Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.387
Filtrar
1.
J Cell Mol Med ; 28(8): e18153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568071

RESUMO

The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Trombose , Doenças Vasculares , Humanos , Quinases Associadas a rho/genética , Células Endoteliais
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 411-419, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597431

RESUMO

OBJECTIVE: To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS: Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS: Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION: Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Barreira Hematoencefálica , Células Endoteliais , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Azul Evans/metabolismo , Corticosterona/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
3.
Sci Rep ; 14(1): 9012, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641671

RESUMO

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Assuntos
Engenharia Tecidual , Quinases Associadas a rho , Feminino , Animais , Cavalos , Células Cultivadas , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Colágeno/metabolismo , Dinoprosta/metabolismo
4.
J Int Med Res ; 52(4): 3000605241240938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603613

RESUMO

OBJECTIVE: This study examined the effects of sildenafil on acute pulmonary embolism (APE) using a rat model. METHODS: Sprague-Dawley rats were randomly divided into the sham, pulmonary thromboembolism (PTE), and sildenafil groups. The sham and PTE groups received normal saline once daily via gavage for 14 consecutive days, whereas the sildenafil group received sildenafil (0.5 mg/kg/day) once daily via gavage for 14 consecutive days. Autologous emboli were prepared from blood samples collected from the left femoral artery of rats in each group on day 13, and autologous emboli were injected into the jugular vein cannula of rats in the PTE and sildenafil groups on day 14. Sham-treated rats received the same volume of saline. Right systolic ventricular pressure (RVSP) and mean pulmonary arterial pressure (MPAP) were used to assess pulmonary embolism, and western blotting and enzyme-linked immunosorbent assay were used to detect relevant markers. RESULTS: The Rho kinase signaling pathway was significantly activated in rats with APE, and sildenafil significantly inhibited this activation. CONCLUSIONS: Sildenafil protected against APE through inhibiting Rho kinase activity, thereby reducing pulmonary vasoconstriction and decreasing elevated pulmonary arterial pressure. These findings might provide new ideas for the clinical treatment of acute pulmonary thromboembolism.


Assuntos
Hominidae , Embolia Pulmonar , Ratos , Animais , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Quinases Associadas a rho , Ratos Sprague-Dawley , Embolia Pulmonar/tratamento farmacológico , Hemodinâmica , Artéria Pulmonar
5.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542203

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1), a virus that affects 5-10 million people globally, causes several diseases, including adult T-cell leukemia-lymphoma and HTLV-1-associated uveitis (HU). HU is prevalent in Japan and often leads to secondary glaucoma, which is a serious complication. We investigated the efficacy of ripasudil, a Rho-associated coiled coil-forming protein kinase inhibitor, in alleviating changes in human trabecular meshwork cells (hTM cells) infected with HTLV-1. HTLV-1-infected hTM cells were modeled in vitro using MT-2 cells, followed by treatment with varying concentrations of ripasudil. We assessed changes in cell morphology, viability, and inflammatory cytokine levels, as well as NF-κB activation. The results showed that ripasudil treatment changed the cell morphology, reduced the distribution of F-actin and fibronectin, and decreased the levels of certain inflammatory cytokines, such as interleukin (IL)-6, IL-8, and IL-12. However, ripasudil did not significantly affect NF-κB activation or overall cell viability. These findings suggest that ripasudil has the potential to treat secondary glaucoma in patients with HU by modulating cytoskeletal organization and alleviating inflammation in HTLV-1-infected hTM cells. This study lays the foundation for further clinical studies exploring the effectiveness of ripasudil for the treatment of secondary glaucoma associated with HU.


