Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.167
Filtrar
1.
Cancer Biol Ther ; 25(1): 2332000, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38521968

RESUMO

Thyroid cancer is one of the deadliest endocrine cancers, and its incidence has been increasing. While mutations in BRAF are common in thyroid cancer, advanced PTC patients currently lack therapeutic options targeting the MAPK pathway, and despite the approved combination of BRAF and MEK1/2 inhibition for BRAF-mutant ATC, resistance often occurs. Here, we assess growth and signaling responses to combined BRAF and MEK1/2 inhibition in a panel of BRAF-mutant thyroid cancer cell lines. We first showed that combined BRAF and MEK1/2 inhibition synergistically inhibits cell growth in four out of six of the -BRAF-mutant thyroid cancer cell lines tested. Western blotting showed that the MAPK pathway was robustly inhibited in all cell lines. Therefore, to identify potential mechanisms of resistance, we performed RNA-sequencing in cells sensitive or resistant to MEK1/2 inhibition. In response to MEK1/2 inhibition, we identified a downregulation of Aurora Kinase B (AURKB) in sensitive but not resistant cells. We further demonstrated that combined MEK1/2 and AURKB inhibition slowed cell growth, which was phenocopied by inhibiting AURKB and ERK1/2. Finally, we show that combined AURKB and ERK1/2 inhibition induces apoptosis in BRAF-mutant thyroid cancer cell lines, together suggesting a potential combination therapy for BRAF-mutant thyroid cancer patients.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Aurora Quinases/genética , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Sinalização das MAP Quinases
2.
Turk J Gastroenterol ; 35(2): 150-157, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38454247

RESUMO

BACKGROUND/AIMS: Pancreatic ductal adenocarcinoma is an extremely deadly type of cancer with a high metastatic potential. Genetic factors in cellular events play an important role in the emergence of this situation. One of these factors is Aurora kinase family members, which play a role in migration, invasion, and cell cycle. In this study, the expression of vascular endothelial growth factor gene, which plays a role in migration, metastasis, and angiogenesis, on cystic fibrosis human pancreatic ductal adenocarcinoma 1 cells of danusertib, a pan-Aurora kinase inhibitor, was examined. MATERIALS AND METHODS: The half maximal inhibitory concentration (IC50) value (400 nM) of danusertib in cystic fibrosis human pancreatic ductal adenocarcinoma 1 cells was determined by the wound-healing test depending on the dose and time and migration with CIM-Plate 16 in the xCELLingence system. In addition, the effect of danusertib on migration was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method and vascular endothelial growth factor gene expression. RESULTS: When the dose- and time-dependent danusertib-applied cystic fibrosis human pancreatic ductal adenocarcinoma 1 cells were compared with the control group, it was observed that the wound formed did not close. In the xCELLigence system CIM-Plate 16 migration analysis, it was observed that migration was inhibited in the group administered danusertib in parallel with the wound dehiscence experiment. The gene expressions of vascular endothelial growth factor decreased 0.5-fold at the 24th hour and 0.3-fold at the 48th hour in the Danusertib-administered groups. CONCLUSION: Danusertib, a pan-Aurora kinase inhibitor, is predicted to be used as a potential agent in pancreatic cancers due to its antitumor and anti-metastatic effect.


Assuntos
Adenocarcinoma , Benzamidas , Fibrose Cística , Neoplasias Pancreáticas , Pirazóis , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adenocarcinoma/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Aurora Quinases , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células
3.
Cancer Res Commun ; 4(2): 540-555, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38358346

RESUMO

Type I IFN signaling is a crucial component of antiviral immunity that has been linked to promoting the efficacy of some chemotherapeutic drugs. We developed a reporter system in HCT116 cells that detects activation of the endogenous IFI27 locus, an IFN target gene. We screened a library of annotated compounds in these cells and discovered Aurora kinase inhibitors (AURKi) as strong hits. Type I IFN signaling was found to be the most enriched gene signature after AURKi treatment in HCT116, and this signature was also strongly enriched in other colorectal cancer cell lines. The ability of AURKi to activate IFN in HCT116 was dependent on MAVS and RIG-I, but independent of STING, whose signaling is deficient in these cells. MAVS dependence was recapitulated in other colorectal cancer lines with STING pathway deficiency, whereas in cells with intact STING signaling, the STING pathway was required for IFN induction by AURKi. AURKis were found to induce expression of endogenous retroviruses (ERV). These ERVs were distinct from those induced by the DNA methyltransferase inhibitors (DNMTi), which can induce IFN signaling via ERV induction, suggesting a novel mechanism of action. The antitumor effect of alisertib in mice was accompanied by an induction of IFN expression in HCT116 or CT26 tumors. CT26 tumor growth inhibition by alisertib was absent in NSG mice versus wildtype (WT) mice, and tumors from WT mice with alisertib treatment showed increased in CD8+ T-cell infiltration, suggesting that antitumor efficacy of AURKi depends, at least in part, on an intact immune response. SIGNIFICANCE: Some cancers deactivate STING signaling to avoid consequences of DNA damage from aberrant cell division. The surprising activation of MAVS/RIG-I signaling by AURKi might represent a vulnerability in STING signaling deficient cancers.


Assuntos
Neoplasias Colorretais , Interferon Tipo I , Animais , Camundongos , Retroelementos , Interferon lambda , Aurora Quinases/metabolismo , Interferon Tipo I/metabolismo , Proteína DEAD-box 58/genética , Receptores Imunológicos
4.
Cancer Res Commun ; 3(10): 2170-2181, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830744

RESUMO

BI-847325 is an ATP-competitive inhibitor of MEK/Aurora kinases with the potential to treat a wide range of cancers. In a panel of 294 human tumor cell lines in vitro, BI-847325 was found to be a highly selective inhibitor that was active in the submicromolar range. The most sensitive cancer types were acute lymphocytic and myelocytic leukemia, melanomas, bladder, colorectal, and mammary cancers. BI-847325 showed a broader range of activity than the MEK inhibitor GDC-0623. The high efficacy of BI-847325 was associated with but not limited to cell lines with oncogenic mutations in NRAS, BRAF, and MAP2K1.The high antiproliferative activity of BI-847325 was validated in vivo using subcutaneous xenograft models. After oral administration of 80 and 40 mg/kg once weekly for 3 or 4 weeks, BI-847325 was highly active in four of five colorectal, two of two gastric, two of two mammary, and one of one pancreatic cancer models (test/control < 25%), and tumor regressions were observed in five of 11 cancer models. The treatment was well tolerated with no relevant lethality or body weight changes. In combination with capecitabine, BI-847325 displayed synergism over single-agent therapies, leading to complete remission in the triple-negative mammary model MAXFTN 401, partial regression in the colon model CXF 1103, and stasis in the gastric models GXA 3011 and GXA 3023. In conclusion, dual MEK/Aurora kinase inhibition shows remarkable potential for treating multiple types of hematologic and solid tumors. The combination with capecitabine was synergistic in colorectal, gastric, and mammary cancer. SIGNIFICANCE: We report the preclinical evaluation of BI-847325, a MEK/Aurora kinase inhibitor. Our data demonstrate that BI-847325 has potent antitumor activity in a broad range of human solid and hematologic cancer models in vitro and in vivo and is well tolerated in animal models. It also shows synergistic effect when combined with capecitabine. These findings provide a strong rationale for further development of BI-847325 as a potential therapeutic for patients with cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Hematológicas , Animais , Humanos , Capecitabina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinases , Neoplasias Colorretais/tratamento farmacológico
5.
Nat Commun ; 14(1): 5652, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704606

RESUMO

The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.


Assuntos
Divisão do Núcleo Celular , Segregação de Cromossomos , Animais , Plasmodium berghei/genética , Proliferação de Células , Meiose , Aurora Quinases , Eucariotos
6.
Cell Death Differ ; 30(9): 2035-2052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516809

RESUMO

Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases/genética , Mitose , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Segregação de Cromossomos , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
Cancer Lett ; 558: 216094, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805500

RESUMO

Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-ß pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.


Assuntos
Neoplasias , Feminino , Humanos , Antígenos Ly , Aurora Quinase B , Aurora Quinases , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Linfócitos
8.
J Biol Chem ; 299(2): 102875, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621626

RESUMO

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Assuntos
Antineoplásicos , Apoptose , Aurora Quinases , Proteína bcl-X , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Aurora Quinases/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Células HCT116 , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Vet Res Commun ; 47(2): 473-485, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35751782

RESUMO

Trypanosoma evansi is a causative agent of chronic wasting and fatal disease of livestock and wild animals known as surra. In this study, repurposing approach based on drug target was used to investigate the efficacy of kinase inhibitors (Barasertib-HQPA, BAR and Palbociclib isethionate, PAL) and protease inhibitors (Z-pro-prolinal, Z-PRO and Leupeptin hemisulphate, LEU) against T. evansi in HMI-9 medium. BAR, PAL and Z-PRO exhibited IC50 values of 13.52 µM, 0.6375 µM and 63.20 µM against T. evansi in terms of growth inhibition, in the contrary, LEU failed to exhibit a significant growth inhibition at any time interval. Furthermore, oligopeptidase B and aurora kinase genes of T. evansi were targeted to determine the effect of these drugs on quantitative mRNA expression, which showed significant (p < 0.01) up-regulation of both genes in the BAR and PAL-exposed population at 12 h of exposure, whereas, Z-PRO showed only significant (p < 0.05) up-regulation of aurora kinase gene at 12 h interval. In cytotoxicity assay, BAR exhibited 52% and 41% cytotoxicity at 50 µM concentration (about five folds the IC50 value) on equine PBMC's and Vero cell line, respectively. Similarly, the cytotoxicity of 25% and 24% were recorded at 10 µM concentration (about ten folds to the IC50 value) of PAL in equine PBMC's and Vero cell line, respectively. Of these, BAR and PAL, which were found effective under in vitro trials, raised the longevity of mice at higher doses during in vivo trials. Data generated showed that kinase inhibitors have higher potential to explore therapeutic molecules against surra organism.


Assuntos
Inibidores de Proteases , Trypanosoma , Animais , Cavalos , Camundongos , Leucócitos Mononucleares , Animais Selvagens , Aurora Quinases
10.
Eur J Med Chem ; 245(Pt 1): 114904, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36413818

RESUMO

Activity-based drug screens have successfully led to the development of various inhibitors of the catalytic activity of aurora kinases (AURKs), major regulatory kinases of cell division. Disrupting the localization of AURKB, rather than its catalytic activity, represents a largely unexplored alternative approach to disabling AURKB-dependent processes. Localization disruptors could be just as specific as direct inhibitors of AURKB activity, may bypass their off-target and select on-target toxicities, and are likely less susceptible to drug resistance resulting from mutations of the AURKB catalytic site. In this study, we demonstrate that the pan-AURK inhibitor AMG900 works at a low concentration not by inhibiting the phosphorylation of H3 at Ser10, an AURKB substrate, but by disrupting the mitotic localization of AURKB. Structural deletion studies pinpoint this undescribed activity to the 2-phenoxy-3,4'-bipyridine moiety of AMG900. Guided by a mechanism-informed phenotypic screening (MIPS) assay, the drug fragment is optimized into a novel class of inhibitors that, at low nanomolar concentrations, can disable AURKB through disruption of its mitotic localization and have desirable oral PK properties. Hierarchical clustering of cell fitness profiles reveals that these compounds cluster with each other, rather than with known AURK inhibitors such as AMG900 and VX-680. Validation studies in mice demonstrate that compound 15a elicits mitotic arrest and apoptosis in NCI-H23 human lung adenocarcinoma xenografts, resulting in a pronounced suppression of tumor growth. The discovery and optimization of compounds that disrupt AURKB localization are successfully facilitated by MIPS. Our findings suggest that 2-phenoxy-3, 4'-bipyridine derivatives have the potential to be further developed as effective therapeutics for the treatment of malignancy by delocalizing AURKB.


Assuntos
Compostos Heterocíclicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Mitose , Aurora Quinases , Fosforilação , Aurora Quinase B
11.
Hum Cell ; 36(1): 409-420, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463543

RESUMO

The present study investigated the expression and role of ROR2 in small cell lung cancer (SCLC). To examine the expression of ROR2, 27 surgically resected SCLC tissue samples were immunostained for ROR2. Sixteen tissue samples were positive and some showed intratumor heterogeneity in staining intensity. The heterogeneity of ROR2 expression was also observed in tumor tissues from a PDX model of SCLC, in which there were cells with high ROR2 expression (ROR2high cells) and without its expression (ROR2low cells). These cells were subjected to a RNA sequence analysis. GSEA was performed and the results obtained revealed the enrichment of molecules such as G2M checkpoint, mitotic spindle, and E2F targets in ROR2high cells. The rate of EdU incorporation was significantly higher in ROR2high cells than ROR2low cells from the PDX model and the SCLC cell lines. Cell proliferation was suppressed in ROR2 KO SBC3 cells in vitro and in vivo. Comparisons of down-regulated differentially expressed genes in ROR2 KO SBC3 cells with up-regulated DEG in ROR2high cells from the PDX model revealed 135 common genes. After a Metascape analysis of these genes, we focused on Aurora kinases. In SCLC cell lines, the knockdown of ROR2 suppressed Aurora kinases. Therefore, ROR2 appears to regulate the cell cycle through Aurora kinases. The present results reveal a role for ROR2 in SCLC and afford a candidate system (ROR2-Aurora kinase) accompanying tumor heterogeneity in SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Aurora Quinases
12.
Nat Commun ; 13(1): 6021, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224199

RESUMO

Drug-induced cytopenias are a prevalent and significant issue that worsens clinical outcomes and hinders the effective treatment of cancer. While reductions in blood cell numbers are classically associated with traditional cytotoxic chemotherapies, they also occur with newer targeted small molecules and the factors that determine the hematotoxicity profiles of oncologic drugs are not fully understood. Here, we explore why some Aurora kinase inhibitors cause preferential neutropenia. By studying drug responses of healthy human hematopoietic cells in vitro and analyzing existing gene expression datasets, we provide evidence that the enhanced vulnerability of neutrophil-lineage cells to Aurora kinase inhibition is caused by early developmental changes in ATP-binding cassette (ABC) transporter expression. These data show that hematopoietic cell-intrinsic expression of ABC transporters may be an important factor that determines how some Aurora kinase inhibitors affect the bone marrow.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neutrófilos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Aurora Quinases/metabolismo , Hematopoese/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Inibidores de Proteínas Quinases/farmacologia
13.
Proc Natl Acad Sci U S A ; 119(42): e2200108119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227914

RESUMO

The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin, and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Arabidopsis Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal and a reduced expression of BORIs causes severe developmental defects. Similar to Survivin, we find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized Survivin orthologs but by an FHA domain, a widely conserved phosphate-binding module. We find that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation with the other two scaffold components and that the addition of a phosphate-binding domain, necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups. Using sensitive similarity searches, we find conservation of this helical domain between animals and plants and identify the missing CPC component in most eukaryotic supergroups. Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, likely reflecting the situation in the last eukaryotic common ancestor.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Mitose , Fosfatos/metabolismo , Survivina/genética , Survivina/metabolismo
14.
Biomed Pharmacother ; 155: 113782, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271562

RESUMO

The major HPV oncogenes, E6 and E7, are known for its notoriety in driving the carcinogenic process in human papilloma virus (HPV) driven cancers. It is well-established that the removal of E7 dampens HPV cancer cell growth and proliferation. This has made E7 an attractive target for HPV cancers. Seminal work from our laboratory employed a CRISPR editing approach to delete E7 which resulted in the effective elimination of HPV+ cervical cancer tumours in vivo. We have also successfully delayed HPV+ tumour growth in vivo with aurora kinase (AURK) inhibitors, an effect which is strongly sensitized by the presence of E7. Unlike our previous observations in cervical cancer cells, in vitro targeting of E6/E7 have only resulted in partial killing of HPV+ oral squamous carcinoma (OSC) cells. However, the effect of sustained removal of E7 on HPV+ OSC tumour growth have not been explored. In this study, we investigated a staggered combination of aurora kinase inhibition, using alisertib, followed by CRISPR editing of E7, to determine if this would lead to better HPV+ OSC killing. Remarkably, genetic deletion of E7 alone was sufficient to effectively regress established HPV+ OSC tumours in vivo suggesting that E7 is essential in the maintenance of HPV+ OSC cancers.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias Bucais , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomaviridae/genética , Alphapapillomavirus/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteínas E7 de Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Oncogenes , Aurora Quinases
15.
Proc Natl Acad Sci U S A ; 119(43): e2202606119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252014

RESUMO

The subcellular events occurring in cells of legume plants as they form transcellular symbiotic-infection structures have been compared with those occurring in premitotic cells. Here, we demonstrate that Aurora kinase 1 (AUR1), a highly conserved mitotic regulator, is required for intracellular infection by rhizobia in Medicago truncatula. AUR1 interacts with microtubule-associated proteins of the TPXL and MAP65 families, which, respectively, activate and are phosphorylated by AUR1, and localizes with them within preinfection structures. MYB3R1, a rhizobia-induced mitotic transcription factor, directly regulates AUR1 through two closely spaced, mitosis-specific activator cis elements. Our data are consistent with a model in which the MYB3R1-AUR1 regulatory module serves to properly orient preinfection structures to direct the transcellular deposition of cell wall material for the growing infection thread, analogous to its role in cell plate formation. Our findings indicate that the eukaryotically conserved MYB3R1-TPXL-AUR1-MAP65 mitotic module was conscripted to support endosymbiotic infection in legumes.


Assuntos
Aurora Quinases , Medicago truncatula , Proteínas de Plantas , Rhizobium , Simbiose , Aurora Quinases/genética , Aurora Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/metabolismo , Fatores de Transcrição/metabolismo
16.
Clin Cancer Res ; 28(20): 4479-4493, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972731

RESUMO

PURPOSE: Human papillomavirus (HPV) causes >5% of cancers, but no therapies uniquely target HPV-driven cancers. EXPERIMENTAL DESIGN: We tested the cytotoxic effect of 864 drugs in 16 HPV-positive and 17 HPV-negative human squamous cancer cell lines. We confirmed apoptosis in vitro and in vivo using patient-derived xenografts. Mitotic pathway components were manipulated with drugs, knockdown, and overexpression. RESULTS: Aurora kinase inhibitors were more effective in vitro and in vivo in HPV-positive than in HPV-negative models. We hypothesized that the mechanism of sensitivity involves retinoblastoma (Rb) expression because the viral oncoprotein E7 leads to Rb protein degradation, and basal Rb protein expression correlates with Aurora inhibition-induced apoptosis. Manipulating Rb directly, or by inducing E7 expression, altered cells' sensitivity to Aurora kinase inhibitors. Rb affects expression of the mitotic checkpoint genes MAD2L1 and BUB1B, which we found to be highly expressed in HPV-positive patient tumors. Knockdown of MAD2L1 or BUB1B reduced Aurora kinase inhibition-induced apoptosis, whereas depletion of the MAD2L1 regulator TRIP13 enhanced it. TRIP13 is a potentially druggable AAA-ATPase. Combining Aurora kinase inhibition with TRIP13 depletion led to extensive apoptosis in HPV-positive cancer cells but not in HPV-negative cancer cells. CONCLUSIONS: Our data support a model in which HPV-positive cancer cells maintain a balance of MAD2L1 and TRIP13 to allow mitotic exit and survival in the absence of Rb. Because it does not affect cells with intact Rb function, this novel combination may have a wide therapeutic window, enabling the effective treatment of Rb-deficient cancers.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/farmacologia , ATPases Associadas a Diversas Atividades Celulares/uso terapêutico , Adenosina Trifosfatases , Apoptose , Aurora Quinases/metabolismo , Aurora Quinases/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Proteína do Retinoblastoma/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
17.
Chem Biol Drug Des ; 100(5): 656-673, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35962624

RESUMO

Targeted therapy has emerged to be the cornerstone of advanced cancer treatment, allowing for more selectivity and avoiding the common drug toxicity and resistance. Identification of potential targets having vital role in growth and survival of cancer cells got much easier with the aid of the recent advances in high throughput screening approaches. Various protein kinases came into focus as valuable targets in cancer therapy. Meanwhile, benzimidazole-based scaffolds have gained significant attention as promising protein kinase inhibitors with high potency and varied selectivity. Great diversity of these scaffolds has inspired the medicinal chemists to inspect the effect of structural changes upon inhibitory activity on the molecular level through modeling studies. The present review gathers all the considerable attempts to develop benzimidazole-based compounds; designed as protein kinase inhibitors with anticancer activity since 2015; that target aurora kinase, CDK, CK2, EGFR, FGFR, and VEGFR-2; to allow further development and progression regarding benzimidazoles.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aurora Quinases/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Receptores ErbB/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
18.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35878017

RESUMO

Kinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e., all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained, in part, by the ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. The low inherent phospho-occupancy promotes microtubule attachment to kinetochores while the high sensitivity of kinetochore-microtubule attachments to small changes in phospho-occupancy drives error correction and ensures high mitotic fidelity.


Assuntos
Proteínas do Citoesqueleto , Cinetocoros , Microtúbulos , Mitose , Aurora Quinases/metabolismo , Proteína Quinase CDC2/metabolismo , Segregação de Cromossomos , Ciclina B1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fosforilação
19.
Bioorg Med Chem Lett ; 67: 128747, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476959

RESUMO

For developing novel therapeutic agents with good anticancer activities, a series of novel pyridine-pyrimidine hybrid phosphonate derivatives4(a-q) were synthesized by the Kabachnik-Fields method using CAN as catalyst. The compound 4o exhibited the most potent anticancer activity with an IC50 value of 13.62 µM, 17.49 µM, 5.81 µM, 1.59 µM and 2.11 µM against selected cancer cell lines A549, Hep-G2, HeLa, MCF-7, and HL-60, respectively. Compound 4o displayed seven times more selectivity towards Hep-G2 cancer cell lines compared to the human normal hepatocyte cell line LO2 (IC50 value 95.33 µM). Structure-Activity Relationship (SAR) studies were conducted on the variation in the aromatic ring (five-membered heterocyclic ring, six-membered heterocyclic ring) and the variation of substituents on the phenyl ring (electron donating groups, electron withdrawing groups). Furthermore, the mechanism of anticancer activity was clarified by further explorations in bioactivity by using in vitro aurora kinase inhibitory activity and molecular docking studies. The results showed that the compound 4o at IC50concentrationdemonstrated distinctive morphological changes such as cell detachment, cell wall deformation, cell shrinkage and reduced number of viable cells in cancer cell lines. Compound 4o induced early apoptosis and late apoptosis of 27.7% and 6.1% respectively.


Assuntos
Antineoplásicos , Organofosfonatos , Antineoplásicos/farmacologia , Aurora Quinases , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Organofosfonatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Relação Estrutura-Atividade
20.
Exp Mol Med ; 54(4): 414-425, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379935

RESUMO

Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer.


Assuntos
Neoplasias , Proteínas Quinases , Aurora Quinases/genética , Aurora Quinases/metabolismo , Carcinogênese , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos , Mitose , Fosforilação , Proteínas Quinases/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...