Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643274

RESUMO

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Assuntos
DNA Polimerase Dirigida por DNA , Doenças Mitocondriais , Animais , Humanos , DNA Polimerase Dirigida por DNA/genética , Peixe-Zebra/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética
2.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492429

RESUMO

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


Assuntos
DNA Polimerase beta , Liases , Fósforo-Oxigênio Liases , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Liases/metabolismo , Lisina , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição , Proteínas Mitocondriais/metabolismo
3.
Int J Biol Sci ; 20(4): 1194-1217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385069

RESUMO

Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.


Assuntos
Esclerose Cerebral Difusa de Schilder , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Niacinamida/análogos & derivados , Compostos de Piridínio , Humanos , DNA Polimerase gama , NAD/genética , DNA Mitocondrial/genética , Mutação
5.
Nat Commun ; 15(1): 546, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228611

RESUMO

Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.


Assuntos
Envelhecimento , NAD , Camundongos , Masculino , Animais , NAD/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Mutação , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Mamíferos/genética
6.
Pediatr Transplant ; 28(1): e14659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012111

RESUMO

BACKGROUND: POLG is one of several nuclear genes associated with mitochondrial DNA maintenance defects and is a group of diseases caused by mitochondrial DNA deficiency that results in impaired adenosine triphosphate production and organ dysfunction. Myocerebrohepatopathy spectrum (MCHS) is the most severe and earliest presentation of POLG mutations, and liver transplantation (LT) for MCHS has never been reported. CASE PRESENTATION: The patient was a 3-month-old boy with acute liver failure and no neurological manifestations (e.g., seizures). We performed a living donor LT using a left lateral segment graft from his father. The postoperative course was uneventful. Subsequently, a homozygous POLG mutation (c.2890C>T, p. R964C) was identified by multigene analysis of neonatal/infantile intrahepatic cholestasis. Moreover, respiratory chain complex I, II, and III enzyme activities and the ratio of mtDNA to nuclear DNA in the liver were reduced. Therefore, we considered that these clinical manifestations and examination findings met the definition for MCHS. During meticulous follow-up, the patient had shown satisfactory physical growth and mental development until the time of writing this report. CONCLUSION: We presumed that the absence of remarkable neurologic manifestations prior to LT in patients with MCHS is a good indication for LT and contributes to a better prognosis in the present case.


Assuntos
Falência Hepática Aguda , Transplante de Fígado , Masculino , Humanos , Recém-Nascido , Lactente , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase gama/genética , Doadores Vivos , Mutação , DNA Mitocondrial/genética
9.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138978

RESUMO

Upstream open reading frames (uORFs) are a frequent feature of eukaryotic mRNAs. Upstream ORFs govern main ORF translation in a variety of ways, but, in a nutshell, they either filter out scanning ribosomes or allow downstream translation initiation via leaky scanning or reinitiation. Previous reports concurred that eIF4G2, a long-known but insufficiently studied eIF4G1 homologue, can rescue the downstream translation, but disagreed on whether it is leaky scanning or reinitiation that eIF4G2 promotes. Here, we investigated a unique human mRNA that encodes two highly conserved proteins (POLGARF with unknown function and POLG, the catalytic subunit of the mitochondrial DNA polymerase) in overlapping reading frames downstream of a regulatory uORF. We show that the uORF renders the translation of both POLGARF and POLG mRNAs reliant on eIF4G2. Mechanistically, eIF4G2 enhances both leaky scanning and reinitiation, and it appears that ribosomes can acquire eIF4G2 during the early steps of reinitiation. This emphasizes the role of eIF4G2 as a multifunctional scanning guardian that replaces eIF4G1 to facilitate ribosome movement but not ribosome attachment to an mRNA.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Ribossomos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Ribossomos/metabolismo , Fases de Leitura , Fases de Leitura Aberta , Biossíntese de Proteínas , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo
10.
Zh Nevrol Psikhiatr Im S S Korsakova ; 123(10): 129-135, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37966452

RESUMO

POLG-associated diseases are rare causes of pharmacoresistant epilepsy and status epilepticus, especially in adult patients. Phenotypic and genotypic variability in these conditions causes the complexity of their diagnosis. In the study, we report a case of a 33-year-old female patient who developed recurrent convulsive status epilepticus with focal clonic onset at the week 22/23 of pregnancy. Intensive anti-seizure therapy was administered, including the use of valproic acid, as well as the treatment of somatic complications. Given the acute onset, the semiology of seizures, the presence of psychopathological symptoms, autoimmune etiology of the disease was initially suspected. A month after the withdrawal of valproic acid, the patient began to show signs of toxic hepatitis, which eventually led to death. According to the results of whole-exome sequencing obtained later, the patient was a carrier of a pathogenic homozygous variant c.2243G>C (p.W748S) in the POLG gene. The presented case highlights the importance of molecular genetic testing and the risk associated with valproic acid hepatotoxicity in patients with cryptogenic epileptic status.


Assuntos
Estado Epiléptico , Ácido Valproico , Adulto , Feminino , Gravidez , Humanos , Ácido Valproico/uso terapêutico , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/etiologia , Genótipo , Transtorno da Personalidade Antissocial , Homozigoto , DNA Polimerase gama/genética
11.
Cell Death Dis ; 14(9): 598, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679327

RESUMO

Lactate leads to the imbalance of mitochondria homeostasis, which then promotes vascular calcification. PARP1 can upregulate osteogenic genes and accelerate vascular calcification. However, the relationship among lactate, PARP1, and mitochondrial homeostasis is unclear. The present study aimed to explore the new molecular mechanism of lactate to promote VSMC calcification by evaluating PARP1 as a breakthrough molecule. A coculture model of VECs and VSMCs was established, and the model revealed that the glycolysis ability and lactate production of VECs were significantly enhanced after incubation in DOM. Osteogenic marker expression, calcium deposition, and apoptosis in VSMCs were decreased after lactate dehydrogenase A knockdown in VECs. Mechanistically, exogenous lactate increased the overall level of PARP and PARylation in VSMCs. PARP1 knockdown inhibited Drp1-mediated mitochondrial fission and partially restored PINK1/Parkin-mediated mitophagy, thereby reducing mitochondrial oxidative stress. Moreover, lactate induced the translocation of PARP1 from the nucleus to the mitochondria, which then combined with POLG and inhibited POLG-mediated mitochondrial DNA synthesis. This process led to the downregulation of mitochondria-encoded genes, disturbance of mitochondrial respiration, and inhibition of oxidative phosphorylation. The knockdown of PARP1 could partially reverse the damage of mitochondrial gene expression and function caused by lactate. Furthermore, UCP2 was upregulated by the PARP1/POLG signal, and UCP2 knockdown inhibited Drp1-mediated mitochondrial fission and partially recovered PINK1/Parkin-mediated mitophagy. Finally, UCP2 knockdown in VSMCs alleviated DOM-caused VSMC calcification in the coculture model. The study results thus suggest that upregulated PARP1 is involved in the mechanism through which lactate accelerates VSMC calcification partly via POLG/UCP2-caused unbalanced mitochondrial homeostasis.


Assuntos
Ácido Láctico , Calcificação Vascular , Humanos , Músculo Liso Vascular , Homeostase , Calcificação Vascular/genética , Mitocôndrias , Transdução de Sinais , DNA Mitocondrial , Proteínas Quinases , DNA Polimerase gama , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Desacopladora 2
12.
Nucleic Acids Res ; 51(18): 9716-9732, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37592734

RESUMO

The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.


Assuntos
DNA Polimerase gama , DNA Mitocondrial , Humanos , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Replicação do DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo
13.
FASEB J ; 37(9): e23139, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584631

RESUMO

Mutations in POLG, the gene encoding the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (Pol-γ), lead to diseases driven by defective mtDNA maintenance. Despite being the most prevalent cause of mitochondrial disease, treatments for POLG-related disorders remain elusive. In this study, we used POLG patient-induced pluripotent stem cell (iPSC)-derived neural stem cells (iNSCs), one homozygous for the POLG mutation c.2243G>C and one compound heterozygous with c.2243G>C and c.1399G>A, and treated these iNSCs with ethidium bromide (EtBr) to study the rate of depletion and repopulation of mtDNA. In addition, we investigated the effect of deoxyribonucleoside (dNs) supplementation on mtDNA maintenance during EtBr treatment and post-treatment repopulation in the same cells. EtBr-induced mtDNA depletion occurred at a similar rate in both patient and control iNSCs, however, restoration of mtDNA levels was significantly delayed in iNSCs carrying the compound heterozygous POLG mutations. In contrast, iNSC with the homozygous POLG mutation recovered their mtDNA at a rate similar to controls. When we treated cells with dNs, we found that this reduced EtBr-induced mtDNA depletion and significantly increased repopulation rates in both patient iNSCs. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation also within intact neural lineage cells and suggest that those with compound heterozygous mutation have a more severe defect of mtDNA synthesis. Our findings further highlight the potential for dNs to improve mtDNA replication in the presence of POLG mutations, suggesting that this may offer a new therapeutic modality for mitochondrial diseases caused by disturbed mtDNA homeostasis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Células-Tronco Neurais , Humanos , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase gama/genética , Etídio/farmacologia , Mutação , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Desoxirribonucleosídeos
14.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470284

RESUMO

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , DNA Polimerase gama/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Mitocondrial/genética , Mutação , Replicação do DNA/genética
15.
Adv Biol (Weinh) ; 7(8): e2300154, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376822

RESUMO

Mitochondrial dysfunction has been implicated in neurodegenerative diseases like Parkinson's disease (PD). This study investigates the role of Parkin, a protein involved in mitochondrial quality control, and strongly linked to PD, in the context of mitochondrial DNA (mtDNA) mutations. Mitochondrial mutator mice (PolgD257A/D257A ) (Polg) are used and bred with Parkin knockout (PKO) mice or mice with disinhibited Parkin (W402A). In the brain, mtDNA mutations are analyzed in synaptosomes, presynaptic neuronal terminals, which are far from neuronal soma, which likely renders mitochondria there more vulnerable compared with brain homogenate. Surprisingly, PKO results in reduced mtDNA mutations in the brain but increased control region multimer (CRM) in synaptosomes. In the heart, both PKO and W402A lead to increased mutations, with W402A showing more mutations in the heart than PKO. Computational analysis reveals many of these mutations are deleterious. These findings suggest that Parkin plays a tissue-dependent role in regulating mtDNA damage response, with differential effects in the brain and heart. Understanding the specific role of Parkin in different tissues may provide insights into the underlying mechanisms of PD and potential therapeutic strategies. Further investigation into these pathways can enhance the understanding of neurodegenerative diseases associated with mitochondrial dysfunction.


Assuntos
Encéfalo , DNA Polimerase gama , Genoma Mitocondrial , Coração , Ubiquitina-Proteína Ligases , Animais , Camundongos , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Mitocôndrias , Heteroplasmia , Camundongos Knockout , DNA Polimerase gama/genética , Ubiquitina-Proteína Ligases/genética
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302426

RESUMO

Mutations in the catalytic domain of mitochondrial DNA polymerase γ (POLγ) cause a broad spectrum of clinical conditions. POLγ mutations impair mitochondrial DNA replication, thereby causing deletions and/or depletion of mitochondrial DNA, which in turn impair biogenesis of the oxidative phosphorylation system. We here identify a patient with a homozygous p.F907I mutation in POLγ, manifesting a severe clinical phenotype with developmental arrest and rapid loss of skills from 18 months of age. Magnetic resonance imaging of the brain revealed extensive white matter abnormalities, Southern blot of muscle mtDNA demonstrated depletion of mtDNA and the patient deceased at 23 months of age. Interestingly, the p.F907I mutation does not affect POLγ activity on single-stranded DNA or its proofreading activity. Instead, the mutation affects unwinding of parental double-stranded DNA at the replication fork, impairing the ability of the POLγ to support leading-strand DNA synthesis with the TWINKLE helicase. Our results thus reveal a novel pathogenic mechanism for POLγ-related diseases.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , DNA Polimerase gama/genética , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Humanos , Lactente
17.
Pharmacogenomics J ; 23(5): 105-111, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37138020

RESUMO

Hepatotoxicity is a frequent complication during maintenance therapy of acute lymphoblastic leukemia (ALL) with 6-mercaptopurine and methotrexate. Elevated levels of methylated 6-mercaptopurine metabolites (MeMP) are associated with hepatotoxicity. However, not all mechanisms are known that lead to liver failure in patients with ALL. Variants in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma (POLG1), have been related to drug-induced hepatotoxicity, for example, by sodium valproate. The association of common POLG variants with hepatotoxicity during maintenance therapy was studied in 34 patients with childhood ALL. Of the screened POLG variants, four different variants were detected in 12 patients. One patient developed severe hepatotoxicity without elevated MeMP levels and harbored a heterozygous POLG p.G517V variant, which was not found in the other patients.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Doença Hepática Induzida por Substâncias e Drogas/genética , DNA Polimerase gama , Mercaptopurina/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Ácido Valproico/efeitos adversos
19.
Nat Struct Mol Biol ; 30(6): 812-823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37202477

RESUMO

Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4-3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer-template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.


Assuntos
DNA Polimerase Dirigida por DNA , Genoma Mitocondrial , Humanos , DNA Polimerase Dirigida por DNA/química , Replicação do DNA , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , DNA Mitocondrial/genética
20.
Exp Neurol ; 365: 114429, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105450

RESUMO

Diseases caused by POLG mutations are the most common form of mitochondrial diseases and associated with phenotypes of varying severity. Clinical studies have shown that patients with compound heterozygous POLG mutations have a lower survival rate than patients with homozygous mutations, but the molecular mechanisms behind this remain unexplored. Using an induced pluripotent stem cell (iPSC) model, we investigate differences between homozygous and compound heterozygous genotypes in different cell types, including patient-specific fibroblasts, iPSCs, and iPSC-derived neural stem cells (NSCs) and astrocytes. We found that compound heterozygous lines exhibited greater impairment of mitochondrial function in NSCs than homozygous NSCs, but not in fibroblasts, iPSCs, or astrocytes. Compared with homozygous NSCs, compound heterozygous NSCs exhibited more severe functional defects, including reduced ATP production, loss of mitochondrial DNA (mtDNA) copy number and complex I expression, disturbance of NAD+ metabolism, and higher ROS levels, which further led to cellular senescence and activation of mitophagy. RNA sequencing analysis revealed greater downregulation of mitochondrial and metabolic pathways, including the citric acid cycle and oxidative phosphorylation, in compound heterozygous NSCs. Our iPSC-based disease model can be widely used to understand the genotype-phenotype relationship of affected brain cells in mitochondrial diseases, and further drug discovery applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genótipo , Doenças Mitocondriais/genética , Neuroglia/metabolismo , DNA Polimerase gama/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...