Assuntos
Glaucoma , Vírus Linfotrópico T Tipo 1 Humano , Isoquinolinas , Sulfonamidas , Uveíte , Adulto , Humanos , NF-kappa B , Glaucoma/tratamento farmacológico , Glaucoma/etiologia , Citocinas/uso terapêutico , Interleucina-6 , Quinases Associadas a rho
6.
J Ethnopharmacol ; 328: 118114, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552993

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY: To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS: We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS: Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS: The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Lesões Encefálicas , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Intoxicação Alcoólica/tratamento farmacológico , Transdução de Sinais , Etanol/farmacologia , Lesões Encefálicas/tratamento farmacológico , Biomarcadores , Quinases Associadas a rho/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474263

RESUMO

Dexmedetomidine is widely used to induce sedation in the perioperative period. This study examined the effect of hypothermia (33 and 25 °C) on dexmedetomidine-induced contraction in an endothelium-intact aorta with or without the nitric oxide synthase inhibitor NW-nitro-L-arginine methyl ester (L-NAME). In addition, the effect of hypothermia on the contraction induced by dexmedetomidine in an endothelium-denuded aorta with or without a calcium-free Krebs solution was examined. The effects of hypothermia on the protein kinase C (PKC), myosin light chain (MLC20) phosphorylation, and Rho-kinase membrane translocation induced by dexmedetomidine were examined. Hypothermia inhibited dexmedetomidine-induced contraction in the endothelium-intact aorta with L-NAME or endothelium-denuded aorta. Hypothermia had almost no effect on the dexmedetomidine-induced contraction in the endothelium-denuded aorta with the calcium-free Krebs solution; however, the subsequent contraction induced by the addition of calcium was inhibited by hypothermia. Conversely, the transition from profound hypothermia back to normothermia reversed the hypothermia-induced inhibition of subsequent calcium-induced contractions. Hypothermia inhibited any contraction induced by KCl, PDBu, and NaF, as well as PKC and MLC20 phosphorylation and Rho-kinase membrane translocation induced by dexmedetomidine. These results suggest that hypothermia inhibits dexmedetomidine-induced contraction, which is mediated mainly by the impediment of calcium influx and partially by the attenuation of pathways involving PKC and Rho-kinase activation.


Assuntos
Dexmedetomidina , Hipotermia , Ratos , Animais , Dexmedetomidina/farmacologia , Quinases Associadas a rho/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Cálcio/metabolismo , Hipotermia/metabolismo , Proteína Quinase C/metabolismo , Endotélio Vascular/metabolismo , Contração Muscular
8.
Theranostics ; 14(5): 1841-1859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505605

RESUMO

Rationale: The surge of severe liver damage underscores the necessity for identifying new targets and therapeutic agents. Endoplasmic reticulum (ER) stress induces ferroptosis with Gα12 overexpression. NF-κB essential modulator (NEMO) is a regulator of inflammation and necroptosis. Nonetheless, the regulatory basis of NEMO de novo synthesis and its impact on hepatocyte ferroptosis need to be established. This study investigated whether Nrf2 transcriptionally induces IKBKG (the NEMO gene) for ferroptosis inhibition and, if so, how NEMO induction protects hepatocytes against ER stress-induced ferroptosis. Methods: Experiments were conducted using human liver tissues, hepatocytes, and injury models, incorporating NEMO overexpression and Gα12 gene modulations. RNA sequencing, immunoblotting, immunohistochemistry, reporter assays, and mutation analyses were done. Results: NEMO downregulation connects closely to ER and oxidative stress, worsening liver damage via hepatocyte ferroptosis. NEMO overexpression protects hepatocytes from ferroptosis by promoting glutathione peroxidase 4 (GPX4) expression. This protective role extends to oxidative and ER stress. Similar shifts occur in nuclear factor erythroid-2-related factor-2 (Nrf2) expression alongside NEMO changes. Nrf2 is newly identified as an IKBKG (NEMO gene) transactivator. Gα12 changes, apart from Nrf2, impact NEMO expression, pointing to post-transcriptional control. Gα12 reduction lowers miR-125a, an inhibitor of NEMO, while overexpression has the opposite effect. NEMO also counters ER stress, which triggers Gα12 overexpression. Gα12's significance in NEMO-dependent hepatocyte survival is confirmed via ROCK1 inhibition, a Gα12 downstream kinase, and miR-125a. The verified alterations or associations within the targeted entities are validated in human liver specimens and datasets originating from livers subjected to exposure to other injurious agents. Conclusions: Hepatic injury prompted by ER stress leads to the suppression of NEMO, thereby facilitating ferroptosis through the inhibition of GPX4. IKBKG is transactivated by Nrf2 against Gα12 overexpression responsible for the increase of miR-125a, an unprecedented NEMO inhibitor, resulting in GPX4 induction. Accordingly, the induction of NEMO mitigates ferroptotic liver injury.


Assuntos
Ferroptose , Hepatopatias , MicroRNAs , Humanos , Estresse do Retículo Endoplasmático/genética , Ferroptose/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 236-243, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501408

RESUMO

OBJECTIVE: To improve the efficiency of induced differentiation of primitive neural epithelial cells derived from human induced pluripotent stem cells (hiPSCs-NECs) into functional midbrain dopaminergic progenitor cells (DAPs). METHODS: HiPSCs were cultured in mTeSRTM medium containing DMH1 (10 µmol/L), SB431542 (10 µmol/L), SHH (200 ng/mL), FGF8 (100 ng/mL), purmorphamine (2 µmol/L), CHIR99021 (3 µmol/L), and N2 (1%) for 12 days to induce their differentiation into primitive neuroepithelial cells (NECs). The hiPSCs-NECs were digested with collagenase Ⅳ and then cultured in neurobasal medium supplemented with 1% N2, 2% B27-A, BDNF (10 ng/mL), GDNF (10 ng/mL), AA, TGF-ß, cAMP, and 1% GlutaMax in the presence of different concentrations of Rho kinase inhibitor Y27632, and the culture medium was changed the next day to remove Y27632. Continuous induction was performed until day 28 to obtain DAPs. RESULTS: Human iPSCs expressed the pluripotency markers OCT4, SOX2, Nanog, and SSEA1 and were positive for alkaline phosphatase staining. The hiPSCs-NECs were obtained on day 13 in the form of neural rosettes expressing neuroepithelial markers SOX2, nestin, and PAX6. In digested hiPSCs-NECs, the addition of 5 µmol/L Y27632 significantly promoted survival of the adherent cells, increased cell viability and the proportion of S-phase cells (P < 0.01), and reduced the rate of apoptotic cells (P < 0.05). On day 28 of induction, the obtained cells highly expressed the specific markers of DAPS (TH, FOXA2, NURR1, and Tuj1). CONCLUSION: Treatment with Y27632 (5 µmol/L) for 24 h significantly promotes the survival of human iPSCs-NECs during their differentiation into DPAs without affecting the cell differentiation, which indirectly enhances the efficiency of cell differentiation.


Assuntos
Amidas , Células-Tronco Pluripotentes Induzidas , Piridinas , Humanos , Quinases Associadas a rho , Diferenciação Celular , Inibidores de Proteínas Quinases , Mesencéfalo
10.
Int Wound J ; 21(4): e14590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531354

RESUMO

Clinical studies indicate antibiotic bone cement with propeller flaps improves diabetic foot wound repair and reduces amputation rates, but the molecular mechanisms, particularly key proteins' role remain largely unexplored. This study assessed the efficacy of antibiotic bone cement for treating diabetic foot wounds, focusing on molecular impact on ROCK1. Sixty patients were randomized into experimental (EXP, n = 40) and control (CON, n = 20) groups, treated with antibiotic bone cement and negative pressure. Wound healing rate, amputation rate, wound secretion culture and C-reactive protein (CRP) changes, were monitored. Comprehensive molecular investigations were conducted and animal experiments were performed to further validate the findings. Statistical methods were employed to verify significant differences between the groups and treatment outcomes. The EXP group showed significant improvements in wound healing ( χ 2 $$ {\chi}^2 $$ = 11.265, p = 0.004) and reduced amputation rates. Elevated levels of ROCK1, fibroblasts and VGF were observed in the trauma tissue post-treatment in the experimental group compared to pre-treatment and the control group (all p < 0.05). Improved trauma secretion culture and CRP were also noted in the EXP group (all p < 0.05). The study suggests that antibiotic bone cement enhances diabetic foot wound healing, possibly via upregulation of ROCK1. Further research is needed to elucidate the underlying molecular mechanisms and broader clinical implications.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/terapia , Cimentos Ósseos/uso terapêutico , Antibacterianos/uso terapêutico , Cicatrização , Amputação Cirúrgica , Quinases Associadas a rho/uso terapêutico
11.
Sci Adv ; 10(11): eadk0785, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478601

RESUMO

Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-ß1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-ß1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Animais , Humanos , Camundongos , Movimento Celular , Citocinas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Interleucina-6 , Proteína de Leucina Linfoide-Mieloide/metabolismo , Quinases Associadas a rho , Fator de Crescimento Transformador beta1
12.
Biochem Pharmacol ; 222: 116049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342347

RESUMO

We previously showed that digitoxin inhibits angiogenesis and cancer cell proliferation and migration and these effects were associated to protein tyrosine kinase 2 (FAK) inhibition. Considering the interactions between FAK and Rho GTPases regulating cell cytoskeleton and movement, we investigated the involvement of RhoA and Rac1 in the antiangiogenic effect of digitoxin. Phalloidin staining of human umbilical vein endothelial cells (HUVECs) showed the formation of stress fibers in cells treated with 10 nM digitoxin. By Rhotekin- and Pak1- pull down assays, detecting the GTP-bound form of GTPases, we observed that digitoxin (10-25 nM) induced sustained (0.5-6 h) RhoA activation with no effect on Rac1. Furthermore, inhibition of HUVEC migration and capillary-like tube formation by digitoxin was counteracted by hindering RhoA-ROCK axis with RhoA silencing or Y-27632 treatment. Digitoxin did not decrease p190RhoGAP phosphorylation at Tyr1105 (a site targeted by FAK), suggesting that RhoA activation was independent from FAK inhibition. Because increasing evidence points to a redox regulation of RhoA, we measured intracellular ROS and found that digitoxin treatment enhanced ROS levels in a concentration-dependent manner (1-25 nM). Notably, the flavoprotein inhibitor DPI or the pan-NADPH oxidase (NOX) inhibitor VAS-2870 antagonized both ROS increase and RhoA activation by digitoxin. Our results provide evidence that inhibition of HUVEC migration and tube formation by digitoxin is dependent on ROS production by endothelial NOX, which leads to the activation of RhoA/ROCK pathway. Digitoxin effects on proteins regulating cytoskeletal organization and cell motility could have a wider impact on cancer progression, beyond the antiangiogenic activity.


Assuntos
Digitoxina , NADPH Oxidases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Digitoxina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Movimento Celular , NADPH Oxidases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
13.
Gene ; 905: 148232, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309317

RESUMO

The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Estabilidade de RNA , RNA Longo não Codificante , Quinases Associadas a rho , Humanos , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Quinases Associadas a rho/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
14.
Cardiovasc Toxicol ; 24(3): 280-290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376771

RESUMO

In our previous studies, the results have revealed that circRNA_102046 is significantly upregulated in plasma of patients with ischemic stroke, which closely related to NIHSS score. Human neural stem cells (hNSCs) were used for characterization and subcellular localization of circRNA_102046, and hNSCs OGD/R model was generated. The proliferation of cells was examined by CCK-8 assay. The expression levels of associated molecules were evaluated using RT-qPCR, immunofluorescence staining or western blotting. The binding and co-localization of associated molecules were also evaluated by RIP and FISH assay. Furthermore, MCAO mouse model was established to examine the effects of circRNA_102046 on the progression of ischemic stroke. Expression of circRNA_102046 was detected in the cytoplasma of hNSCs. Then OGD/R cell model was established, where the levels of circRNA_102046 was significantly up-regulated. Furthermore, knockdown of circRNA_102046 was able to enhance the proliferation and differentiation of OGD/R hNSCs. In further downstream molecular studies, the results indicated that circRNA_102046 could participate in the occurrence and development of ischemic stroke through targeting miR-493-5p. In addition, ROCK1 was identified as the putative target of miR-493-5p, and circRNA_102046 regulates the proliferation and differentiation of hNSCs via the miR-493-5p/ROCK1 signaling. More importantly, the infarct volumes of MCAO mice were remarkably reduced after the treatment with sh-circRNA_102046, which also up- and down-regulate the expression of miR-493-5p and ROCK1, respectively. Elucidating this novel pathway provides a theoretical basis for the development of new diagnostic approach and targeted treatment for ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/metabolismo , RNA Circular , Transdução de Sinais , Diferenciação Celular , Quinases Associadas a rho/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403351

RESUMO

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Proteína de Ligação a GTP rhoC/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Sorafenibe , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Movimento Celular , Proliferação de Células
16.
Sci Rep ; 14(1): 3596, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351286

RESUMO

Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.


Assuntos
Receptor PAR-1 , Doenças Vasculares , Ratos , Animais , Receptor PAR-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anfetamina/farmacologia , Permeabilidade Capilar , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Quinases Associadas a rho/metabolismo , Doenças Vasculares/metabolismo , Endotélio Vascular/metabolismo , Citoesqueleto de Actina/metabolismo , Células Cultivadas
17.
CNS Drugs ; 38(4): 291-302, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38416402

RESUMO

BACKGROUND: The intravenous (IV) formulation of Rho-kinase (ROCK) inhibitor fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995. Additionally, fasudil has shown promising preclinical results for various chronic diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and dementia, in which long-term intravenous (IV) administration might not be suitable. OBJECTIVE: The objective of this study was to assess the absolute bioavailability of oral, in comparison to IV, application of the approved formulation of fasudil (ERIL®) and to evaluate the safety and tolerability of the oral application of fasudil. METHODS: This was a phase I, single-center, open-label, randomized, two period cross-over clinical trial in healthy women and men. By applying a cross-over design, each subject served as their own control. Two treatments were investigated, separated by a wash out phase of at least 3 days. Oral fasudil was administered once on day 1 to assess pharmacokinetics and three times on day 2, at an interval of 8 ± 1 h, to assess safety and gastrointestinal tolerability. For pharmacometrics of IV fasudil, it was administered once on day 1. Plasma profiles of fasudil and its active metabolite hydroxyfasudil after oral or IV administration were measured by liquid chromatography electrospray tandem mass spectrometry. Tolerability was assessed as proportion of subjects without significant drug intolerance, and safety was assessed by the proportion of subjects without clinical or laboratory treatment-associated serious adverse events. Gastrointestinal safety was assessed by applying the gastrointestinal symptom rating scale (GSRS). RESULTS: Fourteen subjects aged 30-70 years were included in this trial. After oral administration, fasudil concentrations in blood were mostly very low [1.4 g/L; coefficient of variation (CV) 41.0%]. After IV application, the peak concentration was 100.6 µg/L (CV 74.2%); however, a high variance in peak concentrations were assessed for both treatments. The maximal concentrations of hydroxyfasudil in blood were similar after oral and IV treatment [111.6 µg/L (CV 24.1%) and 108.4 µg/L (CV 19.7%), respectively]. Exposure of hydroxyfasudil (assessed as AUC0-tz) differed between both treatments, with 449 µg × h/L after IV treatment and 309 µg × h/L after oral treatment. Therefore, the absolute bioavailability of hydroxyfasudil after the oral treatment was approximately 69% of the IV treatment. No serious adverse events (SAEs) occurred during this trial, and good tolerability of oral fasudil (90 mg/day) was documented. CONCLUSIONS: Oral fasudil was generally well tolerated in the studied population, and no safety concerns were identified. However, systemic bioavailability of oral hydroxyfasudil corresponded to 69%, and dose adjustments need to considered. The results presented here lay grounds for future trials of fasudil in chronic diseases, which require an oral long-term application. This trial was registered with EudraCT (no. 2019-001805-26).


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Inibidores de Proteínas Quinases , Quinases Associadas a rho , Masculino , Humanos , Feminino , Disponibilidade Biológica , Voluntários Saudáveis , Inibidores de Proteínas Quinases/efeitos adversos , Doença Crônica , Administração Oral
18.
Iran Biomed J ; 28(1): 15-22, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317313

RESUMO

Background: Simvastatin (SIM) has anti-inflammatory and antioxidant properties against cardiac ischemia/reperfusion injury (I/RI). However, it suffers from low bioavailability and a short half-life. Nanoniosomes are novel drug delivery systems that may increase SIM effectiveness. The present research evaluates the impact of SIM-loaded nanoniosomes on the oxygen-glucose deprivation/reperfusion (OGD/R) injury model of H9c2 cells. Methods: Cells were seeded based on five groups: (1) control; (2) OGD/R; (3) OGD/R receiving SIM; (4) OGD/R receiving nanoniosomes; and (5) OGD/R receiving SIM loaded nanoniosomes. OGD/R injury of the H9c2 cells was treated with SIM or SIM loaded nanoniosomes. Cell viability, two inflammatory factors, necroptosis factors, along with HMGB1 and Nrf2 gene expressions were assessed. Results: The cells treated with SIM loaded nanoniosomes showed a significant elevation in the cell viability and a reduction in HMGB1, Nrf2, TNF-α, IL-1ß, RIPK1, and ROCK1 expression levels compared to the OGD/R and SIM groups. Conclusion: Based on our findings, nanoniosomes could safely serve as a drug delivery system to counterbalance the disadvantages of SIM, resulting in improved aqueous solubility and stability.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Humanos , Oxigênio , Sinvastatina/farmacologia , Glucose , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Inflamação/tratamento farmacológico , Apoptose , Quinases Associadas a rho
19.
Chem Biol Drug Des ; 103(1): e14418, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230791

RESUMO

Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 2.9 µM, SKMEL-28: IC50 = 4.9 µM, A375: IC50 = 6.7 µM) and 13 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 3.3 µM, SKMEL-28: IC50 = 13.8 µM, A375: IC50 = 17.1 µM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Hedgehog/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Apoptose , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral , Estrutura Molecular , Quinases Associadas a rho/metabolismo
20.
Drug Des Devel Ther ; 18: 97-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38264539

RESUMO

The cornea, as the outermost layer of the eye, plays a crucial role in vision by focusing light onto the retina. Various diseases and injuries can compromise its clarity, leading to impaired vision. This review aims to provide a thorough overview of the pharmacological properties, therapeutic potential and associated risks of Rho-associated protein kinase (ROCK) inhibitors in the management of corneal diseases. The article focuses on four key ROCK inhibitors: Y-27632, fasudil, ripasudil, and netarsudil, providing a comparative examination. Studies supporting the use of ROCK inhibitors highlight their efficacy across diverse corneal conditions. In Fuchs' endothelial corneal dystrophy, studies on the application of Y-27632, ripasudil, and netarsudil demonstrated noteworthy enhancements in corneal clarity, endothelial cell density, and visual acuity. In pseudophakic bullous keratopathy, the injection of Y-27632 together with cultured corneal endothelial cells into the anterior chamber lead to enhanced corneal endothelial cell density and improved visual acuity. Animal models simulating chemical injury to the cornea showed a reduction of neovascularization and epithelial defects after application of fasudil and in a case of iridocorneal endothelial syndrome netarsudil improved corneal edema. Addressing safety considerations, netarsudil and ripasudil, both clinically approved, exhibit adverse events such as conjunctival hyperemia, conjunctival hemorrhage, cornea verticillata, conjunctivitis, and blepharitis. Monitoring patients during treatment becomes crucial to balancing the potential therapeutic benefits with these associated risks. In conclusion, ROCK inhibitors, particularly netarsudil and ripasudil, offer promise in managing corneal diseases. The comparative analysis of their pharmacological properties and studies supporting their efficacy underscore their potential therapeutic significance. However, ongoing research is paramount to comprehensively understand their safety profiles and long-term outcomes in diverse corneal conditions, guiding their optimal application in clinical practice.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Amidas , Benzoatos , Doenças da Córnea , Isoquinolinas , Piridinas , Sulfonamidas , beta-Alanina , Quinases Associadas a rho , Animais , Humanos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , beta-Alanina/análogos & derivados , Células Endoteliais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...