity, specificity, and accuracy of NICE type 3 in diagnosing colorectal submucosal invasion were 74.6%, 96.8%, and 92.7%, respectively. . Type 2 and type 3 lesions with cancerous features in NICE classification were correlated with the expression of RhoC protein (P<0.05). In conclusion, NICE classification under colonoscopy combined with magnifying colonoscopy has a good effect on colorectal lesions. Differential diagnostic value, RhoC protein is highly expressed in colon cancer and is closely related to the occurrence of colon cancer and the depth of lesion invasion. With the progression of colorectal adenomas, the expression of RhoC protein in the lesions gradually increased.


Assuntos
Neoplasias do Colo , Pólipos do Colo , Neoplasias Colorretais , Humanos , Pólipos do Colo/diagnóstico , Colonoscopia , Proteína de Ligação a GTP rhoC
4.
Int J Exp Pathol ; 104(1): 33-42, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36576072

RESUMO

Ras homologue family member C (RhoC) is an oncogene in diverse types of human cancers, whereas its regulatory mechanisms involving macrophage polarization is rarely investigated. This study is designed to explore the regulatory role of RhoC in colon cancer and the underlying molecular mechanisms involving macrophage polarization. We detected RhoC expression by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and analysed the biological function of RhoC knockdown in CC cells by the MTT, wound healing and transwell assay. Macrophage polarization-associated markers, genes associated with migration, phosphatase and tensin homologue (PTEN) and forkhead box O (FOXO) were determined by qRT-PCR and western blot. The xenograft tumour mouse model was used to assess the role of RhoC in vivo. RhoC is highly expressed in CC cells. The cell viability, invasion and migration abilities of CC cells were reduced by knockdown of RhoC. RhoC knockdown promoted M1 polarization, inhibited M2 polarization and decreased levels of genes associated with migration (matrix metalloproteinase-2 and matrix metalloproteinase-9). Silencing of RhoC inhibited tumour growth and expression of genes associated with migration in the xenografted model. In addition, silencing of RhoC promoted PTEN/FOXO1 expression, and PTEN inhibitor (SF1670) reversed the inhibitory effects of RhoC silencing. We demonstrated that silencing of RhoC reduced CC cells invasion and migration, and tumour growth by suppressing M2 macrophage polarization via regulating the PTEN/FOXO1 pathway.


Assuntos
Neoplasias do Colo , Proteína Forkhead Box O1 , Macrófagos , PTEN Fosfo-Hidrolase , Proteína de Ligação a GTP rhoC , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Regulação Neoplásica da Expressão Gênica , Macrófagos/patologia , Metaloproteinase 2 da Matriz/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína de Ligação a GTP rhoC/genética , Proteína de Ligação a GTP rhoC/metabolismo
5.
Clinics (Sao Paulo) ; 78: 100143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36473367

RESUMO

OBJECTIVES: We examined the expression of Lnc-ZFAS1 in osteosarcoma and comprehensively evaluated its effects on osteosarcoma in vitro and vivo. Moreover, we revealed the regulatory mechanism between Lnc-ZFAS1 and miR-520b/miR-520e-mediated RHOC and provided a novel clue for ameliorating osteosarcoma. METHOD: The expression of Long non-coding RNA Zinc Finger Antisense 1 (LncRNA ZFAS1) osteosarcoma tissues and normal tissues in the TCGA database was analyzed. Then, LncRNA ZFAS1 expression was further verified in clinical samples and osteosarcoma cell lines (U2OS and KHOS), as well as the human osteoblast cell line hFOB1.19 by qRT-PCR. Thereafter, LncRNA ZFAS1 was overexpressed or silenced to explore its effects on cell proliferation, apoptosis, migration, invasion, and Epithelial-Mesenchymal Transition (EMT). The fundamental mechanism through which Lnc-ZFAS1 affects osteosarcoma progression was further investigated and verified. RESULTS: We found that LncRNA ZFAS1 was upregulated in osteosarcoma, and Lnc-ZFAS1 overexpression facilitated osteosarcoma cells proliferation, migration, invasion and EMT, while Lnc-ZFAS1 silence exerted reverse influence. Mechanistically, Lnc-ZFAS1 functionally acted as a sponger of microRNA-520b (miR-520b) and microRNA-520e (miR-520e) to up-regulate Ras Homologue C (RHOC). In addition, depleted Lnc-ZFAS1 restrained osteosarcoma cells proliferation, migration, and invasion, which could be rescued by RHOC overexpression. Lnc-ZFAS1 was upregulated in osteosarcoma and Lnc-ZFAS1 could exert promoted impact upon osteosarcoma cells proliferation, migration, invasion, and EMT in vitro. CONCLUSIONS: Lnc-ZFAS1 acted sponger of miR-520b and miR-520e to promote RHOC, indicating that Lnc-ZFAS1/miR-520b/RHOC and Lnc-ZFAS1/miR-520e/RHOC axes might serve as potential therapeutic strategies against osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Zinco/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteína de Ligação a GTP rhoC/metabolismo
6.
Cell Mol Life Sci ; 80(1): 1, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469134

RESUMO

Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.


Assuntos
Dioxigenases , Neoplasias do Colo do Útero , Humanos , Feminino , Proteína de Ligação a GTP rhoC/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias do Colo do Útero/genética , Epigênese Genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética
7.
Sci Rep ; 12(1): 16493, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192543

RESUMO

Regulation of Rho GTPases remains a topic of active investigation as they are essential participants in cell biology and the pathophysiology of many human diseases. Non-degrading ubiquitination (NDU) is a critical regulator of the Ras superfamily, but its relevance to Rho proteins remains unknown. We show that RhoC, but not RhoA, is a target of NDU by E3 ubiquitin ligase, LNX1. Furthermore, LNX1 ubiquitination of RhoC is negatively regulated by LIS1 (aka, PAFAH1B1). Despite multiple reports of functional interaction between LIS1 and activity of Rho proteins, a robust mechanism linking the two has been lacking. Here, LIS1 inhibition of LNX1 effects on RhoGDI-RhoC interaction provides a molecular mechanism underpinning the enhanced activity of Rho proteins observed upon reduction in LIS1 protein levels. Since LNX1 and RhoC are only found in vertebrates, the LIS1-LNX1-RhoC module represents an evolutionarily acquired function of the highly conserved LIS1. While these nearly identical proteins have several distinct RhoA and RhoC downstream effectors, our data provide a rare example of Rho-isoform specific, upstream regulation that opens new therapeutic opportunities.


Assuntos
Proteínas rho de Ligação ao GTP , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
8.
Anal Cell Pathol (Amst) ; 2022: 3770715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247874

RESUMO

Oral cancer (OC), the most common cancer in the head and neck, which has a poor prognosis, histopathologically follows a stepwise pattern of hyperplasia, dysplasia, and cancer. Blocking the progression of OC in the precancer stage could greatly improve the survival and cure rates. AKT protein plays a critical role in the signal transduction of cancer cells, and we found that AKT was overexpressed in human OC samples through analysis of TCGA database. Therefore, this study is aimed at investigating the chemopreventive effect of an AKT inhibitor (MK2206 2HCl) on OC. In vivo, we established a 4-nitroquinoline-1-oxide- (4NQO-) induced mouse tongue carcinogenesis model to investigate the potential chemopreventive effect of MK2206 2HCl on mouse OC resulting from 4NQO. The results showed that MK2206 2HCl could significantly reduce the incidence rate and growth of OC, inhibit the transformation of dysplasia to cancer in the 4NQO-induced mouse tongue carcinogenesis model, and simultaneously markedly suppress cell proliferation, angiogenesis, and mast cell (MC) infiltration in 4NQO-induced mouse tongue cancers. In vitro, our results revealed that MK2206 2HCl could also inhibit oral squamous cell carcinoma (OSCC) cell malignant biological behaviors, including cell proliferation, colony formation, cell invasion, and migration, while promoting apoptosis. Mechanistic studies revealed that MK2206 2HCl suppressed matrix metalloproteinase 9 (MMP-9) and RhoC expression and promoted autophagy gene LC3 II expression. In summary, our findings demonstrated the chemopreventive effect of MK2206 2HCl on the 4NQO-induced mouse tongue carcinogenesis model, which likely has an underlying mechanism mediated by the MMP-9/RhoC signaling pathway and autophagy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Autofagia , Carcinogênese/patologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/prevenção & controle , Quimioprevenção , Modelos Animais de Doenças , Humanos , Metaloproteinase 9 da Matriz , Camundongos , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Língua/patologia , Proteína de Ligação a GTP rhoC
9.
Biochem Pharmacol ; 206: 115321, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306821

RESUMO

The Rho subfamily members of Rho GTPases, RhoA, RhoB, and RhoC, are key regulators of signal transduction in a variety of cellular processes, including regulation of actomyosin and microtubule dynamics, cell shape, cell adhesion, cell division, cell migration, vesicle/membrane trafficking, and cell proliferation. Traditionally, the focus of research on RhoA/B/C has been on tumor biology, as dysregulation of expression or function of these proteins plays an important role in the pathogenesis of various cancer entities. However, RhoA, RhoB, and RhoC are also important in the context of vascular biology and pathology because they influence endothelial barrier function, vascular smooth muscle contractility and proliferation, vascular function and remodelling as well as angiogenesis. In this context, RhoA/B/C exploit numerous effector molecules to transmit their signals, and their activity is regulated by a variety of guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) that enable precise spatiotemporal activation often in concert with other Rho GTPases. Although their protein structure is very similar, different mechanisms of regulation of gene expression, different localization, and to some extent different interaction with RhoGAPs and RhoGEFs have been observed for RhoA/B/C. In this review, we aim to provide a current overview of the Rho subfamily as regulators of vascular biology and pathology, analyzing database information and existing literature on expression, protein structure, and interaction with effectors and regulatory proteins. In this setting, we will also discuss recent findings on Rho effectors, RhoGEFs, RhoGAPs, as well as guanine nucleotide dissociation inhibitors (RhoGDIs).


Assuntos
Proteína rhoA de Ligação ao GTP , Proteína rhoB de Ligação ao GTP , Proteína de Ligação a GTP rhoC/metabolismo , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Movimento Celular , Biologia
10.
Biochem Biophys Res Commun ; 629: 17-25, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36088805

RESUMO

Glioblastoma (GBM) is the most malignant tumor in human brain. High invasiveness of this tumor is the main reason causing treatment failure and recurrence. Previous study has found that LACTB is a novel tumor suppressor in breast cancer. Moreover, the function of LACTB in other tumors and mechanisms involving LACTB were also reported. However, the role and relevant mechanisms of LACTB in GBM invasion remains to be revealed. Our aim is to investigate the role LACTB in GBM migration and invasion. We found that LACTB was downregulated in gliomas compared to normal brain tissues. Overexpression of LACTB suppressed migration and invasion of LN229 and U87 cell lines. Mechanistically, LACTB overexpression downregulated the mesenchymal markers. Moreover, LACTB overexpression downregulated the expression of RHOC and inhibited RHOC/Cofilin signaling pathway. The study suggests that LACTB suppresses migration and invasion of GBM cell lines via downregulating RHOC/Cofilin signaling pathway. These findings suggest that LACTB may be a potential treatment target of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fatores de Despolimerização de Actina/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Invasividade Neoplásica , Transdução de Sinais/fisiologia , beta-Lactamases/genética , Proteína de Ligação a GTP rhoC/genética , Proteína de Ligação a GTP rhoC/metabolismo
11.
Biochem Pharmacol ; 201: 115069, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525325

RESUMO

We could previously show that thromboxane A2 receptor (TP) activation inhibits the angiogenic capacity of human endothelial cells, but the underlying mechanisms remained unclear. Therefore, the aim of this study was to elucidate TP signal transduction pathways relevant to angiogenic sprouting of human endothelial cells. To clarify this matter, we used RNAi-mediated gene silencing as well as pharmacological inhibition of potential TP downstream targets in human umbilical vein endothelial cells (HUVEC) and VEGF-induced angiogenic sprouting of HUVEC spheroids in vitro as a functional read-out. In this experimental set-up, the TP agonist U-46619 completely blocked VEGF-induced angiogenic sprouting of HUVEC spheroids. Moreover, in live-cell analyses TP activation induced endothelial cell contraction, sprout retraction as well as endothelial cell tension and focal adhesion dysregulation of HUVEC. These effects were reversed by pharmacological TP inhibition or TP knockdown. Moreover, we identified a TP-Gα13-RhoA/C-ROCK-LIMK2-dependent signal transduction pathway to be relevant for U-46619-induced inhibition of VEGF-mediated HUVEC sprouting. In line with these results, U-46619-mediated TP activation potently induced RhoA and RhoC activity in live HUVEC as measured by FRET biosensors. Interestingly, pharmacological inhibition of ROCK and LIMK2 also normalized U-46619-induced endothelial cell tension and focal adhesion dysregulation of HUVEC. In summary, our work reveals mechanisms by which the TP may disturb angiogenic endothelial function in disease states associated with sustained endothelial TP activation.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Células Endoteliais da Veia Umbilical Humana , Quinases Lim , Receptores de Tromboxano A2 e Prostaglandina H2 , Proteína rhoA de Ligação ao GTP , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinases Lim/metabolismo , Neovascularização Fisiológica , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
12.
Environ Toxicol ; 37(3): 603-611, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34873829

RESUMO

The critical roles of E3 ubiquitin ligase RNF168 have been widely revealed in various tumors, however, its roles in lung cancer progression are still confusing. Here, we found that RNF168 expression is positively correlated with the overall survival, first-progression survival, and postprogression survival of lung adenocarcinoma, but not correlated with these survivals of squamous cell carcinoma of lung. Furthermore, it was shown that RNF168 mRNA expression is lowly expressed in lung adenocarcinoma tissues, but highly expressed in squamous cell carcinoma of lung. Functional experiments indicated that RNF168 overexpression significantly suppressed the cancer stem cell (CSC)-like traits of nonsmall cell lung cancer (NSCLC) cells, as characterized by the attenuation of sphere-formation ability, ALDH activity, and the expression of lung CSC markers. Mechanistic studies demonstrated that RNF168 facilitated the ubiquitination of RhoC, which had been considered as a fascinating target for CSCs, and thus promoted RhoC protein degradation. Notably, RNF168 failed to affect the mRNA expression of RhoC and overexpression of RhoC rescued the inhibitory effects of RNF168 overexpression on the CSC-like traits of NSCLC cells. Therefore, this study revealed RNF168 as a novel regulator of RhoC protein in NSCLC cells, this RNF168/RhoC regulatory axis might be a potential target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteína de Ligação a GTP rhoC
13.
Oncogene ; 40(48): 6579-6589, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615995

RESUMO

Metastasis of bladder cancer is a complex process and has been associated with poor clinical outcomes. However, the mechanisms of bladder cancer metastasis remain largely unknown. The present study found that the long noncoding RNA lnc00892 was significantly downregulated in bladder cancer tissues, with low lnc00892 expression associated with poor prognosis of bladder cancer patients. Lnc00892 significantly inhibited the migration, invasion, and metastasis of bladder cancer cells in vitro and in vivo. In-depth analysis showed that RhoA/C acted downstream of lnc00892 to inhibit bladder cancer metastasis. Mechanistically, lnc00892 reduces nucleolin gene transcription by competitively binding the promoter of nucleolin with c-Jun, thereby inhibiting nucleolin-mediated stabilization of RhoA/RhoC mRNA. Taken together, these findings provide novel insights into understanding the mechanisms of bladder cancer metastasis and suggest that lnc00892 can serve as a potential therapeutic target in patients with invasive bladder cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC/genética
14.
Theranostics ; 11(13): 6315-6333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995660

RESUMO

Objective: This study aimed to explore the role of circular RNAs (circRNAs) in M2 macrophage (M2M)-derived small extracellular vesicles (SEVs) in myocardial fibrosis development. Methods: The regulatory role of M2M-derived extracellular vesicles (EVs) was evaluated in a mouse model of acute myocardial infarction. Immunofluorescence, quantitative real-time PCR (RT-qPCR), nanoparticle tracking analysis, Western blot analysis and electron microscopy were used to identify macrophages, large extracellular vesicles (LEVs) and SEVs. The circRNA expression profiles of M0 macrophages (M0Ms) and M2Ms were determined by microarray analysis. Bioinformatic analysis, cell coculture and cell proliferation assays were performed to investigate the expression, function, and regulatory mechanisms of circUbe3a in vitro. qPCR, RNA immunoprecipitation (RIP), dual-luciferase reporter assays, RNA fluorescence in situ hybridization (RNA-FISH), Western blot analysis and a series of rescue experiments were used to verify the correlation among circUbe3a, miR-138-5p and RhoC. Results: CircUbe3a from M2M-derived SEVs triggered functional changes in cardiac fibroblasts (CFs). CircUbe3a was synthesized and loaded into SEVs during increased M2M infiltration after myocardial infarction. The fusion of the released SEVs with the plasma membrane likely caused the release of circUbe3a into the cytosol of CFs. Silencing or overexpressing circUbe3a altered CF proliferation, migration, and phenotypic transformation in vitro. We confirmed that circUbe3a plays a crucial role in enhancing functional changes in CFs by sponging miR-138-5p and then translationally repressing RhoC in vitro. In vivo, the addition of M2M-derived SEVs or overexpression of circUbe3a significantly exacerbated myocardial fibrosis after acute myocardial infarction, and these effects were partially abolished by circUbe3a-specific shRNA. Conclusions: Our findings suggest that M2M-derived circUbe3a-containing SEVs promote the proliferation, migration, and phenotypic transformation of CFs by directly targeting the miR-138-5p/RhoC axis, which may also exacerbate myocardial fibrosis after acute myocardial infarction.


Assuntos
Vesículas Extracelulares/química , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , RNA Circular/genética , Animais , Divisão Celular , Movimento Celular , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Remodelação Ventricular , Proteína de Ligação a GTP rhoC/fisiologia
15.
Anal Chem ; 93(15): 6104-6111, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33825439

RESUMO

As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.


Assuntos
Neoplasias da Mama , Proteína rhoA de Ligação ao GTP , Proteína de Ligação a GTP rhoC , Transformação Celular Neoplásica , Feminino , Guanosina Trifosfato , Humanos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
16.
Anal Cell Pathol (Amst) ; 2021: 6683391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828938

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common types of cancers in developing countries. A major contributor to the high mortality rate of OSCC is the tendency of oral cancer cells to metastasize to lymph nodes around the head and neck during the early stages of cancer development. Matrix metalloproteinase 9 (MMP-9), an endopeptidase, can degrade the extracellular matrix and basement membrane and plays a key role in tumor invasion and metastasis. In vitro, cell migration ability was conducted by scratching assays. We also investigated the interaction abilities between OSCC cells and vascular endothelial cells (ECs) by an adhesion assay and transendothelial migration assay. And we established a BALB/c nude mouse tongue-xenografted metastasis model to investigate the role of MMP-9 and explore its potential underlying mechanism in OSCC growth, lymph node metastasis, and angiogenesis in vivo. The results showed that knockdown of MMP-9 could significantly suppress OSCC cell migration, proliferation, interactions between endothelial cells, xenografted tumor growth, and angiogenesis and simultaneously markedly inhibited OSCC cell metastasis to mouse lymphonodi cervicales superficiales, axillary lymph nodes, and even distant inguinal lymph nodes. Mechanistic studies revealed that knockdown of MMP-9 also led to a decreased expression of RhoC, Src, and F-actin by RT-PCR, western blotting, and immunohistochemistry. And the bioinformatic analysis showed that MMP-9, RhoC, and Src mRNA expression was positively and linearly correlated in OSCC on TCGA database. Together, our findings indicated that MMP-9 plays a very important role in OSCC growth, migration, angiogenesis, and lymph node metastasis, and its potential mechanism may be mediated by RhoC and Src gene expression.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Metástase Linfática/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Transdução de Sinais/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Quinases da Família src/metabolismo
17.
Biochem Biophys Res Commun ; 557: 135-142, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33865221

RESUMO

Gastric cancer (GC) is the most common cancer worldwide. Although advances in the treatments, the oncogenic mechanisms are still largely unknown. RNF168 (ring-finger nuclear factor 168) is an important regulator of DNA double-strand break (DSB) repair, and its defects have been involved in the pathogenesis of a number of human diseases including cancer. However, its effects on GC are still unclear. In the study, we demonstrated that RNF168 expression was remarkably down-regulated in human GC tissues, and its low expression showed worse overall survival rate in GC patients. Importantly, we here reported that RNF168 directly interacted with Ras homolog gene family member C (RHOC) and induced its ubiquitination to promote RHOC degradation. RHOC exhibited higher expression in human GC tissues, and its knockdown significantly restrained cell proliferation, migration and invasion in GC cell lines. Moreover, RHOC knockdown led to a significant reduction in GC tumor growth in a xenograft mouse model. Additionally, histone deacetylase 1 (HDAC1) was found to be markedly decreased in GC cells with RHOC knockdown. Intriguingly, RHOC suppression-ameliorated proliferative and migratory ability in GC cells were significantly diminished by HDAC1 over-expression. Our in vivo studies finally confirmed that RHOC inhibition dramatically reduced the lung metastasis in nude mice. Collectively, all our results demonstrated that RNF168 directly interacted with RHOC to induce its degradation via promoting its ubiquitination, contributing to the inhibition of cell proliferation and metastasis in GC through decreasing HDAC1. Thus, targeting RNF168/RHOC/HDAC1 axis might be promising to develop effective therapies for GC treatment.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona Desacetilase 1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Regulação para Baixo , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/genética , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína de Ligação a GTP rhoC/genética
18.
Mol Neurobiol ; 58(5): 2118-2132, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411238

RESUMO

The tumor susceptibility gene 101 (TSG101) has been reported to play important roles in the development and progression of several human cancers, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma. However, its potential roles and underlined mechanisms in human glioma are still needed to be further clarified. This study was designed to assess the expression of TSG101 in glioma patients and its effects on glioma cell proliferation, migration, and invasion. Publicly available data revealed that TSG101 mRNA was significantly upregulated in glioma tissues, and high levels of TSG101 were associated with poor prognosis in glioma patients. Western blot and immunohistochemistry experiments further showed that the expression level of TSG101 protein was significantly upregulated in glioma patients, especially in the patients with high-grade glioma. The functional studies showed that knockdown of TSG101 suppressed the proliferation, migration, and invasion of glioma cells, while overexpression of TSG101 facilitated them. Mechanistic studies indicated that the proliferation, migration, and invasion induced by TSG101 in human glioma were related to AKT/GSK3ß/ß-catenin and RhoC/Cofilin signaling pathways. In conclusion, the above results suggest that the expression of TSG101 is elevated in glioma patients, which accelerates the proliferation, migration, and invasion of glioma cells by regulating the AKT/GSK3ß/ß-catenin and RhoC/Cofilin pathways.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Despolimerização de Actina/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
19.
J Mol Cell Biol ; 13(1): 59-71, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33049034

RESUMO

Metastases are the main cause of cancer-related mortality in breast cancer. Although significant progress has been made in the field of tumor metastasis, the exact molecular mechanisms involved in tumor metastasis are still unclear. Here, we report that ATOH8-V1, a novel isoform of ATOH8, is highly expressed in breast cancer and is a negative prognostic indicator of survival for patients. Forced expression of ATOH8-V1 dramatically enhances, while silencing of ATOH8-V1 decreases the metastasis of breast cancer cell lines. Moreover, ATOH8-V1 directly binds to the RhoC promoter and stimulates the expression of RhoC, which in turn enhances the metastasis of breast cancer. Altogether, our data demonstrate that ATOH8-V1 is a novel pro-metastatic factor that enhances cancer metastasis, suggesting that ATOH8-V1 is a potential therapeutic target for treatment of metastatic cancers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a GTP rhoC/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Prognóstico , Isoformas de Proteínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33184050

RESUMO

BACKGROUND: Peptide-based vaccination is a rational option for immunotherapy of prostate cancer. In this first-in-man phase I/II study, we assessed the safety, tolerability and immunological impact of a synthetic long peptide vaccine targeting Ras homolog gene family member C (RhoC) in patients with prostate cancer. RhoC is a small GTPase overexpressed in advanced solid cancers, metastases and cancer stem cells. METHODS: Twenty-two patients who had previously undergone radical prostatectomy received subcutaneous injections of 0.1 mg of a single RhoC-derived 20mer peptide emulsified in Montanide ISA-51 every 2 weeks for the first six times, then five times every 4 weeks for a total treatment time of 30 weeks. The drug safety and vaccine-specific immune responses were assessed during treatment and thereafter within a 13-month follow-up period. Serum level of prostate-specific antigen was measured up to 26 months postvaccination. RESULTS: Most patients (18 of 21 evaluable) developed a strong CD4 T cell response against the vaccine, which lasted at least 10 months following the last vaccination. Three promiscuouslypresented HLA-class II epitopes were identified. Vaccine-specific CD4 T cells were polyfunctional and effector memory T cells that stably expressed PD-1 (CD279) and OX-40 (CD134), but not LAG-3 (CD223). One CD8 T cell response was detected in addition. The vaccine was well tolerated and no treatment-related adverse events of grade ≥3 were observed. CONCLUSION: Targeting of RhoC induced a potent and long-lasting T cell immunity in the majority of the patients. The study demonstrates an excellent safety and tolerability profile. Vaccination against RhoC could potentially delay or prevent tumor recurrence and metastasis formation. TRIAL REGISTRATION NUMBER: NCT03199872.


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias da Próstata/terapia , Proteína de Ligação a GTP rhoC/metabolismo , Idoso , Vacinas Anticâncer/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...