Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.590
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612711

RESUMO

Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Aurora Quinase A , Prognóstico , Mama , Células MCF-7
2.
Cell Death Dis ; 15(3): 233, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521813

RESUMO

AURKA is an established target for cancer therapy; however, the efficacy of its inhibitors in clinical trials is hindered by differential response rates across different tumor subtypes. In this study, we demonstrate AURKA regulates amino acid synthesis, rendering it a vulnerable target in KEAP1-deficient non-small cell lung cancer (NSCLC). Through CRISPR metabolic screens, we identified that KEAP1-knockdown cells showed the highest sensitivity to the AURKA inhibitor MLN8237. Subsequent investigations confirmed that KEAP1 deficiency heightens the susceptibility of NSCLC cells to AURKA inhibition both in vitro and in vivo, with the response depending on NRF2 activation. Mechanistically, AURKA interacts with the eIF2α kinase GCN2 and maintains its phosphorylation to regulate eIF2α-ATF4-mediated amino acid biosynthesis. AURKA inhibition restrains the expression of asparagine synthetase (ASNS), making KEAP1-deficient NSCLC cells vulnerable to AURKA inhibitors, in which ASNS is highly expressed. Our study unveils the pivotal role of AURKA in amino acid metabolism and identifies a specific metabolic indication for AURKA inhibitors. These findings also provide a novel clinical therapeutic target for KEAP1-mutant/deficient NSCLC, which is characterized by resistance to radiotherapy, chemotherapy, and targeted therapy.


Assuntos
Aurora Quinase A , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Asparagina , Aurora Quinase A/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
3.
Br J Cancer ; 130(8): 1402-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467828

RESUMO

BACKGROUND: Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS: We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS: The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS: AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.


Assuntos
Aurora Quinase A , Neoplasias Colorretais , Humanos , Cetuximab/farmacologia , Cetuximab/metabolismo , Aurora Quinase A/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442201

RESUMO

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Assuntos
Aurora Quinase A , Neoplasias da Mama , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fator 1 de Elongação de Peptídeos , Animais , Feminino , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
5.
Bioorg Med Chem ; 102: 117658, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460487

RESUMO

Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 µM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas de Ciclo Celular , Aurora Quinase A , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Replicação do DNA , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447882

RESUMO

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Supressora de Tumor p53/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Instabilidade Genômica , Instabilidade Cromossômica/genética , Cromossomos/metabolismo
7.
Biochem Biophys Res Commun ; 703: 149687, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38368674

RESUMO

BACKGROUND: ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS: Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS: ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION: ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Apoptose/genética , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53
8.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340326

RESUMO

Ovarian endometriosis (EMs) is a benign, estrogen-dependent gynecological disorder. Estrogen receptor beta (ERß), a nuclear receptor for estradiol, plays an important role in the development of ovarian EMs. Here, we investigated the biological significance of aurora kinase A (AURKA) in ovarian EMs and the mechanism by which it regulates ERß. We used immunohistochemical assays to verify that AURKA and ERß were highly expressed in ectopic endometrial tissues. Cell proliferation and colony formation assays were used to demonstrate that AURKA promoted the proliferation of EMs cells. Wound-healing assay, Transwell migration assay, and Matrigel invasion assay further showed that AURKA enhanced the ability of EMs cells to migrate and invade. In addition, AURKA was shown to stimulate glycolysis in EMs cells by measuring the concentration of glucose and lactate in the cell supernatants. Moreover, the AURKA inhibitor alisertib was found to inhibit the progression of ovarian EMs and glycolysis in a mouse model of EMs by measuring ectopic tissues as well as by testing the peritoneal fluid of mice. Furthermore, coimmunoprecipitation assay showed that AURKA interacted with ERß. The rescue experiments confirmed that AURKA regulated the development and glycolysis of ovarian EMs in an ERß-dependent manner. AURKA contributed to the development of ovarian EMs by upregulating of ERß. AURKA may represent a new target for the treatment of ovarian EMs.


Assuntos
Endometriose , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Receptor beta de Estrogênio/metabolismo , Glicólise
9.
Sci Rep ; 14(1): 4808, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413710

RESUMO

Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.


Assuntos
Aurora Quinase A , Glicóis , Proteínas Associadas aos Microtúbulos , Animais , Feminino , Masculino , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Sêmen/metabolismo , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo
10.
Nat Struct Mol Biol ; 31(2): 219-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177680

RESUMO

Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.


Assuntos
Aurora Quinase A , Mitose , Animais , Fosforilação , Aurora Quinase A/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo
11.
Clin Transl Med ; 14(1): e1544, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264947

RESUMO

Breast cancer arises from a series of molecular alterations that disrupt cell cycle checkpoints, leading to aberrant cell proliferation and genomic instability. Targeted pharmacological inhibition of cell cycle regulators has long been considered a promising anti-cancer strategy. Initial attempts to drug critical cell cycle drivers were hampered by poor selectivity, modest efficacy and haematological toxicity. Advances in our understanding of the molecular basis of cell cycle disruption and the mechanisms of resistance to CDK4/6 inhibitors have reignited interest in blocking specific components of the cell cycle machinery, such as CDK2, CDK4, CDK7, PLK4, WEE1, PKMYT1, AURKA and TTK. These targets play critical roles in regulating quiescence, DNA replication and chromosome segregation. Extensive preclinical data support their potential to overcome CDK4/6 inhibitor resistance, induce synthetic lethality or sensitise tumours to immune checkpoint inhibitors. This review provides a biological and drug development perspective on emerging cell cycle targets and novel inhibitors, many of which exhibit favourable safety profiles and promising activity in clinical trials.


Assuntos
Aurora Quinase A , Neoplasias , Ciclo Celular , Divisão Celular , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina
12.
Cell Death Dis ; 15(1): 56, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225225

RESUMO

Although KRASG12C inhibitors have shown promising activity in lung adenocarcinomas harbouring KRASG12C, acquired resistance to these therapies eventually occurs in most patients. Re-expression of KRAS is thought to be one of the main causes of acquired resistance. However, the mechanism through which cancer cells re-express KRAS is not fully understood. Here, we report that the Hedgehog signal is induced by KRASG12C inhibitors and mediates KRAS re-expression in cancer cells treated with a KRASG12C inhibitor. Further, KRASG12C inhibitors induced the formation of primary cilia and activated the Hedgehog-GLI-1 pathway. GLI-1 binds to the KRAS promoter region, enhancing KRAS promoter activity and KRAS expression. Inhibition of GLI using siRNA or the smoothened (Smo) inhibitor suppressed re-expression of KRAS in cells treated with a KRASG12C inhibitor. In addition, we demonstrate that KRASG12C inhibitors decreased Aurora kinase A (AURKA) levels in cancer cells, and inhibition of AURKA using siRNA or inhibitors led to increased expression levels of GLI-1 and KRAS even in the absence of KRAS inhibitor. Ectopic expression of AURKA attenuated the effect of KRASG12C inhibitors on the expression of GLI-1 and re-expression of KRAS. Together, these findings demonstrate the important role of AURKA, primary cilia, and Hedgehog signals in the re-expression of KRAS and therefore the induction of acquired resistance to KRASG12C inhibitors, and provide a rationale for targeting Hedgehog signalling to overcome acquired resistance to KRASG12C inhibitors.


Assuntos
Proteínas Hedgehog , Neoplasias Pulmonares , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Aurora Quinase A/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação/genética , RNA Interferente Pequeno/metabolismo
13.
Med Oncol ; 41(2): 46, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175425

