Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.259
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286594

RESUMO

Intervertebral disc (IVD) degeneration damaging the extracellular matrix (ECM) of IVDs is the main cause of spine-associated disorders. Degenerative disc disease (DDD) is a multifaceted disorder, where environmental factors, inflammatory cytokines and catabolic enzymes act together. DDD starts typically due to imbalance between ECM biosynthesis and degradation within IVDs, especially through unbalanced degradation of aggrecan and collagen II in nucleus pulposus (NP). Current treatment approaches are primarily based on conservative or surgical therapies, which are insufficient for biological regeneration. The disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) and matrix metalloproteinases (MMPs) are the key proteolytic enzymes for degradation of aggrecan and collagens. Previously, high expression levels of ADAMTS4, ADAMTS5, MMP3 and MMP13, which are accompanied with low levels of aggrecan and collagen II, were demonstrated in degenerative human NP cells. Moreover, self-complementary adeno-associated virus type 6 (scAAV6) mediated inhibitions of ADAMTS4 and ADAMTS5 by RNA-interference (RNAi) could specifically enhance aggrecan level. Thus, MMPs are apparently the main degrading enzymes of collagen II in NP. Furthermore, scAAV6-mediated inhibitions of MMP3 and MMP13 have not yet been investigated. Therefore, we attempted to enhance the level of collagen II in degenerative NP cells by scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13. MRI was used to determine preoperative grading of IVD degeneration in patients. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting MMP3 or MMP13; and analysed by fluorescence microscopy, FACS, MTT assay, RT-qPCR, ELISA and western blotting. scAAV6-shRNRs have no impact on cell viability and proliferation, despite high transduction efficiencies (98.6%) and transduction units (1383 TU/Cell). Combined knockdown of MMP3 (92.8%) and MMP13 (90.9%) resulted in highest enhancement of collagen II (143.2%), whereby treatment effects were significant over 56 days (p < 0.001). Conclusively, scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13 help to progress less immunogenic and enduring biological treatments in DDD.


Assuntos
Proteína ADAMTS4 , Degeneração do Disco Intervertebral , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , Núcleo Pulposo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Colágeno Tipo II/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Interferência de RNA , Células Cultivadas , Agrecanas/metabolismo
2.
Ann Med ; 56(1): 2397572, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39221753

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune, inflammatory joint disease. There is growing evidence that ferroptosis is involved in the pathogenesis of RA. This study aimed to search for diagnostic markers of ferroptosis in RA and to analyse the potential mechanisms and clinical value. MATERIALS AND METHODS: RA-associated datasets were used from the publicly available GEO database. Three methods of machine learning were applied to screen biomarkers. The diagnostic efficacy of the results was also verified by receiver operating characteristic (ROC) curve, external dataset, qRT-PCR and Western blot. Enrichment analysis was performed in this process, while protein-protein interaction (PPI) analysis and immune infiltration correlation analysis were performed using biomarkers, and competing endogenous RNA (ceRNA) networks were constructed to search for prospective therapeutic targets. RESULTS: MMP13 and GABARAPL1 can be used as ferroptosis diagnostic genes in RA. The ROC curve and PPI result demonstrated that MMP13 and GABARAPL1 had an excellent diagnostic value. The results of signature genes in the external dataset, qRT-PCR and Western blot further confirm our findings. The enrichment analysis showed that p53, MAPK and NOD-like receptor signalling pathways may be involved in the process of ferroptosis in RA. In addition, two ferroptosis diagnostic genes in RA participate in the occurrence of ferroptosis in RA via oxidative stress, metabolism and immune response. Immune infiltration analysis showed that RA extensively infiltrated B cells, T cells, macrophages and other immune cells. Persistent immune activation may be an essential reason for the progression of ferroptosis in RA. We also obtained five potential therapeutic agents for RA and some long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) regulating ferroptosis diagnostic genes. CONCLUSIONS: Our study suggests that MMP13 and GABARAPL1, which are closely linked with oxidative stress and immunological modulation, can be used as ferroptosis-related potential diagnostic markers in RA and provide new clues regarding the diagnostic and therapeutic targets of ferroptosis in RA.


Assuntos
Artrite Reumatoide , Biomarcadores , Ferroptose , Metaloproteinase 13 da Matriz , Ferroptose/genética , Artrite Reumatoide/genética , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Humanos , Biomarcadores/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Mapas de Interação de Proteínas/genética , Curva ROC , Aprendizado de Máquina
3.
Chem Biol Drug Des ; 104(3): e14620, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251394

RESUMO

Osteoarthritis (OA) is a progressive joint disease characterized by extracellular matrix (ECM) degradation and inflammation, which is involved with pathological microenvironmental alterations induced by damaged chondrocytes. However, current therapies are not effective in alleviating the progression of OA. Isoquercetin is a natural flavonoid glycoside compound that has various pharmacological effects including anticancer, anti-diabetes and blood lipid regulation. Previous evidence suggests that isoquercetin has anti-inflammatory properties in various diseases, but its effect on OA has not been investigated yet. In this study, through western bolt, qRT-PCR and ELISA, it was found that isoquercetin could reduce the increase of ADAMTS5, MMP13, COX-2, iNOS and IL-6 induced by IL-1ß, suggesting that isoquercetin could inhibit the inflammation and ECM degradation of chondrocytes. Through nuclear-plasma separation technique, western blot and immunocytochemistry, it can be found that Nrf2 and NF-κB pathways are activated in this process, and isoquercetin may rely on this process to play its protective role. In vivo, the results of X-ray and SO staining show that intra-articular injection of isoquercetin reduces the degradation of cartilage in the mouse OA model. In conclusion, the present work suggests that isoquercetin may benefit chondrocytes by regulating the Nrf2/NF-κB signaling axis, which supports isoquercetin as a potential drug for the treatment of OA.


Assuntos
Condrócitos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Osteoartrite , Quercetina , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS5/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Quercetina/farmacologia , Quercetina/análogos & derivados , Quercetina/química , Quercetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
4.
J Dent Res ; 103(9): 899-907, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39104155

RESUMO

Macrophages are important regulators of bone remodeling, and M1 polarization is observed in the setting of medication-related osteonecrosis of the jaws (MRONJ). Here, we characterize the phenotype of macrophages during early stages of MRONJ development in zoledronate (ZA)-treated mice with periodontal disease and explore the role of rosiglitazone, a drug that has been reported to lower the M1/M2 macrophage ratio, in MRONJ burden. Mice received ZA, and experimental periodontal disease (EPD) was induced around their second left maxillary molar. The mice were euthanized 1, 2, or 4 wk later. Micro-computed tomography and histologic and immunohistochemical analyses were carried out. In a separate experiment, mice were treated with ZA in the absence or presence of rosiglitazone, EPD was induced for 5 wk, and the MRONJ burden was assessed. An M1 predilection was noted in ZA versus vehicle (Veh) mice at 1, 2, or 4 wk after ligature placement. M1 cells were found to be positive for MMP-13, and their presence coincided with disruption of the surrounding collagen network in ZA mice. Rosiglitazone caused a reversal in the M1/M2 polarization in Veh and ZA mice. Rosiglitazone did not cause significant radiographic changes 5 wk after EPD in Veh or ZA animals. Importantly, percentage osteonecrosis and bone exposure were decreased in the rosiglitazone-treated versus nontreated ZA sites 5 wk after EPD. Our data point to an important role of M1 macrophage polarization with an overexpression of MMP-13 in the early phases of MRONJ development and provide insight into the use of interventional approaches promoting an M2 phenotype as a preventative means to alleviate MRONJ burden.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Imidazóis , Macrófagos , Rosiglitazona , Tiazolidinedionas , Microtomografia por Raio-X , Ácido Zoledrônico , Animais , Camundongos , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Ácido Zoledrônico/farmacologia , Macrófagos/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Imidazóis/farmacologia , Difosfonatos/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Conservadores da Densidade Óssea/farmacologia , Modelos Animais de Doenças , Fenótipo , Masculino , Remodelação Óssea/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Periodontais , Colágeno/metabolismo
5.
Eur J Pharmacol ; 982: 176951, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39214272

RESUMO

This study aims to identify potential targets and regulatory mechanisms of Astragaloside Ⅳ (AS-Ⅳ) in treating intervertebral disc degeneration (IDD) through network pharmacology analysis with experimental validation. Lumbar spine instability (LSI) mouse models were first established and treated with AS-Ⅳ. Micro-CT, safranin O-fast green staining, IDD score, RT-PCR and immunohistochemistry staining were employed to demonstrate the effect of AS-Ⅳ. Network pharmacology was used to predict the signaling pathways and potential targets of AS-Ⅳ in treating IDD. RT-PCR and immunohistochemistry staining were used to elucidate and validate the mechanism of AS-Ⅳ in vivo. Animal experiments showed that AS-Ⅳ maintained disc height and volume, improved matrix metabolism in LSI mice, and restored Col2α1, ADAMTS-5, Aggrecan, and MMP-13 expression in degenerated discs. Network pharmacology analysis identified 32 cross-targets between AS-Ⅳ and IDD, and PPI network analysis filtered out 11 core genes, including ALB, MAPK1, MAPK14 (p38 MAPK), EGFR, TGFBR1, MAPK8, MMP3, ANXA5, ESR1, CASP3, and IGF1. Enrichment analysis revealed that 7 of the 11 core target genes enriched in the MAPK signaling pathway, and AS-Ⅳ exhibited stable binding to them according to molecular docking results. Experimental validation indicated that AS-Ⅳ reversed mRNA levels of 7 core targets in degenerated disc tissues in LSI mice. Immunohistochemistry staining further revealed that AS-Ⅳ treatment mainly depressed IDD-elevated protein levels of EGFR, p38 MAPK and CASP3 in the annulus fibrosus. This study elucidates that AS-Ⅳ alleviates lumbar spine instability-induced IDD in mice, suggesting the mechanism may involve inhibition of the EGFR/MAPK signaling pathway.


Assuntos
Degeneração do Disco Intervertebral , Farmacologia em Rede , Saponinas , Triterpenos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Vértebras Lombares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 878-885, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39170014

RESUMO

Objective: To investigate the ameliorative effect of tanshinone ⅡA (Tan) on osteoarticular degeneration in ovariectomized rats (a postmenopausal estrogen deficiency model) and the mechanisms involved. Methods: Eight-week-old female Sprague Dawley (SD) rats were randomly allocated to 5 groups (n=10 each), including a Sham operation group (Sham), an ovariectomy group (OVX), and low, medium, and high-dose Tan groups. Eight weeks after bilateral ovariectomy, the rats in the low, medium, and high-dose Tan groups were treated with Tan at the doses of 5, 10, and 20 mg/kg for a duration of 28 days. Evaluation of the rat articular cartilage was performed using X-ray imaging, anatomical observation, hematoxylin and eosin (H&E) staining, and toluidine blue staining. Immunohistochemistry was performed to assess the expression levels of transforming growth factor ß1 (TGF-ß1), phosphorylated-smad2 (p-Smad2), type Ⅱ collagen (CⅡ), matrix metalloproteinase 9 (MMP-9), and MMP-13 in the cartilage tissue. Results: The knee joints of the OVX rats exhibited narrowed joint spaces, osteophyte formation, cartilage erosion or even localized cartilage cracks, faded methylene blue staining on the cartilage surface, disordered arrangement of chondrocytes, unclear or interrupted tidal line, and increased Kellgren-Lawrence grading, Pelletier grading, Mankin grading, and OARSI scores compared to those of the Sham group (P<0.01), as revealed by X-ray imaging, anatomical observation, and histological examination results. Tan ameliorated the degenerative changes in the knee joint caused by OVX in a dose-dependent manner while improving Kellgren-Lawrence grading, Pelletier grading, Mankin grading, and OARSI scores. Immunohistochemistry findings showed that TGF-ß1, p-Smad2, and CⅡ expression levels were significantly increased (P<0.01), while MMP-9 and MMP-13 expression levels were significantly decreased (P<0.01) in the articular cartilage of the Tan group compared to those of the OVX group, with all these effects being dose-dependent. Conclusion: Tan mitigates articular cartilage degeneration in ovariectomized rats, which may be related to the regulation of TGF-ß1/Smad2/MMPs signaling pathway.


Assuntos
Abietanos , Cartilagem Articular , Ovariectomia , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad2 , Fator de Crescimento Transformador beta1 , Animais , Feminino , Fator de Crescimento Transformador beta1/metabolismo , Ratos , Abietanos/farmacologia , Abietanos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Colágeno Tipo II/metabolismo
7.
J Nanobiotechnology ; 22(1): 466, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095867

