Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Commun Biol ; 7(1): 396, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561411

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is involved in the pathogenesis of multiple cardiovascular diseases. This study elucidated the biological function of lysine acetyltransferase 5 (KAT5) in cardiomyocyte pyroptosis during MIRI. Oxygen-glucose deprivation/reoxygenation and left anterior descending coronary artery ligation were used to establish MIRI models. Here we show, KAT5 and STIP1 homology and U-box-containing protein 1 (STUB1) were downregulated, while large tumor suppressor kinase 2 (LATS2) was upregulated in MIRI models. KAT5/STUB1 overexpression or LATS2 silencing repressed cardiomyocyte pyroptosis. Mechanistically, KAT5 promoted STUB1 transcription via acetylation modulation, and subsequently caused ubiquitination and degradation of LATS2, which activated YAP/ß-catenin pathway. Notably, the inhibitory effect of STUB1 overexpression on cardiomyocyte pyroptosis was abolished by LATS2 overexpression or KAT5 depletion. Our findings suggest that KAT5 overexpression inhibits NLRP3-mediated cardiomyocyte pyroptosis to relieve MIRI through modulation of STUB1/LATS2/YAP/ß-catenin axis, providing a potential therapeutic target for MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , Ubiquitinação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Lisina Acetiltransferase 5/metabolismo
2.
J Virol ; 98(3): e0169523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38349085

RESUMO

Histone modifications function in both cellular and viral gene expression. However, the roles of acetyltransferases and histone acetylation in parvoviral infection remain poorly understood. In the current study, we found the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), promoted the replication and transcription of parvovirus minute virus of canines (MVC). Notably, the expression of host acetyltransferases KAT5, GTF3C4, and KAT2A was increased in MVC infection, as well as H4 acetylation (H4K12ac). KAT5 is not only responsible for H4K12ac but also crucial for viral replication and transcription. The viral nonstructural protein NS1 interacted with KAT5 and enhanced its expression. Further study showed that Y44 in KAT5, which may be tyrosine-phosphorylated, is indispensable for NS1-mediated enhancement of KAT5 and efficient MVC replication. The data demonstrated that NS1 interacted with KAT5, which resulted in an enhanced H4K12ac level to promote viral replication and transcription, implying the epigenetic addition of H4K12ac in viral chromatin-like structure by KAT5 is vital for MVC replication.IMPORTANCEParvoviral genomes are chromatinized with host histones. Therefore, histone acetylation and related acetyltransferases are required for the virus to modify histones and open densely packed chromatin structures. This study illustrated that histone acetylation status is important for MVC replication and transcription and revealed a novel mechanism that the viral nonstructural protein NS1 hijacks the host acetyltransferase KAT5 to enhance histone acetylation of H4K12ac, which relies on a potential tyrosine phosphorylation site, Y44 in KAT5. Other parvoviruses share a similar genome organization and coding potential and may adapt a similar strategy for efficient viral replication and transcription.


Assuntos
Lisina Acetiltransferase 5 , Infecções por Parvoviridae , Animais , Cães , Acetilação , Acetiltransferases/metabolismo , Cromatina , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Tirosina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Doenças do Cão/metabolismo , Doenças do Cão/virologia , Lisina Acetiltransferase 5/metabolismo
3.
J Mol Biol ; 436(7): 168414, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141874

RESUMO

The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader. In our study, we have employed a CRISPR tiling array approach and unveiled the Tudor-knot motif as an essential domain for cell survival. The Tudor-knot domain does not bind to histone tails and is not required for KAT5's chromatin occupancy. However, its absence leads to a global reduction in histone acetylation, accompanied with genome-wide alterations in gene expression that consequently result in diminished cell viability. Mechanistically, we find that the Tudor-knot domain regulates KAT5's HAT activity on nucleosomes by fine-tuning substrate accessibility. In summary, our study uncovers the Tudor-knot motif as an essential domain for cell survival and reveals its critical role in modulating KAT5's catalytic efficiency on nucleosome and KAT5-dependent transcriptional programs critical for cell viability.


Assuntos
Histonas , Lisina Acetiltransferase 5 , Nucleossomos , Domínio Tudor , Acetilação , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Lisina Acetiltransferase 5/química , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Humanos
4.
Mol Immunol ; 163: 147-162, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793204

RESUMO

BACKGROUND: Aryl hydrocarbon receptor (AhR) plays an important role in the occurrence and development of ulcerative colitis (UC). In this study, the effect and mechanism of 3, 3'-diindolylmethane (DIM), the classical AhR agonist, on UC was investigated from the angle of recovering the balance of Th17/Treg. METHODS: The in vivo colitis model was established in mice by using dextran sulfate sodium, and CD4+ T cells were used to simulate the in vitro differentiation of Treg and Th17 cells. The proportions and related factors of Th17 and Treg cells were measured using flow cytometry, Q-PCR and western blotting. The glycolysis was evaluated by examining the glucose uptake, glucose consumption and lactate production using kits or immunofluorescence. The activation of AhR was detected by western blotting and the XRE-luciferase reporter gene. The co-immunoprecipitation, transfection or other methods were selected to investigate and identify the signaling molecular pathway. RESULTS: DIM significantly attenuated symptoms of colitis mice by rebuilding the balance of Th17/Treg in anoxic colons. In hypoxia, a more potent promotion of Treg differentiation was showed by DIM relative to normoxia, and siFoxp3 prevented DIM-suppressed Th17 differentiation. DIM repressed the excessive glycolysis in hypoxia evidenced by down-regulated glucose uptake, lactate production, Glut1 and HK2 levels. Interestingly, IL-10, the function-related factor of Treg cells, showed the feedback effect of DIM-suppressed glycolysis. Besides, 2-deoxy-D-glucose, HK2 plasmid and IL-10 antibody prevented increase of DIM on the expression of Foxp3 at the transcriptional level and subsequent Treg differentiation through the lactate-STAT3 pathway, and reasons for the direct improvement of DIM on Foxp3 protein was attributed to promoting the formation of HIF-1α/TIP60 complexes as well as subsequent acetylation and protein stability. Finally, AhR dependence and mechanisms for DIM-improved Treg differentiation in vitro and in vivo were well confirmed by using plasmids or inhibitors. CONCLUSIONS: DIM enhances activation of AhR and subsequent "glycolysis-lactate-STAT3″ and TIP60 signals-mediated Treg differentiation.


Assuntos
Colite Ulcerativa , Colite , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Diferenciação Celular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Glicólise , Hipóxia/metabolismo , Interleucina-10/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th17 , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Lisina Acetiltransferase 5/efeitos dos fármacos , Lisina Acetiltransferase 5/metabolismo
5.
Chempluschem ; 88(3): e202200392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775805

RESUMO

Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing these molecules in water. Here, we report a chemical modification approach to produce a protein nanocage with a hydrophobic interior surface based on our previously developed nanocage, TIP60. The large pores of TIP60 act as tunnels for small molecules, allowing modification of the interior surface by hydrophobic compounds without nanocage disassembly. We used four different hydrophobic compounds for modification. The largest modification group tested, pyrene, resulted in a modified TIP60 that could encapsulate aromatic photosensitizer zinc phthalocyanine (ZnPC) more efficiently than the other modification compounds. The encapsulated ZnPC generated singlet oxygen upon light activation in the aqueous phase, whereas ZnPC alone formed inert aggregates under the same experimental conditions. Given that chemical modification allows a wider diversity of modifications than mutagenesis, this approach could be used to develop more suitable nanocages for encapsulating hydrophobic molecules of interest.


Assuntos
Compostos Organometálicos , Fotoquimioterapia , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Lisina Acetiltransferase 5/química , Interações Hidrofóbicas e Hidrofílicas
6.
Nature ; 614(7949): 732-741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792830

RESUMO

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.


Assuntos
Encéfalo , Reparo do DNA , Complexos Multiproteicos , Neurônios , Sinapses , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Lisina Acetiltransferase 5/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Mutação , Longevidade/genética , Genoma , Envelhecimento/genética , Doenças Neurodegenerativas
7.
J Cell Biochem ; 124(1): 103-117, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377816

RESUMO

Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.


Assuntos
Antioxidantes , Fígado , Lisina Acetiltransferase 5 , Estresse Oxidativo , Transativadores , Animais , Camundongos , Antioxidantes/metabolismo , Catalase/genética , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fígado/enzimologia
8.
J Mol Cell Biol ; 14(8)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190325

RESUMO

Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.


Assuntos
Segregação de Cromossomos , Lisina Acetiltransferase 5 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Acetilação , Mitose , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Lisina Acetiltransferase 5/metabolismo
9.
Genes Genomics ; 44(11): 1353-1361, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951156

RESUMO

BACKGROUND: Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is upregulated in colon cancer cells and associated with silencing tumor suppressor genes (TSGs) to promote colon cancer cell proliferation. OBJECTIVE: To investigate epigenetic modification of UHRF1 by TIP60. Whether UHRF1 acetylation by TIP60 can induce cell proliferation in colon cancer cells. METHODS: Acetylation sites of UHRF1 by TIP60 was predicted by ASEB (Acetylation Set Enrichment Based) method and identified by immunoprecipitation assay using anti-pan-acetyl lysine antibody and in vitro acetylation assay. Based on this method, UHRF1 acetylation-deficient mimic 4KR (K644R, K646R, K648R, K650R) mutant was generated to investigate effects of UHRF1 acetylation by TIP60. shRNA system was used to generate stable knockdown cell line of UHRF1. With transient transfection of UHRF1 WT and 4KR, the effects of UHRF1 4KR mutant on Jun dimerization protein 2 (JDP2) gene expression, cell proliferation and cell cycle were investigated by RT-qPCR and FACS analysis in shUHRF1 colon cancer cell line. RESULTS: Downregulation of TIP60-mediated UHRF1 acetylation is correlated with suppressed cell cycle progression. Acetylation-deficient mimic of UHRF1 showed poor cell growth through increased expression of JDP2 gene. CONCLUSIONS: Acetylation of UHRF1 4K residues by TIP60 is important for colon cancer cell growth. Furthermore, upregulated JDP2 expression by acetylation-deficient mutant of UHRF1 might be an important epigenetic target for colon cancer cell proliferation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Neoplasias do Colo , Lisina Acetiltransferase 5 , Ubiquitina-Proteína Ligases , Acetilação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proliferação de Células/genética , Neoplasias do Colo/genética , Metilação de DNA , Humanos , Lisina/genética , Lisina/metabolismo , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
10.
EMBO Rep ; 23(9): e54128, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876654

RESUMO

The long noncoding RNA LINC00839 has been shown to be involved in the progression of some cancer types, such as bladder cancer, prostate cancer, breast cancer, and neuroblastoma. However, if LINC00839 has roles in colorectal cancer (CRC), it has not been elucidated so far. Here, we focus on the biological role and involved mechanisms of LINC00839 in CRC. We show that LINC00839 is selectively upregulated in CRC and locates to the nucleus. High expression of LINC00839 is associated with poor outcomes in CRC patients. Functional experiments show that LINC00839 promotes CRC proliferation, invasion, and metastasis in vitro and in vivo. Mechanistically, LINC00839 recruits Ruvb1 to the Tip60 complex and increases its acetylase activity. LINC00839 guides the complex to the NRF1 promoter and promotes acetylation of lysines 5 and 8 of histones H4, thereby upregulating the expression of NRF1. Subsequently, NRF1 activates mitochondrial metabolism and biogenesis, thereby promoting CRC progression. In summary, our study reports on a mechanism by which LINC00839 positively regulates NRF1, thus promoting mitochondrial metabolism and biogenesis, as well as CRC progression.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/metabolismo , Masculino , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Cell Death Dis ; 13(7): 627, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35853868

RESUMO

Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.


Assuntos
Histonas , Lisina Acetiltransferase 5 , Lisina , Proteína Supressora de Tumor p53 , Acetilação , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Lisina Acetiltransferase 5/deficiência , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Nat Commun ; 13(1): 4355, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906200

RESUMO

Transcriptional regulation by RNA polymerase II is associated with changes in chromatin structure. Activated and promoter-bound heat shock transcription factor 1 (HSF1) recruits transcriptional co-activators, including histone-modifying enzymes; however, the mechanisms underlying chromatin opening remain unclear. Here, we demonstrate that HSF1 recruits the TRRAP-TIP60 acetyltransferase complex in HSP72 promoter during heat shock in a manner dependent on phosphorylation of HSF1-S419. TRIM33, a bromodomain-containing ubiquitin ligase, is then recruited to the promoter by interactions with HSF1 and a TIP60-mediated acetylation mark, and cooperates with the related factor TRIM24 for mono-ubiquitination of histone H2B on K120. These changes in histone modifications are triggered by phosphorylation of HSF1-S419 via PLK1, and stabilize the HSF1-transcription complex in HSP72 promoter. Furthermore, HSF1-S419 phosphorylation is constitutively enhanced in and promotes proliferation of melanoma cells. Our results provide mechanisms for HSF1 phosphorylation-dependent establishment of an active chromatin status, which is important for tumorigenesis.


Assuntos
Cromatina , Histonas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Fatores de Transcrição/genética
13.
Cell Rep ; 39(11): 110947, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705031

RESUMO

A recurrent chromosomal translocation found in acute myeloid leukemia leads to an in-frame fusion of the transcription repressor ZMYND11 to MBTD1, a subunit of the NuA4/TIP60 histone acetyltransferase complex. To understand the abnormal molecular events that ZMYND11-MBTD1 expression can create, we perform a biochemical and functional characterization comparison to each individual fusion partner. ZMYND11-MBTD1 is stably incorporated into the endogenous NuA4/TIP60 complex, leading to its mislocalization on the body of genes normally bound by ZMYND11. This can be correlated to increased chromatin acetylation and altered gene transcription, most notably on the MYC oncogene, and alternative splicing. Importantly, ZMYND11-MBTD1 expression favors Myc-driven pluripotency during embryonic stem cell differentiation and self-renewal of hematopoietic stem/progenitor cells. Altogether, these results indicate that the ZMYND11-MBTD1 fusion functions primarily by mistargeting the NuA4/TIP60 complex to the body of genes, altering normal transcription of specific genes, likely driving oncogenesis in part through the Myc regulatory network.


Assuntos
Cromatina , Histona Acetiltransferases , Proteínas de Fusão Oncogênica , Fases de Leitura Aberta , Acetilação , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fases de Leitura Aberta/genética , Translocação Genética
14.
J Biol Chem ; 298(7): 102015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525269

RESUMO

Wound healing is a complex phenomenon that requires coordination of numerous molecular and cellular changes to facilitate timely and efficient repair of the damaged tissue. Although many of these molecular pathways have been detailed, others remain to be elucidated. In the present work, we show for the first time, roles for the acetyltransferase TIP60 and nuclear receptor transcription factor PXR in this process, participating in wound healing by altering actin dynamics and cellular motility. We found that in response to wound-injury, TIP60 induces rapid formation of filopodia at the wounded cell front, leading to enhanced cell migration and faster closure of the wound. Further, qPCR analysis revealed heightened expression of Cdc42 and ROCK1 genes, key regulators involved in filopodia formation and actin reorganization, exclusively in TIP60-PXR-expressing cells upon wound-induction. We also performed ChIP assays to confirm the context-specific binding of TIP60 on the ROCK1 promoter and demonstrated that the TIP60 chromodomain is essential for loading of the TIP60-PXR complex onto the chromatin. Results from immunoprecipitation assays revealed that during the wounded condition, TIP60 alters the chromatin microenvironment by specifically acetylating histones H2B and H4, thereby modulating the expression of target genes. Overall, findings of this study show that TIP60 is a novel regulator of the wound healing process by regulating the expression of wound repair-related genes.


Assuntos
Actinas , Lisina Acetiltransferase 5 , Pseudópodes , Acetilação , Actinas/metabolismo , Movimento Celular , Cromatina/metabolismo , Células Hep G2 , Humanos , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo , Cicatrização , Proteína cdc42 de Ligação ao GTP , Quinases Associadas a rho
15.
Bioengineered ; 13(4): 9197-9210, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383533

RESUMO

Hepatocellular carcinoma, a fatal malignancy that occurs in the liver, poses a major public health challenge. This paper attempted to clarify the role and mechanism of vacuolar protein sorting-associated protein 72 homolog (VPS72) in the progression of hepatocellular carcinoma. Firstly, VPS72 expression in hepatocellular carcinoma tissues and the prognostic correlation were analyzed by GEPIA2 database. Western blotting and RT-qPCR assays were used to evaluate VPS72 expression in several hepatocellular carcinoma cell lines. Then, cell proliferation was assessed by cell counting kit-8 and colony formation in HuH-7 cells with VPS72 silencing. Measurement of cell invasion and migration by transwell and wound healing assays. Next, the relationship between VPS72 and lysine acetyltransferase 5 (KAT5) was predicted by bioGRID, STRING and GEIPA2 databases, which was confirmed by Co-immunoprecipitation assay. Subsequently, KAT5 was overexpressed to explore whether VPS72 could regulate the progression of hepatocellular carcinoma by binding to KAT5. And the expression of proteins related to PI3K/AKT signaling was tested with western blotting. Results indicated that VPS72 was highly expressed in hepatocellular carcinoma tissues and cell lines and was associated with poor prognosis. VPS72 knockdown inhibited the proliferation, invasion and migration of HuH-7 cells. In addition, VPS72 could bind to KAT5. KAT5 overexpression reversed the suppressive impacts of VPS72 knockdown on the proliferation, invasion and migration in HuH-7 cells. Besides, VPS72 silencing downregulated p-PI3K and p-AKT expression, which was restored by KAT5 overexpression. Collectively, VPS72 binding to KAT5 promotes the progression of hepatocellular carcinoma through the regulation of PI3K/AKT signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lisina Acetiltransferase 5 , Proteínas Repressoras , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/metabolismo , Lisina Acetiltransferase 5/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais
16.
Aging (Albany NY) ; 14(6): 2793-2804, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333774

RESUMO

Osteosarcoma is the most prevalent bone cancer and accounts for over half of sarcomas. In this study, we identified that the treatment of levobupivacaine suppressed proliferation of osteosarcoma cells in vitro. The tumor xenograft analysis showed that levobupivacaine significantly repressed the osteosarcoma cell growth in the nude mice. The treatment of levobupivacaine improved the apoptosis rate and attenuated invasion and migration abilities of osteosarcoma cells. The sphere formation capabilities of osteosarcoma cells were repressed by levobupivacaine. The protein levels of Sox-2, Oct3/4, and Nanog were inhibited by the treatment of levobupivacaine in osteosarcoma cells. Regarding mechanism, we identified that levobupivacaine inhibited MAFB and KAT5 expression in osteosarcoma cells. We observed that lysine acetyltransferase 5 could enriched in the promoter region of MAF BZIP transcription factor B, while levobupivacaine treatment could repressed the enrichment. The suppression of KAT5 by siRNA repressed the enrichment of histone H3 acetylation at lysine 27 and RNA polymerase II on promoter of MAFB. The expression of MAFB was decreased by KAT5 knockdown in osteosarcoma cells. The expression of MAFB was repressed by levobupivacaine, while the overexpression of KAT5 could reverse the repression of MAFB. KAT5 contributes to the cell proliferation and stemness of osteosarcoma cells. The overexpression of KAT5 or MAFB could reverse levobupivacaine-attenuated cell proliferation and stemness of osteosarcoma cells. Therefore, we concluded that local anesthetic levobupivacaine inhibited stemness of osteosarcoma cells by epigenetically repressing MAFB though reducing KAT5 expression. Levobupivacaine may act as a potential therapeutic candidate for osteosarcoma by targeting cancer stem cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Anestésicos Locais/farmacologia , Animais , Apoptose/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Levobupivacaína/farmacologia , Lisina Acetiltransferase 5/genética , Fator de Transcrição MafB , Camundongos , Camundongos Nus , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/patologia
17.
Brain Behav Immun ; 101: 410-422, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114329

RESUMO

Tat-interacting protein 60 (TIP60) as nuclear receptors (NRs) coregulator, acts as a tumor suppressor and also has promising therapeutic potential to target Alzheimer's disease. Stress has been implicated in many psychiatric disorders, and these disorders are characterized by impairments in cognitive function. Until now, there are no experimental data available on the regulatory effect of TIP60 in acute stress and depression. There is also no definitive explanation on which specific modulation of target gene expression is achieved by TIP60. Here, we identify TIP60 as a novel positive regulator in response to acute restraint stress (ARS) and a potentially effective target of antidepressants. Firstly, we discovered increased hippocampal TIP60 expressions in the ARS model. Furthermore, using the TIP60 inhibitor, MG149, we proved that TIP60 function correlates with behavioral and synaptic activation in the two-hour ARS. Secondly, the lentivirus vector (LV)-TIP60overexpression (OE) was injected into the hippocampus prior to the chronic restraint stress (CRS) experiments and it was found that over-expressed TIP60 compensates for TIP60 decrease and improves depression index in CRS. Thirdly, through the intervention of TIP60 expression in vitro, we established the genetic regulation of TIP60 on synaptic proteins, confirmed the TIP60 function as a specific coactivator for PPARγ and found that the PPARγ-mediated TIP60 function modulates transcriptional activation of synaptic proteins. Finally, the LV-TIP60OE and PPARγ antagonist, GW9662, were both administered in the CRS model and the data indicated that blocking PPARγ significantly weakened the protective effect of TIP60 against the CRS-induced depression. Conclusively, these findings together support TIP60 as a novel positive factor in response to acute stress and interacts with PPARγ to modulate the pathological mechanism of CRS-induced depression.


Assuntos
Depressão , Lisina Acetiltransferase 5 , PPAR gama , Restrição Física , Transativadores , Doença de Alzheimer , Animais , Depressão/genética , Hipocampo/metabolismo , Lisina Acetiltransferase 5/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Transativadores/metabolismo
18.
Oxid Med Cell Longev ; 2022: 4571319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178156

RESUMO

Lysine 2-hydroxyisobutyrylation (Khib) is a new type of posttranslational modifications (PTMs) extensively reported on eukaryotic cell histones. It is evolutionarily conserved and participates in diverse important biological processes, such as transcription and cell metabolism. Recently, it has been demonstrated that Khib can be regulated by p300 and Tip60. Although the specific Khib substrates mediated by p300 have been revealed, how Tip60 regulates diverse cellular processes through the Khib pathway and the different roles between Tip60 and p300 in regulating Khib remain largely unknown, which prevents us from understanding how this modification executes its biological functions. In this study, we report the first Khib proteome mediated by Tip60. In total, 3502 unique Khib sites from 1050 proteins were identified. Among them, 536 Khib sites from 406 proteins were present only in Tip60 overexpressing cells and 13 Khib sites increased more than 2-fold in response to Tip60 overexpression, indicating that Tip60 significantly affected global Khib. Notably, only 5 of the 549 Tip60-targeted Khib sites overlapped with the 149 known Khib sites targeted by p300, indicating the different Khib substrate preferences of Tip60 and p300. In addition, the Khib substrates regulated by Tip60 are deeply involved in processes such as nucleic acid metabolism and translation, and some are associated with Parkinson's and Prion diseases. In summary, our research reveals the Khib substrates targeted by Tip60, which elucidates the effect of Tip60 in regulating various cellular processes through the Khib pathway, and proposes novel views into the functional mechanism of Tip60.


Assuntos
Hidroxibutiratos/uso terapêutico , Lisina Acetiltransferase 5/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Humanos , Transfecção
19.
Anticancer Agents Med Chem ; 22(8): 1530-1540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34503423

RESUMO

BACKGROUND: Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non- Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied. OBJECTIVE: The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect. METHODS: The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay. RESULTS: NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells. CONCLUSION: NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.


Assuntos
Linfoma Extranodal de Células T-NK , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Apoptose , Proliferação de Células , Humanos , Janus Quinase 2/metabolismo , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Linfoma Extranodal de Células T-NK/metabolismo , Linfoma Extranodal de Células T-NK/patologia , Lisina Acetiltransferase 5/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
20.
J Mol Cell Cardiol ; 163: 9-19, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610340

RESUMO

Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown. Here, using mice containing floxed Kat5 alleles and a tamoxifen-activated Myh6-MerCreMer recombinase transgene, we report that conditional depletion of Tip60 in CMs three days after MI induced by permanent coronary artery ligation greatly improves functional recovery for up to 28 days. This is accompanied by diminished scarring, activation of cell-cycle transit markers in CMs within the infarct border and remote zones, reduced expression of cell-cycle inhibitors pAtm and p27, and reduced apoptosis in the remote regions. These findings implicate Tip60 as a novel, multifactorial target for limiting the damaging effects of ischemic heart disease.


Assuntos
Acetiltransferases , Infarto do Miocárdio , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Animais , Apoptose/genética , Ciclo Celular , Lisina Acetiltransferase 5 , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...