RESUMO

Ferroptosis has been demonstrated to suppress cancer development and is targeted for cancer therapy. Genipin, an iridoid constituent in Gardeniae Fructus, has been reported to exert anti-cancer abilities. However, whether genipin could induce ferroptosis remains unclear. The purpose of this study is to explore the anti-gastric cancer (GC) effects of genipin by inducing ferroptosis and to identify the potential targets. CCK-8 and colony formation assays were performed to evaluate the anti-GC effects of genipin. Flowcytometry and western blot were used to indicate ferroptosis-inducing ability of genipin. The potential targets of genipin were analyzed by network pharmacology, screened using UALCAN and KM-plotter database and evaluated by molecular docking. The results showed that genipin inhibited cell viability and proliferation of GC cells. Genipin treatment decreased levels of GPX4 and SLC7A11, induced accumulation of lipid peroxidation intracellularly and led to ferroptosis in GC cells. Network pharmacology analysis identified that lipid- and ROS-related pathways involved in ferroptosis ranked high among genipin-GC common targets. Data from UALCAN and KM-plotter database demonstrated that expression levels of ferroptosis-related targets, including AURKA, BCAT2, DHODH, and GPI, increased in GC tissues and the higher levels of the above four targets were related to tumor stage, tumor grade, and poor prognosis. Among these four targets, AURKA, BCAT2, and DHODH were confirmed by molecular docking with binding energies less than - 5. Taken together, our study demonstrates that genipin could exert anti-GC ability by inducing ferroptosis and provides evidence for the potential application of genipin in GC treatment.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Di-Hidro-Orotato Desidrogenase , Aurora Quinase A , Simulação de Acoplamento Molecular , Farmacologia em Rede , Iridoides/farmacologia , Biologia Computacional , Proliferação de Células
14.
Nat Commun ; 15(1): 371, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191531

RESUMO

Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.


Assuntos
Aurora Quinase A , Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Camundongos , Aurora Quinase A/genética , Monoéster Fosfórico Hidrolases , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/genética
15.
Cell Death Dis ; 15(1): 99, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287009

RESUMO

Ewing's sarcoma (ES) is a rare and highly aggressive malignant tumor arising from bone and soft tissue. Suffering from intractable or recurrent diseases, the patients' therapy options are very limited. It is extremely urgent to identify novel potential therapeutic targets for ES and put them into use in clinical settings. In the present study, high-throughput screening of a small molecular pharmacy library was performed. The killing effect of the Aurora kinase A (AURKA) inhibitor TCS7010 in ES cells was identified, and AURKA was selected as the research object for further study. Disparate suppressants were adopted to study the cell death manner of TCS7010. TCS7010 and RNA silencing were used to evaluate the functions of AURKA in the apoptosis and ferroptosis of ES cells. Co-immunoprecipitation assay was used to investigate the correlation of AURKA and nucleophosmin1 (NPM1) in ES. Nude-mice transplanted tumor model was used for investigating the role of AURKA in ES in vivo. Investigations into the protein activities of AURKA were conducted using ES cell lines and xenograft models. AURKA was found to be prominently upregulated in ES. The AURKA expression level was remarkably connected to ES patients' shorter overall survival (OS) and event-free survival (EFS). Furthermore, AURKA inhibition markedly induced the apoptosis and ferroptosis of ES cells and attenuated tumorigenesis in vivo. On the part of potential mechanisms, it was found that AURKA inhibition triggered the apoptosis and ferroptosis of ES cells through the NPM1/Yes1 associated transcriptional regulator (YAP1) axis, which provides new insights into the tumorigenesis of ES. AURKA may be a prospective target for clinical intervention in ES patients.


Assuntos
Ferroptose , Sarcoma de Ewing , Animais , Humanos , Camundongos , Apoptose/genética , Aurora Quinase A/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Ferroptose/genética , Proteínas Nucleares/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
16.
Nat Cell Biol ; 26(2): 263-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238450

RESUMO

Human in vitro fertilized embryos exhibit low developmental capabilities, and the mechanisms that underlie embryonic arrest remain unclear. Here using a single-cell multi-omics sequencing approach, we simultaneously analysed alterations in the transcriptome, chromatin accessibility and the DNA methylome in human embryonic arrest due to unexplained reasons. Arrested embryos displayed transcriptome disorders, including a distorted microtubule cytoskeleton, increased genomic instability and impaired glycolysis, which were coordinated with multiple epigenetic reprogramming defects. We identified Aurora A kinase (AURKA) repression as a cause of embryonic arrest. Mechanistically, arrested embryos induced through AURKA inhibition resembled the reprogramming abnormalities of natural embryonic arrest in terms of the transcriptome, the DNA methylome, chromatin accessibility and H3K4me3 modifications. Mitosis-independent sequential activation of the zygotic genome in arrested embryos showed that YY1 contributed to human major zygotic genome activation. Collectively, our study decodes the reprogramming abnormalities and mechanisms of human embryonic arrest and the key regulators of zygotic genome activation.


Assuntos
Aurora Quinase A , Multiômica , Humanos , Aurora Quinase A/genética , Blastocisto , Cromatina/genética , Citoesqueleto , Desenvolvimento Embrionário/genética
17.
Comput Biol Med ; 168: 107759, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043467

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a prominent form of esophageal cancer. Aurora A (AURKA), an enzyme that phosphorylates serine and threonine, has a vital function in controlling the process of separating chromosomes during cell division. The contribution of this entity has been documented in the advancement of malignant proliferations, including tumors occurring in the breast, stomach, and ovaries. METHODS: The potential molecular mechanism of AURKA is comprehensively examined through the analysis of bulk RNA-seq and single-cell RNA-seq data obtained from publicly available databases. This analysis encompasses various aspects such as expression levels, prognosis, and functional pathways, among others. RESULTS: The upregulation of AURKA in ESCC has been found to be correlated with the overall survival of patients. The functional annotation and pathway enrichment analysis conducted in this study lead to the conclusion that AURKA participates in the regulation of a number of malignant processes connected to cell proliferation, such as cell cycle control, apoptosis, and the p53 signaling pathway. Additionally, AURKA has been found to be associated with drug sensitivity and has an impact on the infiltration of tumor-infiltrating immune cells in ESCC. CONCLUSIONS: AURKA exhibits potential as a prognostic and therapeutic biomarker linked to the regulation of cell cycle and cell proliferation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica
18.
FEBS J ; 291(5): 1027-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050648

RESUMO

The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.


Assuntos
Canais de Cálcio , Sinalização do Cálcio , Sinalização do Cálcio/fisiologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Retículo Endoplasmático/metabolismo
19.
Med Res Rev ; 44(2): 686-706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983866

RESUMO

Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Aurora Quinase B/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/uso terapêutico , Neoplasias/tratamento farmacológico , Aurora Quinase A/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Arch Pharm Res ; 47(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147203

RESUMO

The post-transcriptional processing of N6-methyladenosine (m6A)-modified mRNA by YTH domain-containing family protein 1 (YTHDF1) plays a crucial role in the regulation of gene expression. Although YTHDF1 expression is frequently upregulated in breast cancer, the regulatory mechanisms for this remain unclear. In this study, we examined the role of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in regulating YTHDF1 stability in breast cancer cells. The WW domain of PIN1 interacted with YTHDF1 in a phosphorylation-dependent manner. Additionally, PIN1 overexpression increased YTHDF1 stability by preventing ubiquitin-dependent proteasomal degradation. Furthermore, using the MS2-tagged RNA pull-down assay, we identified Aurora kinase A (AURKA) mRNA as a bona fide substrate of YTHDF1. PIN1-mediated YTHDF1 stabilization increased the stability of AURKA mRNA in an m6A-dependent manner. Furthermore, YTHDF1 knockout reduced AURKA protein expression levels, resulting in anticancer effects in breast cancer cells, including decreased cell proliferation, cell cycle arrest at the G0/G1 phase, apoptotic cell death, and decreased spheroid formation. The anticancer effects induced by YTHDF1 knockout were reversed by AURKA overexpression. Similarly, the knockout of PIN1 produced comparable anticancer effects to those observed in YTHDF1-knockout cells, and these effects were reversed upon overexpression of YTHDF1. In conclusion, the findings of our study suggest that increased YTHDF1 stability induced by PIN1 promotes breast tumorigenesis via the stabilization of AURKA mRNA. Targeting the PIN1/YTHDF1 axis may represent a novel therapeutic strategy for breast cancer.


Assuntos
Aurora Quinase A , Neoplasias da Mama , Humanos , Feminino , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosforilação , Carcinogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...