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive degeneration of articular cartilage, leading to pain, stiffness, and loss of joint function. The pathogenesis of OA involves multiple factors, including increased intracellular reactive oxygen species (ROS), enhanced chondrocyte apoptosis, and disturbances in cartilage matrix metabolism. These processes contribute to the breakdown of the extracellular matrix (ECM) and the loss of cartilage integrity, ultimately resulting in joint damage and dysfunction. RNA interference (RNAi) therapy has emerged as a promising approach for the treatment of various diseases, including hATTR and acute hepatic porphyria. By harnessing the natural cellular machinery for gene silencing, RNAi allows for the specific inhibition of target genes involved in disease pathogenesis. In the context of OA, targeting key molecules such as matrix metalloproteinase-13 (MMP13), which plays a critical role in cartilage degradation, holds great therapeutic potential. RESULTS: In this study, we developed an innovative therapeutic approach for OA using a combination of liposome-encapsulated siMMP13 and NG-Monomethyl-L-arginine Acetate (L-NMMA) to form an injectable hydrogel. The hydrogel served as a delivery vehicle for the siMMP13, allowing for sustained release and targeted delivery to the affected joint. Experiments conducted on destabilization of the medial meniscus (DMM) model mice demonstrated the therapeutic efficacy of this composite hydrogel. Treatment with the hydrogel significantly inhibited the degradation of cartilage matrix, as evidenced by histological analysis showing preserved cartilage structure and reduced loss of proteoglycans. Moreover, the hydrogel effectively suppressed intracellular ROS accumulation in chondrocytes, indicating its anti-oxidative properties. Furthermore, it attenuated chondrocyte apoptosis, as demonstrated by decreased levels of apoptotic markers. CONCLUSION: In summary, the injectable hydrogel containing siMMP13, endowed with anti-ROS and anti-apoptotic properties, may represent an effective therapeutic strategy for osteoarthritis in the future.


Assuntos
Apoptose , Condrócitos , Hidrogéis , Metaloproteinase 13 da Matriz , Osteoartrite , Espécies Reativas de Oxigênio , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Hidrogéis/química , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Lipossomos/química , Humanos
8.
Shanghai Kou Qiang Yi Xue ; 33(3): 295-300, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39104347

RESUMO

PURPOSE: To investigate the effects of laser combined with periodontal basic treatment on periodontal indices, subgingival flora, adiponectin, matrix metalloproteinase-13 (MMP-13) and interleukin-1ß (IL-1ß) in patients with periodontitis. METHODS: A retrospective analysis was performed on 100 patients with periodontitis diagnosed and treated in Hengshui People's Hospital from December 2022 to July 2023. According to treatment methods, the patients were divided into control group (n=51) and experimental group (n=49). The control group received periodontal basic treatment, and the experimental group received laser treatment on the basis of the control group. The periodontal indexes, subgingival microflora, adiponectin, MMP-13, IL-1ß and bone metabolic factors of gingival crevicular fluid before and after treatment were compared between the two groups, as well as the clinical therapeutic effect. Statistical analysis was performed with SPSS 22.0 software package. RESULTS: After treatment, probing depth(PD), bleeding on probing(BOP), gingival index(GI) and plaque index (PLI) in the experimental group were lower than before treatment (P<0.05), PD, BOP and PLI in the control group were lower than before treatment (P<0.05), and PD, BOP, GI and PLI in the experimental group were significantly lower than those in control group (P<0.05). After treatment, Lactobacillus, Clostridium and Bacteroides in both groups were significantly lower than before treatment (P<0.05), and the experimental group was significantly lower than the control group(P<0.05). After treatment, adiponectin in gingival crevicular fluid increased in both groups compared with before treatment(P<0.05), and MMP-13 and IL-1ß in gingival crevicular fluid decreased in both groups compared with before treatment (P<0.05), and adiponectin in gingival crevicular fluid in the experimental group was significantly higher than that in the control group (P<0.05), MMP-13 and IL-1ß in the experimental group were significantly higher than that in the control group (P<0.05). After treatment, procollagenⅠtype N-terminal peptide (PINP), cross linked C-telopeptide of type Ⅰ collagen(CXT) and bone glaprotein (BGP) were significantly higher than those before treatment (P<0.05), and the experimental group was significantly higher than the control group (P<0.05). The total effective rate of the experimental group was significantly higher than that of the control group (P<0.05). CONCLUSIONS: Laser combined with periodontal basic treatment can effectively improve periodontal indexes, reduce subgingival flora, increase the levels of adiponectin and bone metabolic factor in gingival crevicular fluid, reduce the levels of MMP-13 and IL-1ß in gingival crevicular fluid, and improve the clinical therapeutic effect in patients with periodontitis.


Assuntos
Adiponectina , Líquido do Sulco Gengival , Interleucina-1beta , Metaloproteinase 13 da Matriz , Índice Periodontal , Periodontite , Humanos , Líquido do Sulco Gengival/química , Líquido do Sulco Gengival/metabolismo , Adiponectina/metabolismo , Interleucina-1beta/metabolismo , Periodontite/terapia , Periodontite/microbiologia , Periodontite/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Estudos Retrospectivos , Gengiva/microbiologia , Gengiva/metabolismo , Terapia a Laser/métodos
9.
Int Immunopharmacol ; 139: 112619, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024748

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent age-related disease characterized by the gradual deterioration of cartilage. The involvement of chondrocyte senescence is crucial in the pathogenesis of OA. Desferoxamine (DFO) is an iron chelator with therapeutic potential in various diseases. However, the relationship of chondrocyte senescence and iron homeostasis is largely unknown. METHODS: Chondrocyte senescence was induced using tert-butyl hydroperoxide (TBHP), and the impact of DFO on chondrocyte senescence and iron metabolism was assessed through techniques such as western blotting, qRT-PCR, and ß-Galactosidase staining. To assess the impact of DFO on chondrocyte senescence and the progression of osteoarthritis (OA), the surgical destabilization of the medial meniscus model was established. RESULTS: In chondrocytes, TBHP administration resulted in elevated expression of P16, P21, and P53, as well as alterations in SA-ß-gal staining. Nevertheless, DFO effectively mitigated chondrocyte senescence induced by TBHP, and reversed the decrease in collagen II expression and increase in MMP13 expression caused by TBHP. Mechanismly, TBHP induced NCOA4 expression and iron release in chondrocytes. Excessive iron could induce chondrocyte senescence, whereas, DFO could inhibit NCOA4 expression and restore ferritin level, and chelate excessive iron. Importantly, intra-articular injection of DFO enhanced collagen II expression and reduced expression of P16, P21, and MMP13 of cartilage in OA mice, and delayed cartilage degeneration. CONCLUSIONS: Overall, this study provides evidence that DFO has the potential to alleviate chondrocyte senescence induced by TBHP and slow down the progression of osteoarthritis (OA) by effectively chelating excessive iron. These findings suggest that iron chelation could be a promising therapeutic strategy for treating OA.


Assuntos
Senescência Celular , Condrócitos , Desferroxamina , Homeostase , Ferro , Osteoartrite , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Ferro/metabolismo , Senescência Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Progressão da Doença , terc-Butil Hidroperóxido , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Modelos Animais de Doenças
10.
Cell Biochem Funct ; 42(5): e4091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973151

RESUMO

The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.


Assuntos
Fibroblastos , Íntrons , Fosfolipase C gama , RNA Mensageiro , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Fosfolipase C gama/genética , Células Cultivadas , Osteoartrite/metabolismo , Osteoartrite/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/efeitos dos fármacos , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética
11.
Medicine (Baltimore) ; 103(30): e39067, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058875

RESUMO

An increasing body of evidence supports the involvement of inflammation and immune responses in the occurrence and development of keratoconus (KC). However, the causal relationship between inflammatory factors and KC remains unclear. We employed a 2-way Mendelian randomization (MR) approach to investigate the interaction between KC and inflammatory factors. Instrumental variables for 41 circulating inflammatory regulators and 12 matrix metalloproteinases (MMPs) were selected from genome-wide association studies of European ancestry. Summary statistics for KC were obtained from a genome-wide association study comprising 2116 cases and 24,626 controls of European ancestry. The primary analytical method for assessing causality was the inverse-variance weighted method. Two additional MR methods (MR-Egger and weighted median) were employed to complement the inverse-variance weighted results. In addition, several sensitivity analyses were conducted to evaluate heterogeneity, horizontal pleiotropy, and stability. Our findings indicated that genetically predicted higher levels of macrophage inflammatory protein-1ß (odds ratio = 1.126, 95% confidence interval: 1.029-1.232, P = .01) and MMP-13 (odds ratio = 1.211, 95% confidence interval: 1.070-1.371, P = .003) were positively associated with an elevated risk of KC. Conversely, genetically predicted KC was associated with increased levels of interferon-gamma, interleukin-4, and MMP-1. Our current study provided suggestive evidence supporting causal associations of macrophage inflammatory protein-1ß and MMP-13 with the risk of KC. In addition, KC appeared to affect the expression of interferon-gamma, interleukin-4, and MMP-1.


Assuntos
Estudo de Associação Genômica Ampla , Inflamação , Ceratocone , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Ceratocone/genética , Ceratocone/epidemiologia , Inflamação/genética , Polimorfismo de Nucleotídeo Único , Interleucina-4/genética , Interleucina-4/sangue , Metaloproteinase 13 da Matriz/genética , Predisposição Genética para Doença
12.
Sci Rep ; 14(1): 15957, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987376

RESUMO

We previously identified that serum EFNA1 and MMP13 were potential biomarker for early detection of esophageal squamous cell carcinoma. In this study, our aim is to explore the diagnostic value of serum EFNA1 and MMP13 for gastric cancer. We used enzyme-linked immunosorbent assay (ELISA) to detect the expression levels of serum EFNA1 and MMP13 in 210 GCs and 223 normal controls. The diagnostic value of EFNA1 and MMP13 was evaluated in an independent cohorts of GC patients and normal controls (n = 238 and 195, respectively). Receiver operating characteristics were used to calculate diagnostic accuracy. In training and validation cohorts, serum EFNA1 and MMP13 levels in the GC groups were significantly higher than those in the normal controls (P < 0.001). The area under the curve (AUC) of the combined detection of serum EFNA1 and MMP13 for GC was improved (0.794), compared with single biomarker used. Similar results were observed in the validation cohort. Importantly, the combined measurement of serum EFNA1 and MMP13 to detect early-stage GC also had acceptable diagnostic accuracy in training and validation cohort. Combined detection of serum EFNA1 and MMP13 could help identify early-stage GC, suggesting that it may be a promising tool for the early detection of GC.


Assuntos
Biomarcadores Tumorais , Metaloproteinase 13 da Matriz , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/sangue , Neoplasias Gástricas/diagnóstico , Biomarcadores Tumorais/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Metaloproteinase 13 da Matriz/sangue , Idoso , Curva ROC , Adulto , Estudos de Casos e Controles , Detecção Precoce de Câncer/métodos
13.
Clin Transl Sci ; 17(7): e13881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982592

RESUMO

Chondrocyte apoptosis is recognized as one of the pathological features involved in cartilage degeneration driving the onset and progression of knee osteoarthritis (OA). This study aimed to determine the molecular mechanism underlying the effect of clusterin (CLU), anti-apoptotic molecule, in human knee OA chondrocytes. Primary knee OA chondrocytes were isolated from the cartilage of knee OA patients and divided into five groups: (1) the cells treated with interleukin (IL)-1ß, (2) CLU alone, (3) a combination of IL-1ß and CLU, (4) LY294002 (PI3K inhibitor) along with IL-1ß and CLU, and (5) the untreated cells. Production of apoptotic, inflammatory, anabolic, and catabolic mediators in knee OA chondrocytes was determined after treatment for 24 h. Our in vitro study uncovered that CLU significantly suppressed the production of inflammatory mediators [nitric oxide (NO), IL6, and tumor necrosis factor (TNF)-α] and apoptotic molecule (caspase-3, CASP3). CLU significantly upregulated messenger ribonucleic acid (mRNA) expressions of anabolic factors [SRY-box transcription factor-9 (SOX9) and aggrecan (ACAN)], but significantly downregulated mRNA expressions of IL6, nuclear factor kappa-B (NF-κB), CASP3, and matrix metalloproteinase-13 (MMP13). Anti-apoptotic and anti-inflammatory effects of CLU were mediated through activating PI3K/Akt signaling pathway. The findings suggest that CLU might have beneficial effects on knee OA chondrocytes by exerting anti-apoptotic and anti-inflammatory functions via PI3K/Akt pathway, making CLU a promising target for potential therapeutic interventions in knee OA.


Assuntos
Apoptose , Condrócitos , Clusterina , Interleucina-1beta , Osteoartrite do Joelho , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Apoptose/efeitos dos fármacos , Clusterina/metabolismo , Clusterina/genética , Interleucina-1beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Masculino , Pessoa de Meia-Idade , Idoso , Inflamação/metabolismo , Inflamação/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Morfolinas/farmacologia , Cromonas/farmacologia , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Metaloproteinase 13 da Matriz/metabolismo , Mediadores da Inflamação/metabolismo , Óxido Nítrico/metabolismo
14.
Shanghai Kou Qiang Yi Xue ; 33(2): 113-116, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-39005084

RESUMO

PURPOSE: To study the damage and the expression of LC3 and p62 of condylar cartilage in fluorosis mouse. METHODS: Thirty 4-week-old male C57BL/6 mice were randomly divided into control group and the experimental group with 15 animals in each group. The control group received regular drinking water and the experimental group received a fluoride concentration of 75 mg/L drinking water for 8 weeks. The structure of condylar cartilage was observed through modified safranine O-fast green FCF cartilage stain kit. Immunohistochemistry was used to detect the expression of MMP-13, type Ⅱ collagen and LC3 and p62. Two-way analysis of variance test was conducted for analysis of semi-quantitative results of immunohistochemistry using SPSS 22.0 software package. RESULTS: Compared with the control group, the fibrocartilage layer of the experimental group became thinner, the condrocytes were smaller, and the staining became deeper.Immunohistochemistry results showed that the expression of MMP-13 and LC3 increased; the expression of type Ⅱ collagen and p62 decreased in the experimental group. CONCLUSIONS: There was degeneration of the condylar cartilage and autophagy in mice with drinking water containing 75 mg/L fluoride.


Assuntos
Autofagia , Fluorose Dentária , Metaloproteinase 13 da Matriz , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos , Animais , Camundongos , Autofagia/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Fluorose Dentária/metabolismo , Colágeno Tipo II/metabolismo , Côndilo Mandibular/metabolismo , Côndilo Mandibular/patologia , Fluoretos/toxicidade , Cartilagem Articular/metabolismo , Imuno-Histoquímica
15.
Prog Orthod ; 25(1): 25, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004686

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue caused by mutations associated with type I collagen, which results in defective extracellular matrix in temporomandibular joint (TMJ) cartilage and subchondral bone. TMJ is a fibrocartilaginous joint expressing type I collagen both in the cartilage and the subchondral bone. In the present study the effects of alendronate and altered loading of the TMJ was analyzed both in male and female OI mice. MATERIALS AND METHODS: Forty-eight, 10-weeks-old male and female OI mice were divided into 3 groups: (1) Control group: unloaded group, (2) Saline + Loaded: Saline was injected for 2 weeks and then TMJ of mice was loaded for 5 days, (3) alendronate + loaded: alendronate was injected for 2 weeks and then TMJ of mice was loaded for 5 days. Mice in all the groups were euthanized 24-h after the final loading. RESULTS: Alendronate pretreatment led to significant increase in bone volume and tissue density. Histomorphometrically, alendronate treatment led to increase in mineralization, cartilage thickness and proteoglycan distribution. Increased mineralization paralleled decreased osteoclastic activity. Our immunohistochemistry revealed decreased expression of matrix metallopeptidase 13 and ADAM metallopeptidase with thrombospondin type 1 motif 5. CONCLUSION: The findings of this research support that alendronate prevented the detrimental effects of loading on the extracellular matrix of the TMJ cartilage and subchondral bone.


Assuntos
Alendronato , Conservadores da Densidade Óssea , Osteogênese Imperfeita , Articulação Temporomandibular , Animais , Alendronato/farmacologia , Alendronato/uso terapêutico , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/patologia , Camundongos , Masculino , Feminino , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Articulação Temporomandibular/patologia , Articulação Temporomandibular/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Proteína ADAMTS5 , Modelos Animais de Doenças , Densidade Óssea/efeitos dos fármacos , Proteoglicanas
16.
Stem Cells Transl Med ; 13(8): 803-811, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38913985

RESUMO

Mesenchymal stem cells (MSCs) offer great potential for treatment of osteoarthritis (OA) by promoting articular cartilage regeneration via paracrine secretion of exosomes; however, the underlying mechanisms are not fully understood. This study aimed to explore the therapeutic effects of exosomes secreted by human umbilical cord-derived MSCs (hUC-MSCs) in rat models of OA and reveal the underlying mechanisms. UC-MSCs and UC-MSC-exosomes were prepared and identified by transmission electron microscopy and flow cytometry. IL-1ß-induced OA chondrocytes and the operation and collagenase-induced OA rat models were established. The results of micro-computed tomography, histology, and immunohistochemistry showed that UC-MSC-exosomes promoted cartilage regeneration in OA rats. ELISA results showed that the levels of synovial fluid cytokines, TNF-α, IL-1ß, and IL-6, were lower in exosome therapy group than control group in both OA rat models. Exosome treatment significantly downregulated the expression of MMP-13 and ADAMTS-5 in chondrocytes stimulated by IL-1ß, and upregulated collagen II expression. These findings suggest that hUC-MSC-exosomes offer a promising option for the therapy for OA.


Assuntos
Condrócitos , Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , Osteoartrite , Cordão Umbilical , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Cordão Umbilical/citologia , Ratos , Condrócitos/metabolismo , Ratos Sprague-Dawley , Masculino , Interleucina-1beta/metabolismo , Citocinas/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Metaloproteinase 13 da Matriz/metabolismo
17.
Biochem Biophys Res Commun ; 724: 150226, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865815

RESUMO

In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Protetores contra Radiação , Ácido Tauroquenodesoxicólico , Animais , Ácido Tauroquenodesoxicólico/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Protetores contra Radiação/farmacologia , Camundongos , Masculino , Intestinos/efeitos da radiação , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação
18.
J Cell Mol Med ; 28(11): e18460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864710

RESUMO

Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.


Assuntos
Dependovirus , Fator VIII , Vetores Genéticos , Hemofilia A , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , RNA Longo não Codificante , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/complicações , Dependovirus/genética , RNA Longo não Codificante/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Camundongos , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Fator VIII/genética , Fator VIII/metabolismo , Artropatias/terapia , Artropatias/genética , Artropatias/etiologia , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Masculino
19.
Sci Rep ; 14(1): 14655, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918485

RESUMO

Osteocytes locally remodel their surrounding tissue through perilacunar canalicular remodeling (PLR). During lactation, osteocytes remove minerals to satisfy the metabolic demand, resulting in increased lacunar volume, quantifiable with synchrotron X-ray radiation micro-tomography (SRµCT). Although the effects of lactation on PLR are well-studied, it remains unclear whether PLR occurs uniformly throughout the bone and what mechanisms prevent PLR from undermining bone quality. We used SRµCT imaging to conduct an in-depth spatial analysis of the impact of lactation and osteocyte-intrinsic MMP13 deletion on PLR in murine bone. We found larger lacunae undergoing PLR are located near canals in the mid-cortex or endosteum. We show lactation-induced hypomineralization occurs 14 µm away from lacunar edges, past a hypermineralized barrier. Our findings reveal that osteocyte-intrinsic MMP13 is crucial for lactation-induced PLR near lacunae in the mid-cortex but not for whole-bone resorption. This research highlights the spatial control of PLR on mineral distribution during lactation.


Assuntos
Remodelação Óssea , Lactação , Osteócitos , Microtomografia por Raio-X , Animais , Lactação/fisiologia , Feminino , Osteócitos/metabolismo , Osteócitos/fisiologia , Camundongos , Remodelação Óssea/fisiologia , Metaloproteinase 13 da Matriz/metabolismo
20.
Int Immunopharmacol ; 137: 112467, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38875997

RESUMO

BACKGROUND: Articular cartilage defects (ACD) are injuries with a diameter greater than 3 mm, resulting from wear and tear on joints. When the diameter of the defect exceeds 6 mm, it can further damage the surrounding joint cartilage, causing osteoarthritis (OA). Try to explain why OA is an irreversible disease, we hypothesize that damaged articular chondrocytes (DAC) may have reduced capacities to repair cartilage because its extracellular vesicle (EVs) that might directly contribute to OA formation. METHODS: In this study, DAC-EVs and AC-EVs were isolated using ultracentrifugation. Next-generation sequencing was employed to screen for a pathogenic long non-coding RNA (lncRNA). After verifying its function in vitro, the corresponding small interfering RNA (siRNA) was constructed and loaded into extracellular vesicles, which were then injected into the knee joint cavities of rats. RESULTS: The results revealed that DAC-EVs packaged lncRNA LOC102546541 acts as a competitive endogenous RNA (ceRNA) of MMP13, down-regulating miR-632. Consequently, the function of MMP13 in degrading the extracellular matrix is enhanced, promoting the development of osteoarthritis. CONCLUSIONS: This study uncovered a novel mode of OA pathogenesis using rat models, which DAC deliver pathogenic LOC102546541 packaged EVs to normal articular chondrocytes, amplifying the degradation of the extracellular matrix. Nonetheless, the functions of highly homologous human gene of LOC102546541 need to be verified in the future.


Assuntos
Cartilagem Articular , Condrócitos , Modelos Animais de Doenças , Vesículas Extracelulares , Metaloproteinase 13 da Matriz , MicroRNAs , Osteoartrite , RNA Longo não Codificante , Animais , Vesículas Extracelulares/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Osteoartrite/metabolismo , Osteoartrite/patologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Masculino , Humanos , Células Cultivadas , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA