Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.692
Filtrar
1.
Phytomedicine ; 133: 155948, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153276

RESUMO

BACKGROUND: The incidence of invasive fungal diseases (IFDs), represented by Candida albicans infection, is increasing year by year. However, clinically available antifungal drugs are very limited and encounter challenges such as limited efficacy, drug resistance, high toxicity, and exorbitant cost. Therefore, there is an urgent need for new antifungal drugs. PURPOSE: This study aims to find new antifungal compounds from plants, preferably those with good activity and low toxicity, and reveal their antifungal targets. METHODS: In vitro antifungal activities of compounds were investigated using broth microdilution method, spot assay, hyphal growth assay and biofilm formation assay. Synergistic effects were assessed using broth microdilution checkerboard technique. In vivo antifungal activities were evaluated using Galleria mellonella and murine candidiasis models. Cytotoxicity of compounds was investigated using Cell Counting Kit-8 (CCK-8). Discovery and validation of antifungal targets of compounds were conducted by using monoallelic knockout library of C. albicans, haploinsufficiency profiling (HIP), thermal shift assay (TSA), enzyme inhibitory effect assay, molecular docking, and in vitro and in vivo antifungal studies. RESULTS: 814 plant products were screened, among which petroselinic acid (PeAc) was found as an antifungal molecule. As a rare fatty acid isolated from coriander (Coriandrum sativum), carrot (Daucus carota) and other plants of the Apiaceae family, PeAc had not previously been found to have antifungal effects. In this study, PeAc was revealed to inhibit the growth of various pathogenic fungi, exhibited synergistic effects with fluconazole (FLC), inhibited the formation of C. albicans hyphae and biofilms, and showed antifungal effects in vivo. PeAc was less toxic to mammalian cells. Fructose-1,6-bisphosphate aldolase (Fba1p) was identified as a target of PeAc by using HIP, TSA, enzyme inhibitory effect assay and molecular docking methods. PeAc exerted antifungal effects more effectively on fba1Δ/FBA1 than wild-type (WT) strain both in vitro and in vivo. CONCLUSIONS: PeAc is an effective and low toxic antifungal compound. The target of PeAc is Fba1p. Fba1p is a promising target for antifungal drug development.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Frutose-Bifosfato Aldolase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Antifúngicos/química , Animais , Candida albicans/efeitos dos fármacos , Camundongos , Frutose-Bifosfato Aldolase/metabolismo , Candidíase/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Sinergismo Farmacológico , Hifas/efeitos dos fármacos , Petroselinum/química , Mariposas/efeitos dos fármacos , Modelos Animais de Doenças
2.
Nat Metab ; 6(8): 1505-1528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39134903

RESUMO

Lysine ß-hydroxybutyrylation (Kbhb) is a post-translational modification induced by the ketogenic diet (KD), a diet showing therapeutic effects on multiple human diseases. Little is known how cellular processes are regulated by Kbhb. Here we show that protein Kbhb is strongly affected by the KD through a multi-omics analysis of mouse livers. Using a small training dataset with known functions, we developed a bioinformatics method for the prediction of functionally important lysine modification sites (pFunK), which revealed functionally relevant Kbhb sites on various proteins, including aldolase B (ALDOB) Lys108. KD consumption or ß-hydroxybutyrate supplementation in hepatocellular carcinoma cells increases ALDOB Lys108bhb and inhibits the enzymatic activity of ALDOB. A Kbhb-mimicking mutation (p.Lys108Gln) attenuates ALDOB activity and its binding to substrate fructose-1,6-bisphosphate, inhibits mammalian target of rapamycin signalling and glycolysis, and markedly suppresses cancer cell proliferation. Our study reveals a critical role of Kbhb in regulating cancer cell metabolism and provides a generally applicable algorithm for predicting functionally important lysine modification sites.


Assuntos
Dieta Cetogênica , Lisina , Processamento de Proteína Pós-Traducional , Lisina/metabolismo , Animais , Camundongos , Humanos , Frutose-Bifosfato Aldolase/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias/metabolismo , Carcinoma Hepatocelular/metabolismo , Proliferação de Células
3.
Med Oncol ; 41(9): 224, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120781

RESUMO

Aldolase enzymes, particularly ALDOA, ALDOB, and ALDOC, play a crucial role in the development and progression of cancer. While the aldolase family is mainly known for its involvement in the glycolysis pathway, these enzymes also have various pathological and physiological functions through distinct signaling pathways such as Wnt/ß-catenin, EGFR/MAPK, Akt, and HIF-1α. This has garnered increased attention in recent years and shed light on other sides of this enzyme. Potential therapeutic strategies targeting aldolases include using siRNA, inhibitors like naphthol AS-E phosphate and TX-2098, and natural compounds such as HDPS-4II and L-carnosine. Additionally, anticancer peptides derived from ALDOA, like P04, can potentially increase cancer cells' sensitivity to chemotherapy. Aldolases also affect cancer drug resistance by different approaches, making them good therapeutic targets. In this review, we extensively explore the role of aldolase enzymes in various types of cancers in proliferation, invasion, migration, and drug resistance; we also significantly explore the possible treatment considering aldolase function.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Frutose-Bifosfato Aldolase/metabolismo , Animais
4.
Cell Rep ; 43(8): 114550, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39058593

RESUMO

Despite being the leading cause of lung cancer-related deaths, the underlying molecular mechanisms driving metastasis progression are still not fully understood. Transfer RNA-derived fragments (tRFs) have been implicated in various biological processes in cancer. However, the role of tRFs in lung adenocarcinoma (LUAD) remains unclear. Our study identified a tRF, tRF-Val-CAC-024, associated with the high-risk component of LUAD, through validation using 3 cohorts. Our findings demonstrated that tRF-Val-CAC-024 acts as an oncogene in LUAD. Mechanistically, tRF-Val-CAC-024 was revealed to bind to aldolase A (ALDOA) dependent on Q125/E224 and promote the oligomerization of ALDOA, resulting in increased enzyme activity and enhanced aerobic glycolysis in LUAD cells. Additionally, we provide preliminary evidence of its potential clinical value by investigating the therapeutic effects of tRF-Val-CAC-024 antagomir-loaded lipid nanoparticles (LNPs) in cell-line-derived xenograft models. These results could enhance our understanding of the regulatory mechanisms of tRFs in LUAD and provide a potential therapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Frutose-Bifosfato Aldolase , Glicólise , Neoplasias Pulmonares , RNA de Transferência , Humanos , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Linhagem Celular Tumoral , Feminino , Masculino , Camundongos Nus , Metástase Neoplásica , Multimerização Proteica , Camundongos Endogâmicos BALB C
5.
FEBS Lett ; 598(15): 1864-1876, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38997224

RESUMO

Fructose bisphosphate aldolases (FBAs) catalyze the reversible cleavage of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. We analyzed two previously uncharacterized cytosolic Arabidopsis FBAs, AtFBA4 and AtFBA5. Based on a recent report, we examined the interaction of AtFBA4 with calmodulin (CaM)-like protein 11 (AtCML11). AtFBA4 did not bind AtCML11; however, we found that CaM bound AtFBA5 in a Ca2+-dependent manner with high specificity and affinity (KD ~ 190 nm) and enhanced its stability. AtFBA4 and AtFBA5 exhibited Michaelis-Menten kinetics with Km and Vmax values of 180 µm and 4.9 U·mg-1 for AtFBA4, and 6.0 µm and 0.30 U·mg-1 for AtFBA5, respectively. The flavonoid morin inhibited both isozymes. Our study suggests that Ca2+ signaling and flavanols may influence plant glycolysis/gluconeogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Calmodulina , Flavonoides , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Calmodulina/metabolismo , Calmodulina/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/antagonistas & inibidores , Cálcio/metabolismo , Cinética , Ligação Proteica , Flavonas
6.
Structure ; 32(9): 1322-1326.e4, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013461

RESUMO

Two structures of fructose 6-phosphate aldolase, the wild-type and an engineered variant containing five active-site mutations, have been solved by cryoelectron microscopy (cryo-EM). The engineered variant affords production of aldols from aryl substituted ketones and aldehydes. This structure was solved to a resolution of 3.1 Å and contains the critical iminium reaction intermediate trapped in the active site. This provides new information that rationalizes the acquired substrate scope and aids in formulating hypotheses of the chemical mechanism. A Tyr residue (Y131) is positioned for a role as catalytic acid/base during the aldol reaction and the different structures demonstrate mobility of this amino acid residue. Further engineering of this fructose 6-phosphate aldolase (FSA) variant, guided by this new structure, identified additional FSA variants that display improved carboligation activities with 2-hydroxyacetophenone and phenylacetaldehyde.


Assuntos
Aldeídos , Domínio Catalítico , Frutose-Bifosfato Aldolase , Cetonas , Engenharia de Proteínas , Aldeídos/química , Aldeídos/metabolismo , Cetonas/química , Cetonas/metabolismo , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Modelos Moleculares , Microscopia Crioeletrônica , Especificidade por Substrato , Iminas/química , Iminas/metabolismo , Ligação Proteica , Acetaldeído/química , Acetaldeído/metabolismo , Acetaldeído/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Aldeído Liases , Proteínas de Escherichia coli
7.
Cell Host Microbe ; 32(8): 1365-1379.e10, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39059397

RESUMO

Peptostreptococcus stomatis (P. stomatis) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that P. stomatis accelerates colonic tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. P. stomatis adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/ß4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/ß4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of P. stomatis. P. stomatis-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. P. stomatis also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAFV600E-mutant CRC xenografts. Thus, we identify P. stomatis as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.


Assuntos
Carcinogênese , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Peptostreptococcus , Receptor ErbB-2 , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , /farmacologia
8.
Mol Metab ; 87: 101984, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972375

RESUMO

OBJECTIVE: Stable isotope studies have shown that hepatic de novo lipogenesis (DNL) plays an important role in the pathogenesis of intrahepatic lipid (IHL) deposition. Furthermore, previous research has demonstrated that fructose 1-phosphate (F1P) not only serves as a substrate for DNL, but also acts as a signalling metabolite that stimulates DNL from glucose. The aim of this study was to elucidate the mediators of F1P-stimulated DNL, with special focus on two key regulators of intrahepatic glucose metabolism, i.e., glucokinase regulatory protein (GKRP) and carbohydrate response element binding protein (ChREBP). METHODS: Aldolase B deficient mice (Aldob-/-), characterized by hepatocellular F1P accumulation, enhanced DNL, and hepatic steatosis, were either crossed with GKRP deficient mice (Gckr-/-) or treated with short hairpin RNAs directed against hepatic ChREBP. RESULTS: Aldob-/- mice showed higher rates of de novo palmitate synthesis from glucose when compared to wildtype mice (p < 0.001). Gckr knockout reduced de novo palmitate synthesis in Aldob-/- mice (p = 0.017), without affecting the hepatic mRNA expression of enzymes involved in DNL. In contrast, hepatic ChREBP knockdown normalized the hepatic mRNA expression levels of enzymes involved in DNL and reduced fractional DNL in Aldob-/- mice (p < 0.05). Of interest, despite downregulation of DNL in response to Gckr and ChREBP attenuation, no reduction in intrahepatic triglyceride levels was observed. CONCLUSIONS: Both GKRP and ChREBP mediate F1P-stimulated DNL in aldolase B deficient mice. Further studies are needed to unravel the role of GKRP and hepatic ChREBP in regulating IHL accumulation in aldolase B deficiency.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Frutose-Bifosfato Aldolase , Lipogênese , Fígado , Camundongos Knockout , Triglicerídeos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos , Fígado/metabolismo , Triglicerídeos/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Glucose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Transporte
9.
Biomolecules ; 14(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39062466

RESUMO

Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.


Assuntos
Aldeído Liases , Escherichia coli , Frutose-Bifosfato Aldolase , Simulação de Acoplamento Molecular , Nucleosídeos de Pirimidina , Thermotoga maritima , Animais , Escherichia coli/enzimologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/síntese química , Aldeído Liases/metabolismo , Aldeído Liases/química , Coelhos , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Thermotoga maritima/enzimologia , Fosfato de Di-Hidroxiacetona/metabolismo , Fosfato de Di-Hidroxiacetona/química , Estereoisomerismo
10.
Commun Biol ; 7(1): 849, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992061

RESUMO

Hereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease. Besides the accumulation of F1P, here we show that the activation of the purine degradation pathway is a common feature in aldolase B deficient mice exposed to fructose. The purine degradation pathway is a metabolic route initiated by adenosine monophosphate deaminase 2 (AMPD2) that regulates overall energy balance. We demonstrate that very low amounts of fructose are sufficient to activate AMPD2 in these mice via a phosphate trap. While blocking AMPD2 do not impact F1P accumulation and the risk of hypoglycemia, its deletion in hepatocytes markedly improves the metabolic dysregulation induced by fructose and corrects fat and glycogen storage while significantly increasing the voluntary tolerance of these mice to fructose. In summary, we provide evidence for a critical pathway activated in HFI that could be targeted to improve the metabolic consequences associated with fructose consumption.


Assuntos
AMP Desaminase , Intolerância à Frutose , Frutose-Bifosfato Aldolase , Frutose , Animais , Masculino , Camundongos , AMP Desaminase/genética , AMP Desaminase/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Frutose/metabolismo , Intolerância à Frutose/metabolismo , Intolerância à Frutose/genética , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutosefosfatos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/etiologia , Hepatopatias/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062929

RESUMO

The fructose-1,6-bisphosphate aldolase (FBA) gene family exists in higher plants, with the genes of this family playing significant roles in plant growth and development, as well as response to abiotic stresses. However, systematic reports on the FBA gene family and its functions in cucumber are lacking. In this study, we identified five cucumber FBA genes, named CsFBA1-5, that are distributed randomly across chromosomes. Phylogenetic analyses involving these cucumber FBAs, alongside eight Arabidopsis FBA proteins and eight tomato FBA proteins, were conducted to assess their homology. The CsFBAs were grouped into two clades. We also analyzed the physicochemical properties, motif composition, and gene structure of the cucumber FBAs. This analysis highlighted differences in the physicochemical properties and revealed highly conserved domains within the CsFBA family. Additionally, to explore the evolutionary relationships of the CsFBA family further, we constructed comparative syntenic maps with Arabidopsis and tomato, which showed high homology but only one segmental duplication event within the cucumber genome. Expression profiles indicated that the CsFBA gene family is responsive to various abiotic stresses, including low temperature, heat, and salt. Taken together, the results of this study provide a theoretical foundation for understanding the evolution of and future research into the functional characterization of cucumber FBA genes during plant growth and development.


Assuntos
Cucumis sativus , Frutose-Bifosfato Aldolase , Regulação da Expressão Gênica de Plantas , Filogenia , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Estresse Fisiológico/genética , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Arabidopsis/genética , Solanum lycopersicum/genética , Família Multigênica , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética , Sintenia/genética , Mapeamento Cromossômico
12.
Theranostics ; 14(10): 3793-3809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994031

RESUMO

Rationale: CD8+ T cells undergo a series of metabolic reprogramming processes during their activation and proliferation, including increased glycolysis, decreased aerobic oxidation of sugars, increased amino acid metabolism and increased protein synthesis. However, it is still unclear what factors regulate these metabolic reprogramming processes in CD8+ T cells in the tumor immune microenvironment. Methods: T cell chromobox protein 4 (CBX4) knock-out mice models were used to determine the role of CBX4 in CD8+ T cells on the tumor immune microenvironment and tumor progression. Flow cytometry, Cut-Tag qPCR, Chip-seq, immunoprecipitation, metabolite detection, lentivirus infection and adoptive T cells transfer were performed to explore the underlying mechanisms of CBX4 knock-out in promoting CD8+ T cell activation and inhibiting tumor growth. Results: We found that CBX4 expression was induced in tumor-infiltrating CD8+ T cells and inhibited CD8+ T cell function by regulating glucose metabolism in tumor tissue. Mechanistically, CBX4 increases the expression of the metabolism-associated molecule aldolase B (Aldob) through sumoylation of trans-acting transcription factor 1 (SP1) and Krüppel-like factor 3 (KLF3). In addition, Aldob inhibits glycolysis and ATP synthesis in T cells by reducing the phosphorylation of the serine/threonine protein kinase (Akt) and ultimately suppresses CD8+ T cell function. Significantly, knocking out CBX4 may improve the efficacy of anti-PD-1 therapy by enhancing the function of CD8+ T cells in the tumor microenvironment. Conclusion: CBX4 is involved in CD8+ T cell metabolic reprogramming and functional persistence in tumor tissues, and serves as an inhibitor in CD8+ T cells' glycolysis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Glicólise , Camundongos Knockout , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Humanos , Reprogramação Celular
13.
Int J Biol Macromol ; 275(Pt 1): 132885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838894

RESUMO

Fructose 1,6-bisphosphate aldolase (FBA) is a pivotal enzyme, which plays a critical role in fixing CO2 through the process of in the Calvin cycle. In this study, a comprehensive exploration of the FBA family genes in moso bamboo (Phyllostachys edulis) was conducted by the bioinformatics and biological analyses. A total of nine FBA genes (PeFBA1-PeFBA9) were identified in the moso bamboo genome. The expression patterns of PeFBAs across diverse tissues of moso bamboo suggested that they have multifaceted functionality. Notably, PeFBA8 might play an important role in regulating photosynthetic carbon metabolism. Co-expression and cis-element analyses demonstrated that PeFBA8 was regulated by a photosynthetic regulatory transcription factor (PeGLK1), which was confirmed by yeast one-hybrid and dual-luciferase assays. In-planta gene editing analysis revealed that the edited PeFBA8 mutants displayed compromised photosynthetic functionality, characterized by reduced electron transport rate and impaired photosystem I, leading to decreased photosynthesis rate overall, compared to the unedited control. The recombinant protein of PeFBA8 from prokaryotic expression exhibited enzymatic catalytic function. The findings suggest that the expression of PeFBA8 can affect photosynthetic efficiency of moso bamboo leaves, which underlines the potential of leveraging PeFBA8's regulatory mechanism to breed bamboo varieties with enhanced carbon fixation capability.


Assuntos
Carbono , Regulação da Expressão Gênica de Plantas , Fotossíntese , Fotossíntese/genética , Carbono/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Filogenia
14.
Aging Dis ; 15(5): 2271-2283, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739943

RESUMO

Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.


Assuntos
Frutose-Bifosfato Aldolase , Glicólise , Degeneração Macular , Piruvato Quinase , Epitélio Pigmentado da Retina , Animais , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/enzimologia , Envelhecimento/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
Stem Cell Res ; 78: 103451, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820866

RESUMO

Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease associated with a mutation in the aldolase B gene on chromosome 9q31. In this study, we generated a human-induced pluripotent stem cell (hiPSC) line, FDCHi015-A, from peripheral blood mononuclear cells (PBMCs) of a patient carrying the compound heterozygous mutations c.360_364delCAAA and c.1013C > T in exons 4 and 9 of the ALDOB gene, respectively. The iPSCs with the confirmed patient-specific mutation demonstrate pluripotency markers expression, a normal karyotype, and the ability to differentiate into derivatives of three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucócitos Mononucleares , Mutação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/citologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Linhagem Celular , Diferenciação Celular , Masculino , Cariótipo
16.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
17.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615009

RESUMO

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Humanos , Animais , Camundongos , Frutose-Bifosfato Aldolase/genética , Catálise , Biblioteca Gênica , Glicina Hidroximetiltransferase/genética , Carnitina , Mamíferos
18.
J Biol Chem ; 300(4): 107147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460940

RESUMO

Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.


Assuntos
Glicólise , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Zinco , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Regulação Fúngica da Expressão Gênica , Peroxidases/metabolismo , Peroxidases/genética , Mutação
19.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453820

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Hep G2 , Glicólise , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
20.
Sci Rep ; 14(1): 6488, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499636

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract and a leading cause of cancer-related death worldwide. Since many CRC patients are diagnosed already in the advanced stage, and traditional chemoradiotherapy is prone to drug resistance, it is important to find new therapeutic targets. In this study, the expression levels of ALDOA and p-AKT were detected in cancer tissues and paired normal tissues, and it was found that they were significantly increased in CRC tissues, and their high expression indicated poor prognosis. Moreover, a positive correlation between the expression of ALDOA and p-AKT was found in CRC tissues and paired normal tissues. In addition, the Kaplan-Meier analysis revealed that the group with both negative of ALDOA/p-AKT expression had longer five-year survival rates compared with the other group. Besides, the group with both high expression of ALDOA/p-AKT had a worse prognosis compared with the other group. Based on the expression of ALDOA and p-AKT in tumor tissues, we can effectively distinguish tumor tissues from normal tissues through cluster analysis. Furthermore, we constructed nomograms to predict 3-year and 5-year overall survival, showing that the expression of ALDOA/p-AKT plays a crucial role in predicting the prognosis of CRC patients. Therefore, ALDOA/p-AKT may act as a crucial role in CRC, which may provide new horizons for targeted therapies for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Prognóstico , Estimativa de Kaplan-Meier , Neoplasias Colorretais/metabolismo , Frutose-Bifosfato Aldolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA