Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
1.
Front Immunol ; 15: 1355357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576615

RESUMO

Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.


Assuntos
Periodontite Crônica , Porphyromonas gingivalis , Humanos , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Peptídeos , Periodonto/metabolismo , Periodontite Crônica/genética
2.
Proc Natl Acad Sci U S A ; 121(17): e2304199121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630712

RESUMO

Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Monócitos , Humanos , Desiminases de Arginina em Proteínas , Monócitos/metabolismo , Autoantígenos , Autoanticorpos , Fibrinogênio/metabolismo , Citrulina/metabolismo
3.
Front Immunol ; 15: 1167362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476240

RESUMO

Introduction: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis, but the sources of citrullinated antigens as well as which peptidylarginine deiminases (PADs) are required for their production remain incompletely defined. Here, we investigated if macrophage extracellular traps (METs) could be a source of citrullinated proteins bound by APCAs, and if their formation requires PAD2 or PAD4. Methods: Thioglycolate-induced peritoneal macrophages from wild-type, PAD2-/-, and PAD4-/- mice or human peripheral blood-derived M1 macrophages were activated with a variety of stimulants, then fixed and stained with DAPI and either anti-citrullinated histone H4 (citH4) antibody or sera from ACPA+ or ACPA- rheumatoid arthritis subjects. METs were visualized by immunofluorescence, confirmed to be extracellular using DNase, and quantified. Results: We found that ionomycin and monosodium urate crystals reliably induced murine citH4+ METs, which were reduced in the absence of PAD2 and lost in the absence of PAD4. Also, IgG from ACPA+, but not ACPA-, rheumatoid arthritis sera bound to murine METs, and in the absence of PAD2 or PAD4, ACPA-bound METs were lost. Finally, ionomycin induced human METs that are citH4+ and ACPA-bound. Discussion: Thus, METs may contribute to the pool of citrullinated antigens bound by ACPAs in a PAD2- and PAD4-dependent manner, providing new insights into the targets of immune tolerance loss in rheumatoid arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Armadilhas Extracelulares , Humanos , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Autoanticorpos , Proteína-Arginina Desiminase do Tipo 4 , Ionomicina/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo
4.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489266

RESUMO

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Assuntos
Hidrolases , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382623

RESUMO

The production of type I interferon (IFN) is precisely modulated by host to protect against viral infection efficiently without obvious immune disorders. Elucidating the tight control towards type I IFN production would be helpful to get insight into natural immunity and inflammatory diseases. As yet, however, the mechanisms that regulate IFN-ß production, especially the epigenetic regulatory mechanisms, remain poorly explored. This study elucidated the potential function of Peptidylarginine deiminases (PADIs)-mediated citrullination in innate immunity. We identified PADI4, a PADIs family member that can act as an epigenetic coactivator, could repress IFN-ß production upon RNA virus infection. Detailed experiments showed that PADI4 deficiency increased IFN-ß production and promoted antiviral immune activities against RNA viruses. Mechanistically, the increased PADI4 following viral infection translocated to nucleus and recruited HDAC1 upon binding to Ifnb1 promoter, which then led to the deacetylation of histone H3 and histone H4 for repressing Ifnb1 transcription. Taken together, we identify a novel non-classical role for PADI4 in the regulation of IFN-ß production, suggesting its potential as treatment target in inflammatory or autoimmune diseases.


Assuntos
Histonas , Viroses , Proteína DEAD-box 58/genética , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Imunidade Inata , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Receptores Imunológicos/metabolismo
6.
Biochem Biophys Res Commun ; 704: 149668, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401303

RESUMO

Rheumatoid arthritis is an autoimmune disease whose early onset correlates with dysregulated citrullination, a process catalyzed by peptidylarginine deiminase isoform 4 (PADI-4). Here, we report that PADI-4 is a novel target of vitamin B12, a water-soluble vitamin that serves as a cofactor in DNA synthesis and the metabolism of fatty and amino acids. Vitamin B12 preferentially inhibited PADI-4 over PADI-2 with comparable inhibitory activity to the reference compound Cl-amidine in enzymatic inhibition assays, and reduced total cellular citrullination levels including that of histone H3 citrullination mediated by PADI-4. We also demonstrated that hydroxocobalamin, a manufactured form of vitamin B12, significantly ameliorated the severity of collagen type II antibody induced arthritis (CAIA) in mice and diminished gene expression of the rheumatoid inflammatory factors and cytokines IL17A, TNFα, IL-6, COX-II and ANXA2, as well PADI-4. Therefore, the use of vitamin B12 to treat rheumatoid arthritis merits further study.


Assuntos
Artrite Reumatoide , Vitamina B 12 , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Hidrolases/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Citrulina/metabolismo , Anticorpos , Colágeno
7.
Cell Physiol Biochem ; 58(1): 63-82, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374715

RESUMO

BACKGROUND/AIMS: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear. METHODS: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs. RESULTS: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>. CONCLUSION: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.


Assuntos
Células Endoteliais , Desiminases de Arginina em Proteínas , Proteínas Proto-Oncogênicas c-akt , Humanos , Células Endoteliais/metabolismo , Histonas/metabolismo , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amidinas/química , Amidinas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia
8.
Medicine (Baltimore) ; 103(8): e37015, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394536

RESUMO

BACKGROUND: Peptidyl (protein) arginine deiminases (PADs) provide the transformation of peptidyl arginine to peptidyl citrulline in the presence of calcium with posttranslational modification. The dysregulated PAD activity plays an important role on too many diseases including also the cancer. In this study, it has been aimed to determine the potential cytotoxic and apoptotic activity of chlorine-amidine (Cl-amidine) which is a PAD inhibitor and whose effectiveness has been shown in vitro and in vivo studies recently on human glioblastoma cell line Uppsala 87 malignant glioma (U-87 MG) forming an in vitro model for the glioblastoma multiforme (GBM) which is the most aggressive and has the highest mortality among the brain tumors. METHODS: In the study, the antiproliferative and apoptotic effects of Cl-amidine on GBM cancer model were investigated. The antiproliferative effects of Cl-amidine on U-87 MG cells were determined by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate method at the 24th and 48th hours. The apoptotic effects were analyzed by Annexin V and Propidium iodide staining, caspase-3 activation, and mitochondrial membrane polarization (5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide) methods in the flow cytometry. RESULTS: It has been determined that Cl-amidine exhibits notable antiproliferative properties on U-87 MG cell line in a time and concentration-dependent manner, as determined through the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate assay. Assessment of apoptotic effects via Annexin V and Propidium iodide staining and 5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide methods has revealed significant efficacy, particularly following a 24-hour exposure period. It has been observed that Cl-amidine induces apoptosis in cells by enhancing mitochondrial depolarization, independently of caspase-3 activation. Furthermore, regarding its impact on healthy cells, it has been demonstrated that Cl-amidine shows lower cytotoxic effects when compared to carmustine, an important therapeutic agent for glioblastoma. CONCLUSION: The findings of this study have shown that Cl-amidine exhibits significant potential as an anticancer agent in the treatment of GBM. This conclusion is based on its noteworthy antiproliferative and apoptotic effects observed in U-87 MG cells, as well as its reduced cytotoxicity toward healthy cells in comparison to existing treatments. We propose that the antineoplastic properties of Cl-amidine should be further investigated through a broader spectrum of cancer cell types. Moreover, we believe that investigating the synergistic interactions of Cl-amidine with single or combination therapies holds promise for the discovery of novel anticancer agents.


Assuntos
Antineoplásicos , Glioblastoma , Nitrofenóis , Ornitina/análogos & derivados , Humanos , Cloro , Glioblastoma/metabolismo , Anexina A5 , Benzeno , Carbocianinas/farmacologia , Caspase 3/metabolismo , Iodetos/metabolismo , Iodetos/farmacologia , Propídio , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Amidinas/farmacologia , Arginina/metabolismo , Apoptose
9.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339001

RESUMO

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Assuntos
Desoxirribonuclease I , Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Raios Ultravioleta , Animais , Masculino , Camundongos , Calcimicina/farmacologia , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/efeitos da radiação , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos ICR , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
10.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253209

RESUMO

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Assuntos
Esclerose Amiotrófica Lateral , Citrulinação , Animais , Humanos , Camundongos , Esclerose Amiotrófica Lateral/metabolismo , Gliose/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/patologia , Agregados Proteicos , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Proteínas/metabolismo , Medula Espinal/patologia
11.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37610274

RESUMO

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Desiminases de Arginina em Proteínas , Fibrinogênio/metabolismo , Colágeno
12.
J Clin Periodontol ; 51(4): 452-463, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38115803

RESUMO

AIM: We sought to investigate the release of neutrophil extracellular traps (NETs) in neutrophils from individuals with rheumatoid arthritis (RA) and controls and compare the presence of NETs in gingival tissues according to periodontal status. Also, the association between single nucleotide polymorphisms (SNPs) of the peptidyl arginine deaminase type 4 (PADI4) gene and the GTG haplotype with RA, periodontitis and NETs was evaluated in vitro. MATERIALS AND METHODS: Peripheral neutrophils were isolated by density gradient, and NET concentration was determined by the PicoGreen method. Immunofluorescence was studied to identify NETs by co-localization of myeloperoxidase (MPO)-citrullinated histone H3 (H3Cit). Genotyping for SNPs (PADI4_89; PADI4_90; PADI4_92; and PADI4_104) was performed in 87 individuals with RA and 111 controls. RESULTS: The release of NETs in vitro was significantly higher in individuals with RA and periodontitis and when stimulated with Porphyromonas gingivalis. Gingival tissues from subjects with RA and periodontitis revealed increased numbers of MPO-H3Cit-positive cells. Individuals with the GTG haplotype showed a higher release of NETs in vitro and worse periodontal parameters. CONCLUSIONS: The release of NETs by circulating neutrophils is associated with RA and periodontitis and is influenced by the presence of the GTG haplotype.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Periodontite , Humanos , Desiminases de Arginina em Proteínas/genética , Artrite Reumatoide/genética , Periodontite/genética , Neutrófilos , Polimorfismo de Nucleotídeo Único
13.
Front Immunol ; 14: 1290585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094295

RESUMO

Introduction: MZB1 is an endoplasmic reticulum residential protein preferentially expressed in plasma cells, marginal zone and B1 B cells. Recent studies on murine B cells show that it interacts with the tail piece of IgM and IgA heavy chain and promotes the secretion of these two classes of immunoglobulin. However, its role in primary human B cells has yet to be determined and how its function is regulated is still unknown. The conversion of peptidylarginine to peptidylcitrulline, also known as citrullination, by peptidylarginine deiminases (PADs) can critically influence the function of proteins in immune cells, such as neutrophils and T cells; however, the role of PADs in B cells remains to be elucidated. Method: An unbiased analysis of human lung citrullinome was conducted to identify citrullinated proteins that are enriched in several chronic lung diseases, including rheumatoid arthritis-associated interstitial lung disease (RA-ILD), chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis, compared to healthy controls. Mass spectrometry, site-specific mutagenesis, and western blotting were used to confirm the citrullination of candidate proteins. Their citrullination was suppressed by pharmacological inhibition or genetic ablation of PAD2 and the impact of their citrullination on the function and differentiation of human B cells was examined with enzyme-linked immunosorbent assay, flow cytometry, and co-immunoprecipitation. Results: Citrullinated MZB1 was preferentially enriched in RA-ILD but not in other chronic lung diseases. MZB1 was a substrate of PAD2 and was citrullinated during the differentiation of human plasmablasts. Ablation or pharmacological inhibition of PAD2 in primary human B cells attenuated the secretion of IgM and IgA but not IgG or the differentiation of IgM or IgA-expressing plasmablasts, recapitulating the effect of ablating MZB1. Furthermore, the physical interaction between endogenous MZB1 and IgM/IgA was attenuated by pharmacological inhibition of PAD2. Discussion: Our data confirm the function of MZB1 in primary human plasmablasts and suggest that PAD2 promotes IgM/IgA secretion by citrullinating MZB1, thereby contributing to the pathogenesis of rheumatoid arthritis and RA-ILD.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Camundongos , Animais , Desiminases de Arginina em Proteínas/genética , Proteínas/metabolismo , Imunoglobulina A , Imunoglobulina M
14.
Sci Adv ; 9(51): eadj1397, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117877

RESUMO

Neutrophil extracellular traps (NETs) not only counteract bacterial and fungal pathogens but can also promote thrombosis, autoimmunity, and sterile inflammation. The presence of citrullinated histones, generated by the peptidylarginine deiminase 4 (PAD4), is synonymous with NETosis and is considered independent of apoptosis. Mitochondrial- and death receptor-mediated apoptosis promote gasdermin E (GSDME)-dependent calcium mobilization and membrane permeabilization leading to histone H3 citrullination (H3Cit), nuclear DNA extrusion, and cytoplast formation. H3Cit is concentrated at the promoter in bone marrow neutrophils and redistributes in a coordinated process from promoter to intergenic and intronic regions during apoptosis. Loss of GSDME prevents nuclear and plasma membrane disruption of apoptotic neutrophils but prolongs early apoptosis-induced cellular changes to the chromatin and cytoplasmic granules. Apoptotic signaling engages PAD4 in neutrophils, establishing a cellular state that is primed for NETosis, but that occurs only upon membrane disruption by GSDME, thereby redefining the end of life for neutrophils.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Epigênese Genética
15.
Cells ; 12(24)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132149

RESUMO

Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Doenças Pulmonares Intersticiais/genética , Proteínas , Doença Crônica
16.
Sci Rep ; 13(1): 23039, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155185

RESUMO

Citrullinated vimentin has been linked to several chronic and autoimmune diseases, but how citrullinated vimentin is associated with disease prevalence and genetic variants in a clinical setting remains unknown. The aim of this study was to obtain a better understanding of the genetic variants and pathologies associated with citrullinated and MMP-degraded vimentin. Patient Registry data, serum samples and genotypes were collected for a total of 4369 Danish post-menopausal women enrolled in the Prospective Epidemiologic and Risk Factor study (PERF). Circulating citrullinated and MMP-degraded vimentin (VICM) was measured. Genome-wide association studies (GWAS) and phenome wide association studies (PheWAS) with levels of VICM were performed. High levels of VICM were significantly associated with the prevalence of chronic pulmonary diseases and death from respiratory and cardiovascular diseases (CVD). GWAS identified 33 single nucleotide polymorphisms (SNPs) with a significant association with VICM. These variants were in the peptidylarginine deiminase 3/4 (PADI3/PADI4) and Complement Factor H (CFH)/KCNT2 gene loci on chromosome 1. Serum levels of VICM, a marker of citrullinated and MMP-degraded vimentin, were associated with chronic pulmonary diseases and genetic variance in PADI3/PADI4 and CFH/ KCNT2. This points to the potential for VICM to be used as an activity marker of both citrullination and inflammation, identifying responders to targeted treatment and patients likely to experience disease progression.


Assuntos
Estudo de Associação Genômica Ampla , Pneumopatias , Humanos , Feminino , Desiminases de Arginina em Proteínas/genética , Vimentina/genética , Estudos Prospectivos , Pós-Menopausa/genética , Pneumopatias/genética , Hidrolases/genética , Canais de Potássio Ativados por Sódio/genética , Proteína-Arginina Desiminase do Tipo 3
17.
Comput Biol Chem ; 107: 107962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847978

RESUMO

Protein arginine deiminase IV (PAD4) is a potential target for diseases including rheumatoid arthritis and cancers. Currently, GSK199 is a potent, selective yet reversible PAD4 inhibitor. Its derivative, GSK106, on the other hand, was reported as an inactive compound when tested against PAD4 assay. Although they had similar skeleton, their impact towards PAD4 structural and flexibility is unknown. In order to fill the research gap, the impact of GSK199 and GSK106 binding towards PAD4 stability and flexibility is investigated via a combination of computational methods. Molecular docking indicates that GSK199 and GSK106 are capable to bind at PAD4 pocket by using its back door with -10.6 kcal/mol and -9.6 kcal/mol, respectively. The simulations of both complexes were stable throughout 100 ns. The structure of PAD4 exhibited a tighter packing in the presence of GSK106 compared to GSK199. The RMSF analysis demonstrates significant changes between the PAD4-GSK199 and PAD4-GSK106 simulations in the regions containing residues 136, 160, 220, 438, and 606. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis shows a marked difference in binding free energies, with -11.339 kcal/mol for the PAD4-GSK199 complex and 1.063 kcal/mol for the PAD4-GSK106 complex. The hydrogen bond analysis revealed that the GSK199 and GSK106 binding to PAD4 are assisted by six hydrogen bonds and three hydrogen bonds, respectively. The visualisation of the MD simulations revealed that GSK199 remained in the PAD4 pocket, whereas GSK106 shifted away from the catalytic site. Meanwhile, molecular dockings of benzoyl arginine amide (BAEE) substrate have shown that BAEE is able to bind to PAD4 catalytic site when GSK106 was present but not when GSK199 occupied the site. Overall, combination of computational approaches successfully described the behaviour of binding pocket of PAD4 structure in the presence of the active and inactive compounds.


Assuntos
Hidrolases , Desiminases de Arginina em Proteínas/metabolismo , Hidrolases/química , Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4
18.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220451, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778375

RESUMO

Protein isoforms, generated through alternative splicing or promoter usage, contribute to tissue function. Here, we characterize the expression of predicted Padi3α and Padi3ß isoforms in hair follicles and describe expression of Padi2ß, a hitherto unknown PADI2 isoform, in the oligodendrocyte lineage. Padi2ß transcription is initiated from a downstream intronic promoter, generating an N-terminally truncated, unstable, PADI2ß. By contrast to the established role of the canonical PADI2 (PADI2α) (Falcao et al. 2019 Cell Rep. 27, 1090-1102.e10. (doi:10.1016/j.celrep.2019.03.108)), PADI2ß inhibits oligodendrocyte differentiation, suggesting that PADI2 isoforms exert opposing effects on oligodendrocyte lineage progression. We localize Padi3α and Padi3ß to developing hair follicles and find that both transcripts are expressed at low levels in progenitor cells, only to increase in expression concomitant with differentiation. When expressed in vitro, PADI3α and PADI3ß are enriched in the cytoplasm and precipitate together. Whereas PADI3ß protein stability is low and PADI3ß fails to induce protein citrullination, we find that the enzymatic activity and protein stability of PADI3α is reduced in the presence of PADI3ß. We propose that PADI3ß modulates PADI3α activity by direct binding and heterodimer formation. Here, we establish expression and function of Padi2 and Padi3 isoforms, expanding on the mechanisms in place to regulate citrullination in complex tissues. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Desiminases de Arginina em Proteínas , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Diferenciação Celular/fisiologia , Isoformas de Proteínas/genética
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220240, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778377

RESUMO

Protein citrullination is a post-translational modification (PTM) that is catalysed by the protein arginine deiminase (PAD) family of enzymes. This PTM involves the transformation of an arginine residue into citrulline. Protein citrullination is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation and DNA damage-induced apoptosis. Aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis (RA), lupus, atherosclerosis and ulcerative colitis. In RA, anti-citrullinated protein antibodies can be detected prior to disease onset and are thus a valuable diagnostic tool for RA. Notably, citrullinated proteins may serve more generally as biomarkers of specific disease states; however, the identification of citrullinated protein residues remains challenging owing to the small 1 Da mass change that occurs upon citrullination. Herein, we highlight the progress made so far in the development of pan-PAD and isozyme selective inhibitors as well as the identification of citrullinated proteins and the site-specific incorporation of citrulline into proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Artrite Reumatoide , Citrulinação , Humanos , Citrulina/genética , Citrulina/metabolismo , Epigênese Genética , Proteínas/genética , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
20.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220245, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778378

RESUMO

Peptidylarginine deiminases (PADs) transform a protein arginine residue into the non-standard amino acid citrulline. This calcium-dependent post-translational modification of proteins is called citrullination or deimination. As described in this special issue, PADs play a role in various physiological processes, and PAD deregulations are involved in many human diseases. Three PADs are expressed in the epidermis, where their roles begin to be deciphered. PAD1 and PAD3 are involved in keratinocyte differentiation, particularly in the epidermal barrier function, keratins, filaggrin and filaggrin-related proteins being the most abundant deiminated epidermal proteins. Reduced amounts of deiminated proteins and PAD1 expression may be involved in the pathogenesis of psoriasis and atopic dermatitis, two very frequent and chronic skin inflammatory diseases. The trichohyalin/PAD3/transglutaminase three pathway is important for hair shaft formation. Mutations of the PADI3 gene, leading to a decreased activity or abnormal localization of the corresponding isotype, are the cause of a rare hair disorder called uncombable hair syndrome, and are associated with the central centrifugal cicatricial alopecia, a frequent alopecia mainly affecting women of African ancestry. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Proteínas Filagrinas , Cabelo , Hidrolases , Feminino , Humanos , Alopecia/metabolismo , Epiderme , Hidrolases/genética , Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...