Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
BMC Cancer ; 24(1): 1133, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261819

RESUMO

BACKGROUND: Cervical cancer, encompassing squamous cell carcinoma and endocervical adenocarcinoma (CESC), presents a considerable risk to the well-being of women. Recent studies have reported that squalene epoxidase (SQLE) is overexpressed in several cancers, which contributes to cancer development. METHODS: RNA sequencing data for SQLE were obtained from The Cancer Genome Atlas. In vitro experiments, including colorimetry, colony formation, Transwell, RT-qPCR, and Western blotting were performed. Furthermore, a transplanted CESC nude mouse model was constructed to validate the tumorigenic activity of SQLE in vivo. Associations among the SQLE expression profiles, differentially expressed genes (DEGs), immune infiltration, and chemosensitivity were examined. The prognostic value of genetic changes and DNA methylation in SQLE were also assessed. RESULTS: SQLE mRNA expression was significantly increased in CESC. ROC analysis revealed the strong diagnostic ability of SQLE toward CESC. Patients with high SQLE expression experienced shorter overall survival. The promotional effects of SQLE on cancer cell proliferation, metastasis, cholesterol synthesis, and EMT were emphasized. DEGs functional enrichment analysis revealed the signaling pathways and biological processes. Notably, a connection existed between the SQLE expression and the presence of immune cells as well as the activation of immune checkpoints. Increased SQLE expressions exhibited increased chemotherapeutic responses. SQLE methylation status was significantly associated with CESC prognosis. CONCLUSION: SQLE significantly affects CESC prognosis, malignant behavior, cholesterol synthesis, EMT, and immune infiltration; thereby offering diagnostic and indicator roles in CESC. Thus, SQLE can be a novel therapeutic target in CESC treatment.


Assuntos
Biomarcadores Tumorais , Colesterol , Transição Epitelial-Mesenquimal , Esqualeno Mono-Oxigenase , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/mortalidade , Feminino , Transição Epitelial-Mesenquimal/genética , Animais , Prognóstico , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colesterol/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
2.
Mycoses ; 67(8): e13778, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086026

RESUMO

BACKGROUND: Over the past decades, the increasing incidence of recurrent dermatophytosis associated with terbinafine-resistant Trichophyton has posed a serious challenge in management of dermatophytosis. Independent reports of failure of treatment and high minimum inhibitory concentrations (MIC) of antifungals are available, but data correlating MIC and clinical outcomes is still sparse. Therefore, the present study was conducted to evaluate the outcomes of systemic treatment of dermatophytosis and its correlation with MIC of the etiological agents isolated from such patients. METHODS: Retrospective analysis of 587 consecutive patients with dermatophytosis was done from March 2017 to March 2019. Demographic and clinical details of the patients were noted, along with the results of direct microscopy and fungal culture. The isolates were identified by sequencing the internal transcribed spacer region of rDNA. Antifungal susceptibility testing was performed following the CLSI M38 protocol. Mutation in the squalene epoxidase (SE) gene was detected by DNA sequencing and ARMS-PCR. Based on the culture-positivity and prescribed systemic antifungal, patients were categorised into Group I culture-positive cases treated with systemic terbinafine and Group II culture-positive cases treated with systemic itraconazole, each for a total period of 12 weeks. RESULTS: In the present study, 477 (81.39%) were culture-positive; however, 12 weeks follow-up was available for 294 patients (Group I-157 and Group II-137) who were included for statistical analysis. In both groups [Group I-37/63 (51.4%) and Group II-14/54 (58.3%)], a better cure rate was observed if the initiation of therapy was performed within <6 months of illness. Treatment outcome revealed that if therapy was extended for 8-12 weeks, the odds of cure rate are significantly better (p < .001) with either itraconazole (Odd Ratio-15.5) or terbinafine (Odd Ratio-4.34). Higher MICs for terbinafine were noted in 41 cases (cured-18 and uncured-23) in Group I and 39 cases (cured-16 and uncured-23) in Group II. From cured (Group I-17/18; 94.4% and Group II-14/16; 87.5%) and uncured (Group I-20/23; 86.9% and Group II-21/23; 91.3%) cases had F397L mutation in the SE gene. No significant difference in cure rate was observed in patients with Trichophyton spp. having terbinafine MIC ≥ 1or <1 µg/mL (Group I-p = .712 and Group II-p = .69). CONCLUSION: This study revealed that prolonging terbinafine or itraconazole therapy for beyond 8 weeks rather than the standard 4 weeks significantly increases the cure rate. Moreover, no correlation has been observed between antifungal susceptibility and clinical outcomes. The MIC remains the primary parameter for defining antifungal activity and predicting the potency of antifungal agents against specific fungi. However, predicting therapeutic success based solely on the MIC of a fungal strain is not always reliable, as studies have shown a poor correlation between in vitro data and in vivo outcomes. To address this issue, further correlation of antifungal susceptibility testing (AFST) data with clinical outcomes and therapeutic drug monitoring is needed. It also highlights that initiation of the treatment within <6 months of illness increases cure rates and reduces recurrence. Extensive research is warranted to establish a better treatment regime for dermatophytosis.


Assuntos
Antifúngicos , Itraconazol , Mutação , Esqualeno Mono-Oxigenase , Terbinafina , Tinha , Trichophyton , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Esqualeno Mono-Oxigenase/genética , Terbinafina/uso terapêutico , Terbinafina/farmacologia , Tinha/tratamento farmacológico , Tinha/microbiologia , Resultado do Tratamento , Trichophyton/efeitos dos fármacos , Trichophyton/genética
3.
Int J Biol Macromol ; 275(Pt 2): 133698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972654

RESUMO

Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.


Assuntos
Colesterol , Ferroptose , Células-Tronco Neoplásicas , Transdução de Sinais , Esqualeno Mono-Oxigenase , Estearoil-CoA Dessaturase , Neoplasias Gástricas , Serina-Treonina Quinases TOR , Ferroptose/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , Colesterol/metabolismo , Linhagem Celular Tumoral , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica
4.
Nat Commun ; 15(1): 6312, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060235

RESUMO

Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3ß,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Proteínas Fúngicas , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Azóis/farmacologia , Ergosterol/metabolismo , Ergosterol/biossíntese , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/metabolismo , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Oxirredutases/metabolismo , Oxirredutases/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , Lanosterol/análogos & derivados
5.
Mycoses ; 67(7): e13768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036952

RESUMO

BACKGROUND: There is a concerning rise in antifungal-resistant dermatophytosis globally, with resistance to terbinafine conferred by point mutations in the squalene epoxidase (SQLE) gene. OBJECTIVES: Report changes in the prevalence and profile of SQLE mutations in onychomycosis patients in the United States. METHODS: A longitudinal cohort study of toenail samples was collected from suspected onychomycosis patients over an 18-month period from 2022 to 2023. Samples were submitted from across the United States and subjected to multiplex real-time polymerase chain reactions for dermatophyte detection, with further screening of SQLE mutations at four known hotspots (393Leu, 397Phe, 415Phe and 440His). RESULTS: A total of 62,056 samples were submitted (mean age: 57.5 years; female: 60.4%). Dermatophytes were detected in 38.5% of samples, primarily Trichophyton rubrum complex (83.6%) and T. mentagrophytes complex (10.7%). A survey of SQLE mutations was carried out in 22,610 dermatophyte samples; there was a significant increase in the prevalence of SQLE mutations between the first quarter of 2022 and the second quarter of 2023 (29.0 to 61.9 per 1000 persons). The Phe397Leu substitution was the predominant mutation; Phe415Ser and His440Tyr have also emerged which were previously reported as minor mutations in skin samples. The temporal change in mutation rates can be primarily attributed to the Phe415Ser substitution. Samples from elderly patients (>70 years) are more likely to be infected with the T. mentagrophytes complex including strains harbouring the Phe415Ser substitution. CONCLUSION: The prevalence of SQLE mutations among onychomycosis patients with Trichophyton infections may be underestimated. Older individuals may have a higher risk.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Onicomicose , Esqualeno Mono-Oxigenase , Terbinafina , Humanos , Onicomicose/microbiologia , Onicomicose/epidemiologia , Onicomicose/tratamento farmacológico , Esqualeno Mono-Oxigenase/genética , Feminino , Pessoa de Meia-Idade , Masculino , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Farmacorresistência Fúngica/genética , Estados Unidos/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudos Longitudinais , Idoso , Arthrodermataceae/genética , Arthrodermataceae/efeitos dos fármacos , Adulto , Mutação , Estudos de Coortes , Trichophyton/genética , Trichophyton/efeitos dos fármacos , Adulto Jovem , Prevalência , Mutação Puntual , Idoso de 80 Anos ou mais , Adolescente , Unhas/microbiologia
6.
Mycopathologia ; 189(4): 52, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864945

RESUMO

Treatment-resistant dermatophytosis caused by the members of the Trichophyton mentagrophytes/Trichophyton interdigitale species group (TMTISG) is increasing worldwide. We aimed to determine the prevalence of TMTISG in patients with dermatophytosis in two centers from north of Iran and detect the possible mutations in the squalene epoxidase (SQLE) gene in relevant terbinafine (TRB) resistant pathogenic isolates. From November 2021 to December 2022, 1960 patients suspected to dermatophytosis and referred to two mycology referral laboratories in the north of Iran were included in the study. Identification of all dermatophyte isolates was confirmed by RFLP of rDNA internal transcribed spacer (ITS) regions. Antifungal susceptibility testing against five common antifungals using the CLSI-M38-A3 protocol was performed. The TMTISG isolates resistant to TRB, were further analyzed to determine the possible mutations in the SQLE gene. Totally, 647 cases (33%) were positive for dermatophytosis of which 280 cases (43.3%) were identified as members of TMTISG. These were more frequently isolated from tinea corporis 131 (44.56%) and tinea cruris 116 (39.46%). Of 280 TMTISG isolates, 40 (14.3%) were resistant to TRB (MIC ≥ 4 µg/mL), all found to be T. indotineae in ITS sequencing. In SQLE sequencing 34 (85%) of TRB-resistant isolates had coincident mutations of Phe397Leu and Ala448Thr whereas four and two isolates had single mutations of Phe397Leu and Leu393Ser, respectively. Overall, the resistance of Iranian TMTISG isolates to TRB greatly occurred by a mutation of Phe397Leu in the SQLE gene as alone or in combination with Ala448Thr. Nevertheless, for the occurrence of in vitro resistance, only the presence of Phe397Leu mutation seems to be decisive.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase , Terbinafina , Tinha , Irã (Geográfico)/epidemiologia , Farmacorresistência Fúngica/genética , Humanos , Antifúngicos/farmacologia , Terbinafina/farmacologia , Estudos Transversais , Tinha/microbiologia , Tinha/epidemiologia , Prevalência , Arthrodermataceae/genética , Arthrodermataceae/efeitos dos fármacos , Masculino , Feminino , Esqualeno Mono-Oxigenase/genética , Adulto , Pessoa de Meia-Idade , Mutação , Idoso , Adulto Jovem , Adolescente , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Criança
7.
J Dtsch Dermatol Ges ; 22(7): 922-934, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924688

RESUMO

Tinea incognita (TI) can mimic other dermatoses, presenting a diagnostic challenge for dermatologists. In some uncertain cases, it is crucial to accurately identify the causative agent using internal transcribed spacer (ITS) sequencing. The global issue of drug-resistant dermatophytosis is increasing, with Trichophyton (T.) indotineae being the main cause. This study presents four cases of TI (diagnosed as eczema) by terbinafine-resistant T. indotineae strains and reviews the current global TI epidemiology based on geographical continent and related conditions. Furthermore, squalene epoxidase (SQLE)-associated resistance mechanisms are evaluated. Lesions caused by terbinafine-resistant T. indotineae strains do not respond to allylamine antifungals, thus allowing the infection to spread. Among T. indotineae isolates, the SQLE F397L substitution is the most prevalent mutation contributing to azole resistance. F397L and L393F replacements in SQLE were detected in all isolates that exhibited high-level resistance. L393S was seen in isolates with low-resistant strains. Interestingly, and for the first time, an L393F amino acid substitution in the SQLE gene product was detected in the Iranian clinical T. indotineae strain. Also, a genomics-based update on terbinafine resistance that focuses on T. indotineae is discussed in this study.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Terbinafina , Tinha , Trichophyton , Humanos , Tinha/tratamento farmacológico , Tinha/microbiologia , Tinha/genética , Terbinafina/uso terapêutico , Farmacorresistência Fúngica/genética , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Masculino , Trichophyton/genética , Trichophyton/efeitos dos fármacos , Feminino , Mutação/genética , Pessoa de Meia-Idade , Adulto , Esqualeno Mono-Oxigenase/genética , Corticosteroides/uso terapêutico
8.
J Mycol Med ; 34(3): 101495, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38896927

RESUMO

Terbinafine resistance has become epidemic as an emerging problem in treatment of dermatohpytosis. This could be attributed in part to a point mutation in the squalene epoxidase (SQLE) gene. In this study, point mutations in the SQLE gene were studied in T. rubrum and T. mentagrophytes/T. interdigitale species complex as two main causative agents of dermatophytosis. Antifungal susceptibility of clinical isolates of T. rubrum (n = 27) and T. mentagrophytes/T. interdigitale (n = 56) was assessed using the M38-3rd edition CLSI method. The SQLE gene and ITS region were sequenced for all the fungal strains, and the mutation sites and genotypes of the terbinafine-resistant strains were characterized. The results demonstrated that, in T. rubrum, the minimum inhibitory concentration of terbinafine (MIC50 and MIC90) was 0.03 µg/ml, and the geometric mean (G mean) concentration was 0.02. For the T. mentagrophytes complex, the MIC50 and MIC90 were 0.03 and 1.0 µg/ml, respectively, and the G mean concentration was 0.04 µg/ml. Four out of the five resistant strains were T. indotineae harboring the F397L and Q408L mutations, while the last one was T. mentagrophytes genotype VII, which harbors the F397L mutation. T. indotineae was the prominent causative agent of terbinafine resistance, with 80 % of the isolates, and T. mentagrophytes genotype VII was introduced as a new genotype in the terbinafine-resistant T. mentagrophytes complex. Our findings further substantiate the importance of antifungal susceptibility testing in selecting the choice of drug for effective treatment of dermatophytosis and highlight the importance of screening dermatophyte species for point mutations responsible for newly developed resistant strains to improve the current knowledge of overcoming infections caused by resistant species.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Genótipo , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase , Terbinafina , Tinha , Terbinafina/farmacologia , Esqualeno Mono-Oxigenase/genética , Farmacorresistência Fúngica/genética , Humanos , Antifúngicos/farmacologia , Tinha/microbiologia , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Arthrodermataceae/enzimologia , Mutação Puntual , Mutação , Masculino , Feminino , Proteínas Fúngicas/genética , Adulto , Pessoa de Meia-Idade
9.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38866707

RESUMO

Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.


Assuntos
Biomassa , Meios de Cultura , Fermentação , Micélio , Triterpenos , Wolfiporia , Wolfiporia/genética , Wolfiporia/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micélio/genética , Triterpenos/metabolismo , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Expressão Gênica
10.
Sci Rep ; 14(1): 12669, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830918

RESUMO

Dermatophytes show a wide geographic distribution and are the main causative agents of skin fungal infections in many regions of the world. Recently, their resistance to antifungal drugs has led to an obstacle to effective treatment. To address the lack of dermatophytosis data in Iraq, this study was designed to investigate the distribution and prevalence of dermatophytes in the human population and single point mutations in squalene epoxidase gene (SQLE) of terbinafine resistant isolates. The identification of 102 dermatophytes isolated from clinical human dermatophytosis was performed through morphological and microscopic characteristics followed by molecular analysis based on ITS and TEF-1α sequencing. Phylogeny was achieved through RAxML analysis. CLSI M38-A2 protocol was used to assess antifungal susceptibility of the isolates to four major antifungal drugs. Additionally, the presence of point mutations in SQLE gene, which are responsible for terbinafine resistance was investigated. Tinea corporis was the most prevalent clinical manifestation accounting for 37.24% of examined cases of dermatophytosis. Based on ITS, T. indotineae (50.98%), T. mentagrophytes (19.61%), and M. canis (29.41%) was identified as an etiologic species. T. indotineae and T. mentagrophytes strains were identified as T. interdigitale based on TEF-1α. Terbinafine showed the highest efficacy among the tested antifungal drugs. T. indotineae and T. mentagrophytes showed the highest resistance to antifungal drugs with MICs of 2-4 and 4 µg/mL, while M. canis was the most susceptible species. Three of T. indotineae isolates showed mutations in SQLE gene Phe397Leu substitution. A non-previously described point mutation, Phe311Leu was identified in T. indotineae and mutations Lys276Asn, Phe397Leu and Leu419Phe were diagnosed in T. mentagrophytes XVII. The results of mutation analysis showed that Phe397Leu was a destabilizing mutation; protein stability has decreased with variations in pH, and point mutations affected the interatomic interaction, resulting in bond disruption. These results could help to control the progression of disease effectively and make decisions regarding the selection of appropriate drugs for dermatophyte infections.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Mutação Puntual , Esqualeno Mono-Oxigenase , Tinha , Humanos , Antifúngicos/farmacologia , Iraque/epidemiologia , Tinha/microbiologia , Tinha/epidemiologia , Tinha/tratamento farmacológico , Farmacorresistência Fúngica/genética , Masculino , Arthrodermataceae/genética , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/patogenicidade , Arthrodermataceae/isolamento & purificação , Feminino , Esqualeno Mono-Oxigenase/genética , Adulto , Filogenia , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Proteínas Fúngicas/genética , Idoso
11.
Cell Commun Signal ; 22(1): 278, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762737

RESUMO

BACKGROUND: While de novo cholesterol biosynthesis plays a crucial role in chemotherapy resistance of colorectal cancer (CRC), the underlying molecular mechanism remains poorly understood. METHODS: We conducted cell proliferation assays on CRC cells with or without depletion of squalene epoxidase (SQLE), with or without 5-fluorouracil (5-FU) treatment. Additionally, a xenograft mouse model was utilized to explore the impact of SQLE on the chemosensitivity of CRC to 5-FU. RNA-sequencing analysis and immunoblotting analysis were performed to clarify the mechanism. We further explore the effect of SQLE depletion on the ubiquitin of NF-κB inhibitor alpha (IκBα) and (S)-2,3-epoxysqualene on the binding of IκBα to beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) by using immunoprecipitation assay. In addition, a cohort of 272 CRC patients were selected for our clinical analyses. RESULTS: Mechanistically, (S)-2,3-epoxysqualene promotes IκBα degradation and subsequent NF-κB activation by enhancing the interaction between BTRC and IκBα. Activated NF-κB upregulates the expression of baculoviral IAP repeat containing 3 (BIRC3), sustains tumor cell survival after 5-FU treatment and promotes 5-FU resistance of CRC in vivo. Notably, the treatment of terbinafine, an inhibitor of SQLE commonly used as antifungal drug in clinic, enhances the sensitivity of CRC to 5-FU in vivo. Additionally, the expression of SQLE is associated with the prognosis of human CRC patients with 5-FU-based chemotherapy. CONCLUSIONS: Thus, our finding not only demonstrates a new role of SQLE in chemoresistance of CRC, but also reveals a novel mechanism of (S)-2,3-epoxysqualene-dependent NF-κB activation, implicating the combined potential of terbinafine for 5-FU-based CRC treatment.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , NF-kappa B , Esqualeno Mono-Oxigenase , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , NF-kappa B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Masculino , Proliferação de Células/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Basic Microbiol ; 64(7): e2400112, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38770635

RESUMO

Dermatophytosis is a cutaneous infection that is able to degrade the keratinized tissues of the animal/human body, like skin, nails, and hair, causing chronic or subacute infection with the contact of some specific fungal strains. Trichophyton mentagrophytes are the most potential fungal pathogen causing dermatophytoses. The present study focuses on computationally based in silico antifungal activity of selected phytocompounds of Leucas aspera (Willd.) Link. against dermatophytic fungus, T. mentagrophytes. Validation and screening of derived phytocompounds is performed using Lipinski rule of five and toxicity test through Protox-II. Five target genes involved in dermatophytosis, induced by T. mentagrophytes are retrieved from the UniProt Database, and the corresponding proteins such as glucan 1,3-beta-glucosidase ARB_02797, Probable class II chitinase ARB_00204, squalene monooxygenase, actin, and ubiquitin are selected for in silico study. Three-dimensional structures of the target protein were computationally determined and validated through modeling tools and techniques due to the lack of validated protein structures in the database. Then, these proteins are used for in silico molecular docking through the AutoDock Vina tool to find out the promising phytocompounds. This study could be utilized in designing more effective drugs against T. mentagrophytes. Based on this work, a plant-based natural alternative can be added to the treatment of dermatophytosis rather than synthetic supplements.


Assuntos
Antifúngicos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antifúngicos/farmacologia , Antifúngicos/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Arthrodermataceae/efeitos dos fármacos , Tinha/microbiologia , Tinha/tratamento farmacológico , Esqualeno Mono-Oxigenase/antagonistas & inibidores , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/química , Humanos , Simulação por Computador , Quitinases/metabolismo , Quitinases/antagonistas & inibidores , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Biologia Computacional , Actinas/metabolismo
13.
JAMA Dermatol ; 160(7): 701-709, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748419

RESUMO

Importance: Trichophyton indotineae is an emerging dermatophyte causing outbreaks of extensive tinea infections often unresponsive to terbinafine. This species has been detected worldwide and in multiple US states, yet detailed US data on infections with T indotineae are sparse and could improve treatment practices and medical understanding of transmission. Objective: To correlate clinical features of T indotineae infections with in vitro antifungal susceptibility testing results, squalene epoxidase gene sequence variations, and isolate relatedness using whole-genome sequencing. Design, Setting, and Participants: This retrospective cohort study of patients with T indotineae infections in New York City spanned May 2022 to May 2023. Patients with confirmed T indotineae infections were recruited from 6 New York City medical centers. Main Outcome and Measure: Improvement or resolution at the last follow-up assessment. Results: Among 11 patients with T indotineae (6 male and 5 female patients; median [range] age, 39 [10-65] years), 2 were pregnant; 1 had lymphoma; and the remainder were immunocompetent. Nine patients reported previous travel to Bangladesh. All had widespread lesions with variable scale and inflammation, topical antifungal monotherapy failure, and diagnostic delays (range, 3-42 months). Terbinafine treatment failed in 7 patients at standard doses (250 mg daily) for prolonged duration; these patients also had isolates with amino acid substitutions at positions 393 (L393S) or 397 (F397L) in squalene epoxidase that correlated with elevated terbinafine minimum inhibitory concentrations of 0.5 µg/mL or higher. Patients who were treated with fluconazole and griseofulvin improved in 2 of 4 and 2 of 5 instances, respectively, without correlation between outcomes and antifungal minimum inhibitory concentrations. Furthermore, 5 of 7 patients treated with itraconazole cleared or had improvement at the last follow-up, and 2 of 7 were lost to follow-up or stopped treatment. Based on whole-genome sequencing analysis, US isolates formed a cluster distinct from Indian isolates. Conclusion and Relevance: The results of this case series suggest that disease severity, diagnostic delays, and lack of response to typically used doses and durations of antifungals for tinea were common in this primarily immunocompetent patient cohort with T indotineae, consistent with published data. Itraconazole was generally effective, and the acquisition of infection was likely in Bangladesh.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Tinha , Trichophyton , Humanos , Masculino , Feminino , Antifúngicos/farmacologia , Antifúngicos/administração & dosagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Tinha/tratamento farmacológico , Tinha/microbiologia , Tinha/diagnóstico , Adulto , Idoso , Trichophyton/efeitos dos fármacos , Trichophyton/genética , Trichophyton/isolamento & purificação , Adolescente , Criança , Adulto Jovem , Sequenciamento Completo do Genoma , Esqualeno Mono-Oxigenase/genética , Cidade de Nova Iorque/epidemiologia , Terbinafina/farmacologia , Terbinafina/administração & dosagem , Farmacorresistência Fúngica , Estudos de Coortes
14.
Cell Rep ; 43(4): 114094, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613784

RESUMO

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.


Assuntos
Camundongos Endogâmicos C57BL , Esqualeno Mono-Oxigenase , Animais , Esqualeno Mono-Oxigenase/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/biossíntese , Colesterol/análogos & derivados , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
15.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612682

RESUMO

Squalene epoxidase (SQLE) is a key enzyme in the mevalonate-cholesterol pathway that plays a critical role in cellular physiological processes. It converts squalene to 2,3-epoxysqualene and catalyzes the first oxygenation step in the pathway. Recently, intensive efforts have been made to extend the current knowledge of SQLE in cancers through functional and mechanistic studies. However, the underlying mechanisms and the role of SQLE in cancers have not been fully elucidated yet. In this review, we retrospected current knowledge of SQLE as a rate-limiting enzyme in the mevalonate-cholesterol pathway, while shedding light on its potential as a diagnostic and prognostic marker, and revealed its therapeutic values in cancers. We showed that SQLE is regulated at different levels and is involved in the crosstalk with iron-dependent cell death. Particularly, we systemically reviewed the research findings on the role of SQLE in different cancers. Finally, we discussed the therapeutic implications of SQLE inhibitors and summarized their potential clinical values. Overall, this review discussed the multifaceted mechanisms that involve SQLE to present a vivid panorama of SQLE in cancers.


Assuntos
Neoplasias , Esqualeno Mono-Oxigenase , Humanos , Morte Celular , Colesterol , Ácido Mevalônico , Neoplasias/genética , Esqualeno Mono-Oxigenase/genética
16.
Med Chem ; 20(7): 721-732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584555

RESUMO

BACKGROUND: According to the World Health Organisation, cardiovascular complications have been recognized as the leading course of death between 2000 and 2019. Cardiovascular complications are caused by excess LDL cholesterol in the body or arteries that can build up to form a plaque. There are drugs currently in clinical use called statins that target HMGCoA reductase. However, these drugs result in several side effects. This work investigated using computational approaches to lower cholesterol by investigating green tea extracts as an inhibitors for squalene monooxygenase (the second-rate-controlling step in cholesterol synthesis). METHODS: Pharmacophore modeling was done to identify possible pharmacophoric sites based on the pIC50 values. The best hypothesis generated by pharmacophore modeling was further validated by atom-based 3D QSAR, where 70% of the data set was treated as the training set. Prior molecular docking ADMET studies were done to investigate the physiochemical properties of these molecules. Glide docking was performed, followed by molecular dynamics to evaluate the protein conformational changes. RESULTS: Pharmacophore results suggest that the best molecules to interact with the biological target should have at least one hydrogen acceptor (A5), two hydrogen donors (D9 and D10), and two benzene rings (R14 and R15) for green tea polyphenols and theasinensin A. ADMET result shows that all molecules in this class have low oral adsorption. Molecular docking results showed that some green tea polyphenols have good binding affinities, with most of these structures having a docking score of less than -10 kcal/mol. Molecular dynamics further illustrated that the best-docked ligands perfectly stay within the active site over a 100 ns simulation. CONCLUSION: The results obtained from this study suggest that green tea polyphenols have the potential for inhibition of squalene monooxygenase, except for theasinensin A.


Assuntos
Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Extratos Vegetais , Esqualeno Mono-Oxigenase , Chá , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Esqualeno Mono-Oxigenase/antagonistas & inibidores , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Chá/química , Relação Quantitativa Estrutura-Atividade , Simulação de Dinâmica Molecular , Humanos , Estrutura Molecular
17.
J Biol Chem ; 300(5): 107232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537696

RESUMO

Cholesterol is essential for both normal cell viability and cancer cell proliferation. Aberrant activity of squalene monooxygenase (SM, also known as squalene epoxidase), the rate-limiting enzyme of the committed cholesterol synthesis pathway, is accordingly implicated in a growing list of cancers. We previously reported that hypoxia triggers the truncation of SM to a constitutively active form, thus preserving sterol synthesis during oxygen shortfalls. Here, we show SM truncation is upregulated and correlates with the magnitude of hypoxia in endometrial cancer tissues, supporting the in vivo relevance of our earlier work. To further investigate the pathophysiological consequences of SM truncation, we examined its lipid droplet-localized pool using complementary immunofluorescence and cell fractionation approaches and found that it exclusively comprises the truncated enzyme. This partitioning is facilitated by the loss of an endoplasmic reticulum-embedded region at the SM N terminus, whereas the catalytic domain containing membrane-associated C-terminal helices is spared. Moreover, we determined multiple amphipathic helices contribute to the lipid droplet localization of truncated SM. Taken together, our results expand on the striking differences between the two forms of SM and suggest upregulated truncation may contribute to SM-related oncogenesis.


Assuntos
Colesterol , Neoplasias do Endométrio , Gotículas Lipídicas , Esqualeno Mono-Oxigenase , Feminino , Humanos , Linhagem Celular Tumoral , Colesterol/metabolismo , Colesterol/biossíntese , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/genética , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica , Gotículas Lipídicas/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , Regulação para Cima
18.
Aging Cell ; 23(7): e14152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517197

RESUMO

As people age, the risk and progression of colorectal cancer (CRC), along with cholesterol levels, tend to increase. Nevertheless, epidemiological studies on serum lipids and CRC have produced conflicting results. We previously demonstrated that the reduction of squalene epoxidase (SQLE) due to accumulated cholesterol within cells accelerates CRC progression through the activation of the ß-catenin pathway. This study aimed to investigate the mechanism by which age-related cholesterol accumulation within tissue accelerates CRC progression and to assess the clinical significance of SQLE in older individuals with elevated CRC risk. Using machine learning-based digital image analysis with fluorescence-immunohistochemistry, we assessed SQLE, GSK3ßpS9 (GSK3ß activity inhibition through serine 9 phosphorylation at GSK3ß), p53 wild-type (p53WT), and p53 mutant (p53MT) levels in CRC tissues. Our analysis revealed a significant reduction in SQLE, p53WT, and p53MT and increase in GSK3ßpS9 levels, all associated with the substantial accumulation of intra-tissue cholesterol in aged CRCs. Cox analysis underscored the significant influence of SQLE on overall survival and progression-free survival in grade 2-3 CRC patients aged over 50. SQLE and GSK3ßpS9 consistently exhibited outstanding prognostic and diagnostic performance, particularly in older individuals. Furthermore, combining SQLE with p53WT, p53MT, and GSK3ßpS9 demonstrated a robust diagnostic ability in the older population. In conclusion, we have identified that individuals aged over 50 face an increased risk of CRC progression due to aging-linked cholesterol accumulation within tissue and the subsequent reduction in SQLE levels. This study also provides valuable biomarkers, including SQLE and GSK3ßpS9, for older patients at elevated risk of CRC.


Assuntos
Colesterol , Neoplasias Colorretais , Progressão da Doença , Esqualeno Mono-Oxigenase , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/metabolismo , Colesterol/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Risco , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética
19.
Medicine (Baltimore) ; 103(6): e37030, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335381

RESUMO

Squalene epoxidase (SQLE) is an essential enzyme involved in cholesterol biosynthesis. However, its role in sarcoma and its correlation with immune infiltration remains unclear. All original data were downloaded from The Cancer Genome Atlas (TCGA). SQLE expression was explored using the TCGA database, and correlations between SQLE and cancer immune characteristics were analyzed via the TISIDB databases. Generally, SQLE is predominantly overexpressed and has diagnostic and prognostic value in sarcoma. Upregulated SQLE was associated with poorer overall survival, poorer disease-specific survival, and tumor multifocality in sarcoma. Mechanistically, we identified a hub gene that included a total of 82 SQLE-related genes, which were tightly associated with histone modification pathways in sarcoma patients. SQLE expression was negatively correlated with infiltrating levels of dendritic cells and plasmacytoid dendritic cells and positively correlated with Th2 cells. SQLE expression was negatively correlated with the expression of chemokines (CCL19 and CX3CL1) and chemokine receptors (CCR2 and CCR7) in sarcoma. In conclusion, SQLE may be used as a prognostic biomarker for determining prognosis and immune infiltration in sarcoma.


Assuntos
Sarcoma , Esqualeno Mono-Oxigenase , Humanos , Prognóstico , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Biomarcadores Tumorais/genética , Sarcoma/genética
20.
Mycoses ; 67(2): e13708, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404204

RESUMO

BACKGROUND: Terbinafine, an allylamine antifungal, is crucial for treating dermatophytosis by inhibiting squalene epoxidase (SQLE) in the ergosterol biosynthetic pathway. However, resistance is emerging, particularly in India and Southeast Asia, but reports of resistance spread worldwide. Despite this, comprehensive studies on terbinafine resistance in Trichophyton are still limited. OBJECTIVES: This research aimed to determine the prevalence of terbinafine resistance in the Czech Republic, with a focus on Trichophyton rubrum and Trichophyton mentagrophytes, and investigate the underlying molecular mechanisms. PATIENTS/METHODS: A total of 514 clinical strains of T. rubrum and 240 T. mentagrophytes collected from four Czech clinical institutions were screened for terbinafine resistance. Molecular investigations included DNA sequencing, specifically the ITS rDNA region and SQLE gene, as well as antifungal susceptibility testing following EUCAST guidelines. RESULTS: While no resistance was observed in T. rubrum, 2.5% of T. mentagrophytes strains exhibited resistance, marked by the F397L mutation in SQLE. Notably, resistance surged from 1.2% in 2019 to 9.3% in 2020 but reverted to 0% in 2021. All resistant strains were identified as T. mentagrophytes var. indotineae. Resistant strains exhibited high MICs for terbinafine (≥4 mg L-1 ) but low MICs to the other seven antifungals tested except for fluconazole. CONCLUSIONS: This study highlights the emergence of terbinafine-resistant T. mentagrophytes strains in the Czech Republic, with the F397L mutation being pivotal. Due to the relatively low resistance level, the current guidelines for dermatomycosis treatment in the Czech Republic remain effective, but ongoing surveillance is essential for timely adaptations if resistance patterns change.


Assuntos
Antifúngicos , Arthrodermataceae , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , República Tcheca/epidemiologia , Estudos Prospectivos , Farmacorresistência Fúngica/genética , Arthrodermataceae/genética , Trichophyton , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA