Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Sci Rep ; 14(1): 8597, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615119

RESUMO

Oral poisoning can trigger diverse physiological reactions, determined by the toxic substance involved. One such consequence is hyperchloremia, characterized by an elevated level of chloride in the blood and leads to kidney damage and impairing chloride ion regulation. Here, we conducted a comprehensive genome-wide analysis to investigate genes or proteins linked to hyperchloremia. Our analysis included functional enrichment, protein-protein interactions, gene expression, exploration of molecular pathways, and the identification of potential shared genetic factors contributing to the development of hyperchloremia. Functional enrichment analysis revealed that oral poisoning owing hyperchloremia is associated with 4 proteins e.g. Kelch-like protein 3, Serine/threonine-protein kinase WNK4, Serine/threonine-protein kinase WNK1 and Cullin-3. The protein-protein interaction network revealed Cullin-3 as an exceptional protein, displaying a maximum connection of 18 nodes. Insufficient data from transcriptomic analysis indicates that there are lack of information having direct associations between these proteins and human-related functions to oral poisoning, hyperchloremia, or metabolic acidosis. The metabolic pathway of Cullin-3 protein revealed that the derivative is Sulfonamide which play role in, increasing urine output, and metabolic acidosis resulted in hypertension. Based on molecular docking results analysis it found that Cullin-3 proteins has the lowest binding energies score and being suitable proteins. Moreover, no major variations were observed in unbound Cullin-3 and all three peptide bound complexes shows that all systems remain compact during 50 ns simulations. The results of our study revealed Cullin-3 proteins be a strong foundation for the development of potential drug targets or biomarker for future studies.


Assuntos
Cloretos , Proteínas Culina , Humanos , Acidose , Biomarcadores , Cloretos/efeitos adversos , Cloretos/toxicidade , Proteínas Culina/metabolismo , Halogênios , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
2.
Genes (Basel) ; 14(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895227

RESUMO

(1) Background: Gordon syndrome (GS) or familial hyperkalemic hypertension is caused by pathogenic variants in the genes WNK1, WNK4, KLHL3, and CUL3. Patients presented with hypertension, hyperkalemia despite average glomerular filtration rate, hyperchloremic metabolic acidosis, and suppressed plasma renin (PR) activity with normal plasma aldosterone (PA) and sometimes failure to thrive. GS is a heterogeneous genetic syndrome, ranging from severe cases in childhood to mild and sometimes asymptomatic cases in mid-adulthood. (2) Methods: We report here a sizeable Spanish family of six patients (four adults and two children) with GS. (3) Results: They carry a novel heterozygous missense variant in exon 7 of WNK1 (p.Glu630Gly). The clinical presentation in the four adults consisted of hypertension (superimposed pre-eclampsia in two cases), hyperkalemia, short stature with low body weight, and isolated hyperkalemia in both children. All patients also presented mild hyperchloremic metabolic acidosis and low PR activity with normal PA levels. Abnormal laboratory findings and hypertension were normalized by dietary salt restriction and low doses of thiazide or indapamide retard. (4) Conclusions: This is the first Spanish family with GS with a novel heterozygous missense variant in WNK1 (p.Glu630Gly) in the region containing the highly conserved acidic motif, which is showing a relatively mild phenotype, and adults diagnosed in mild adulthood. These data support the importance of missense variants in the WNK1 acidic domain in electrolyte balance/metabolism. In addition, findings in this family also suggest that indapamide retard or thiazide may be an adequate long-standing treatment for GS.


Assuntos
Acidose , Hiperpotassemia , Hipertensão , Indapamida , Criança , Adulto , Humanos , Tiazidas , Proteína Quinase 1 Deficiente de Lisina WNK/genética
3.
Exp Neurol ; 370: 114552, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793538

RESUMO

Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Gânglios Espinais/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Peptídeos e Proteínas de Sinalização Intracelular , Lisina/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Dor
4.
PLoS Genet ; 19(10): e1010975, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819975

RESUMO

WNK (With no Lysine [K]) kinases have critical roles in the maintenance of ion homeostasis and the regulation of cell volume. Their overactivation leads to pseudohypoaldosteronism type II (Gordon syndrome) characterized by hyperkalemia and high blood pressure. More recently, WNK family members have been shown to be required for the development of the nervous system in mice, zebrafish, and flies, and the cardiovascular system of mice and fish. Furthermore, human WNK2 and Drosophila Wnk modulate canonical Wnt signaling. In addition to a well-conserved kinase domain, animal WNKs have a large, poorly conserved C-terminal domain whose function has been largely mysterious. In most but not all cases, WNKs bind and activate downstream kinases OSR1/SPAK, which in turn regulate the activity of various ion transporters and channels. Here, we show that Drosophila Wnk regulates Wnt signaling and cell size during the development of the wing in a manner dependent on Fray, the fly homolog of OSR1/SPAK. We show that the only canonical RF(X)V/I motif of Wnk, thought to be essential for WNK interactions with OSR1/SPAK, is required to interact with Fray in vitro. However, this motif is unexpectedly dispensable for Fray-dependent Wnk functions in vivo during fly development and fluid secretion in the Malpighian (renal) tubules. In contrast, a structure function analysis of Wnk revealed that the less-conserved C-terminus of Wnk, that recently has been shown to promote phase transitions in cell culture, is required for viability in vivo. Our data thus provide novel insights into unexpected in vivo roles of specific WNK domains.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Drosophila/metabolismo , Peixe-Zebra/metabolismo , Homeostase , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
Mol Cell Endocrinol ; 576: 112038, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544354

RESUMO

The invasion of human extravillous trophoblast (EVT) cells is a critical event required for a successful pregnancy. Amphiregulin, a ligand of the epidermal growth factor receptor (EGFR), has been shown to stimulate cell invasion in an immortalized human EVT cell line, HTR-8/SVneo. The with-no-lysine kinase 1 (WNK1) is involved in regulating cell invasion. It is known that WNK1 is expressed in the human placenta, but its role in human EVT cells remains unknown. In the present study, we show that AREG treatment phosphorylated WNK1 at Thr60 in both HTR-8/SVneo and primary human EVT cells. The stimulatory effect of AREG on WNK1 phosphorylation was mediated by the activation of PI3K/AKT, but not the ERK1/2 signaling pathway. AREG upregulated matrix metalloproteinase 9 (MMP9) but not MMP2. In addition, cell invasiveness was increased in response to the treatment of AREG. Using the siRNA-mediated knockdown approach, our results showed that the knockdown of WNK1 attenuated the AREG-induced upregulation of MMP9 expression and cell invasion. Moreover, the expression of WNK1 was downregulated in the placentas with preeclampsia, a disease resulting from insufficiency of EVT cell invasion during pregnancy. This study discovers the physiological function of WNK1 in human EVT cells and provides important insights into the regulation of MMP9 and cell invasion in human EVT cells.


Assuntos
Metaloproteinase 9 da Matriz , Trofoblastos , Proteína Quinase 1 Deficiente de Lisina WNK , Feminino , Humanos , Gravidez , Anfirregulina/genética , Anfirregulina/metabolismo , Movimento Celular , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(25): e2300310120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307465

RESUMO

The protein kinase WNK1 (with-no-lysine 1) influences trafficking of ion and small-molecule transporters and other membrane proteins as well as actin polymerization state. We investigated the possibility that actions of WNK1 on both processes are related. Strikingly, we identified the E3 ligase tripartite motif-containing 27 (TRIM27) as a binding partner for WNK1. TRIM27 is involved in fine tuning the WASH (Wiskott-Aldrich syndrome protein and SCAR homologue) regulatory complex which regulates endosomal actin polymerization. Knockdown of WNK1 reduced the formation of the complex between TRIM27 and its deubiquitinating enzyme USP7 (ubiquitin-specific protease 7), resulting in significantly diminished TRIM27 protein. Loss of WNK1 disrupted WASH ubiquitination and endosomal actin polymerization, which are necessary for endosomal trafficking. Sustained receptor tyrosine kinase (RTK) expression has long been recognized as a key oncogenic signal for the development and growth of human malignancies. Depletion of either WNK1 or TRIM27 significantly increased degradation of the epidermal growth factor receptor (EGFR) following ligand stimulation in breast and lung cancer cells. Like the EGFR, the RTK AXL was also affected similarly by WNK1 depletion but not by inhibition of WNK1 kinase activity. This study uncovers a mechanistic connection between WNK1 and the TRIM27-USP7 axis and extends our fundamental knowledge about the endocytic pathway regulating cell surface receptors.


Assuntos
Actinas , Endossomos , Humanos , Peptidase 7 Específica de Ubiquitina , Fatores de Transcrição , Receptores ErbB , Receptores Proteína Tirosina Quinases , Proteínas de Ligação a DNA , Proteínas Nucleares , Proteína Quinase 1 Deficiente de Lisina WNK
7.
Clin Transl Med ; 13(4): e1217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37029785

RESUMO

BACKGROUND: The dismal prognosis of advanced ovarian cancer calls for the development of novel therapies to improve disease outcome. In this regard, we set out to discover new molecular entities and to assess the preclinical effectiveness of their targeting. METHODS: Cell lines, mice and human ovarian cancer samples were used. Proteome profiling of human phosphokinases, in silico genomic analyses, genetic (shRNA and CRISPR/Cas9) and pharmacological strategies as well as an ex vivo human preclinical model were performed. RESULTS: We identified WNK1 as a highly phosphorylated protein in ovarian cancer and found that its activation or high expression had a negative impact on patients' survival. Genomic analyses showed amplification of WNK1 in human ovarian tumours. Mechanistically, we demonstrate that WNK1 exerted its action through the MEK5-ERK5 signalling module in ovarian cancer. Loss of function, genetic or pharmacological experiments, demonstrated anti-proliferative and anti-tumoural effects of the targeting of the WNK1-MEK5-ERK5 route. Additional studies showed that this pathway modulated the anti-tumoural properties of the MEK1/2 inhibitor trametinib. Thus, treatment with trametinib activated the WNK1-MEK5-ERK5 route, raising the possibility that this effect may limit the therapeutic benefit of ERK1/2 targeting in ovarian cancer. Moreover, in different experimental settings, including an ex vivo patient-derived model consisting of ovarian cancer cells cultured with autologous patient sera, we show that inhibition of WNK1 or MEK5 increased the anti-proliferative and anti-tumour efficacy of trametinib. CONCLUSIONS: The present study uncovers the participation of WNK1-MEK5-ERK5 axis in ovarian cancer pathophysiology, opening the possibility of acting on this pathway with therapeutic purposes. Another important finding of the present study was the activation of that signalling axis by trametinib, bypassing the anti-tumoural efficacy of this drug. That fact should be considered in the context of the use of trametinib in ovarian cancer.


Assuntos
MAP Quinase Quinase 5 , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
8.
Anim Biotechnol ; 34(9): 4803-4808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37079337

RESUMO

Inclement weather conditions, especially cold stress, have threatened the cattle industry. Cattle exposed to cold environments for a longer time suffer developmental delay, immunity decline, and eventually death. WNK1 is a member of With-no-lysine kinases (WNKs), widely expressed in animal organs and tissues. WNK1 and WNK4 are expressed in adipose tissue, and WNK4 promotes adipogenesis. WNK1 does not directly affect adipogenesis but has been shown to promote WNK4 expression in several tissues or organs. One missense mutation NC_037346.1:g.107692244, A > G, rs208265410 in the WNK1 gene was detected from the database of bovine genomic variation (BGVD). Here, we collected 328 individuals of 17 breeds representing four groups of Chinese cattle, northern group cattle, southern group cattle, central group cattle, and special group cattle (Tibetan cattle). We also collected the temperature and humidity data records from their relative locations. The frequencies of the G allele in Chinese breeds increased from northern China to southern China, and the frequencies of the A allele showed an opposite trend. Our results indicate that the WNK1 gene might be a candidate gene marker associated with cold tolerance.


Assuntos
Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases , Humanos , Bovinos/genética , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Antígenos de Histocompatibilidade Menor/genética , China
9.
Clin Exp Pharmacol Physiol ; 50(5): 393-402, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36733226

RESUMO

Children repeatedly exposed to anaesthesia have a high risk of cognitive impairment, but the mechanism of its regulation in this context is unknown. The objective of this study was to investigate the possible toxic mechanism of sevoflurane through the WNK1/NKCC1/Ca2+ /Drp-1 signalling pathway. The hippocampal neuronal HT22 cell line was used in this study. The intervention group was treated with the WNK1 inhibitor WNK-463, CaN inhibitor FK506 and Drp-1 inhibitor Mdivi-1 respectively in the medium for 30 min before sevoflurane anaesthesia. The sevofluane group and all intervention group treated with 4.1% sevoflurane for 6 h. Compared with the control group, sevoflurane treatment decreased cell viability and increased cellular apoptosis. Our study found that WNK-463, FK506 and Mdivi-1 can all alleviate the sevoflurane-induced reduction in cell viability, decrease the cell apoptosis. In addition, WNK-463 pretreatment could inhibit the increase of WNK1 kinase and NKCC1 protein concentration caused by sevoflurane. Further, sevoflurane anaesthesia causes intracellular calcium overload, increases the expression of CaN and induces the dephosphorylation of Drp-1 protein at ser637, while CaN inhibitor FK506 pretreatment could reduce the dephosphorylation of Drp-1. Therefore, the WNK1/NKCC1/Ca2+ /Drp-1 signalling pathway plays an important role in sevoflurane-related neurotoxicity. Reducing intracellular calcium influx may be one of the important mechanism to ameliorate sevoflurane toxicity.


Assuntos
Neurônios , Proteínas Serina-Treonina Quinases , Sevoflurano , Humanos , Cálcio , Neurônios/efeitos dos fármacos , Sevoflurano/toxicidade , Tacrolimo , Proteína Quinase 1 Deficiente de Lisina WNK , Linhagem Celular
10.
Exp Cell Res ; 426(1): 113513, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780970

RESUMO

Previous studies have highlighted the poor prognosis of liver cancer, and treatment effects are overall limited. We aimed to confirm the biological roles of SIAH2 in liver cancer and provide potential therapeutic targets. Differential analysis was conducted based on public datasets and found that SIAH2 expressed lowly in HCC samples relative to normal tissues, which was demonstrated in tumor samples via immunohistochemistry (IHC). Besides, SIAH2 overexpression could significantly suppress HCC proliferation. SIAH2 deficiency induced cell proliferation, migration and self-renewal abilities in vitro and in vivo. Mechanistically, SIAH2 could interact with WNK1, and trigger the ubiquitination and degradation of WNK1 proteins. In addition, low SIAH2 depended on elevated WNK1 proteins to drive HCC malignant features, including proliferation, migration and stemness. Meanwhile, we further found that CBX2 could regulate SIAH2 expressions. CBX2 cooperated with EZH2 to mediate the H3K27me3 enrichment on the promoter region of SIAH2 to suppress its transcriptional levels. High CBX2/EZH2 levels in HCC correlated with poor prognosis of patients. Gene set enrichment analysis (GSEA) further implicated that WNK1 correlates tightly with glycolytic process in HCC samples. WNK1 overexpression was found to notably enhance glycolytic activity, whereas WNK1 deficiency could significantly suppress the HCC glycolysis activity. Lastly, the subcutaneous tumor model further demonstrated that targeting WNK1 was effective to inhibit the in vivo tumor growth of SIAH2low HCC. Collectively, down-regulated SIAH2 expressions induced by CBX2/EZH2 could drive progression and glycolysis via accumulating WNK1 proteins, indicating that CBX2/SIAH2/WNK1 axis is a potential prognostic biomarker and therapeutic vulnerability for human HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Complexo Repressor Polycomb 1/genética
11.
J Exp Med ; 220(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36662229

RESUMO

Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation.


Assuntos
Formação de Anticorpos , Linfócitos B , Camundongos , Animais , Tecido Linfoide , Transdução de Sinais , Linfócitos T CD4-Positivos , Antígenos CD40/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
12.
Drug Des Devel Ther ; 17: 93-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36712947

RESUMO

Introduction: WNK [with no lysine (K)] kinases are serine/threonine kinases associated with familial hyperkalemic hypertension (FHHt). WNKs are therapeutic targets for blood pressure regulation, stroke and several cancers including triple negative breast cancer and glioblastoma. Here, we searched for and characterized novel WNK kinase inhibitors. Methods: We used a ~210,000-compound library in a high-throughput screen, re-acquisition and assay, commercial specificity screens and crystallography to identify WNK-isoform-selective inhibitors. Results: We identified five classes of compounds that inhibit the kinase activity of WNK1: quinoline compounds, halo-sulfones, cyclopropane-containing thiazoles, piperazine-containing compounds, and nitrophenol-derived compounds. The compounds are strongly pan-WNK selective, inhibiting all four WNK isoforms. A class of quinoline compounds was identified that further shows selectivity among the WNK isoforms, being more potent toward WNK3 than WNK1. The crystal structure of the quinoline-derived SW120619 bound to the kinase domain of WNK3 reveals active site binding, and comparison to the WNK1 structure reveals the potential origin of isoform specificity. Discussion: The newly discovered classes of compounds may be starting points for generating pharmacological tools and potential drugs treating hypertension and cancer.


Assuntos
Ensaios de Triagem em Larga Escala , Hipertensão , Proteína Quinase 1 Deficiente de Lisina WNK , Humanos , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/antagonistas & inibidores
13.
Ir J Med Sci ; 192(1): 57-64, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35138567

RESUMO

BACKGROUNDS: WNK1 (WNK lysine deficient protein kinase 1) is a kind of protein kinase and participates in angiogenesis, having a potent tumor promoting role. WNK1 is ubiquitously expressed, and its upregulated expression has been reported in several tumor types. AIMS: Here, we aimed to investigate the correlation between WNK1 expression and colon adenocarcinoma (COAD) progression. METHODS: In the current study, WNK1 expression was evaluated by immunohistochemically in adjacent normal colonic mucosae and primary adenocarcinomas. The effect of WNK1 on overall survival (OS) and its associations with the clinicopathological parameters were analyzed in a retrospective cohort of COAD patients (n = 185). The tumor-related effects of WNK1 in COAD were further tested via cellular and mice experiments. RESULTS: According to our cohort, higher WNK1 expression was significantly associated with unfavorable prognostic factors, such as high pT stage, pN stage, as well as shorter OS. Moreover, WNK1 exhibited tumor promoting role in COAD cancer cell lines as well as in nude mice. Silencing WNK1 can significantly inhibit the proliferation of COAD both in vitro and in vivo. CONCLUSIONS: In all, WNK1 acts as a tumor promoter and may be used as a COAD prognostic biomarker.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Animais , Camundongos , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Camundongos Nus , Estudos Retrospectivos , Prognóstico
15.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292952

RESUMO

Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53-/-] and [HBx,src,p53-/-,RPIA], while ppp2r1bb is downregulated in [tert x p53-/-]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53-/-,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1ß expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated ß-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1-OSR1-PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1-OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1-OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Peixe-Zebra/metabolismo , Rafoxanida , Proteína Fosfatase 2/metabolismo , Lisina , Proteína Supressora de Tumor p53 , Antígenos de Histocompatibilidade Menor , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Transcrição/metabolismo , beta-Galactosidase/metabolismo
16.
Sci Rep ; 12(1): 15858, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151370

RESUMO

With no lysine kinase 1 (WNK1) phosphorylates and activates STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1) to regulate ion homeostasis in the kidney. Mutations in WNK1 result in dysregulation of the WNK1-SPAK/OSR1 pathway and cause pseudohypoaldosteronism type II (PHAII), a form of hypertension. WNK1 is also involved in the autosomal recessive neuropathy, hereditary sensory and autonomic neuropathy type II (HSANII). Mutations in a neural-specific splice variant of WNK1 (HSN2) cause HSANII. However, the mechanisms underlying HSN2 regulation in neurons and effects of HSN2 mutants remain unclear. Here, we found that HSN2 regulated neurite outgrowth through OSR1 activation and glycogen synthase kinase 3ß (GSK3ß). Moreover, HSN2-OSR1 and HSN2-GSK3ß signalling induced expression of LIM homeobox 8 (Lhx8), which is a key regulator of cholinergic neural function. The HSN2-OSR1/GSK3ß-LHX8 pathway is therefore important for neurite outgrowth. Consistently, HSN2 mutants reported in HSANII patients suppressed SPAK and OSR1 activation and LHX8 induction. Interestingly, HSN2 mutants also suppressed neurite outgrowth by preventing interaction of between wild-type HSN2 and GSK3ß. These results indicate that HSN2 mutants cause dysregulation of neurite outgrowth via GSK3ß in the HSN2 and/or WNK1 pathways.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Crescimento Neuronal , Proteínas Serina-Treonina Quinases , Proteína Quinase 1 Deficiente de Lisina WNK , Alanina , Colinérgicos , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Proteínas com Homeodomínio LIM , Prolina , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição , Proteína Quinase 1 Deficiente de Lisina WNK/genética
17.
Proc Natl Acad Sci U S A ; 119(30): e2203743119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867836

RESUMO

Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-ß signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-ß-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-ß interactome. However, molecular events jointly regulated by TGF-ß and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-ß-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-ß-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-ß. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-ß-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-ß-regulated functions.


Assuntos
Células Endoteliais , Junções Intercelulares , Neovascularização Fisiológica , Fator de Crescimento Transformador beta , Proteína Quinase 1 Deficiente de Lisina WNK , Animais , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Receptor Tirosina Quinase Axl
18.
Curr Opin Nephrol Hypertens ; 31(5): 471-478, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894282

RESUMO

PURPOSE OF REVIEW: The aim of this manuscript was to review recent evidence uncovering the roles of the With No lysine (K) kinase 1 (WNK1) in the kidney. RECENT FINDINGS: Analyses of microdissected mouse nephron segments have revealed the abundance of long-WNK1 and kidney-specific-WNK1 transcripts in different segments. The low levels of L-WNK1 transcripts in the distal convoluted tubule (DCT) stand out and support functional evidence on the lack of L-WNK1 activity in this segment. The recent description of familial hyperkalaemic hypertension (FHHt)-causative mutations affecting the acidic domain of WNK1 supports the notion that KS-WNK1 activates the Na+:Cl- cotransporter NCC. The high sensitivity of KS-WNK1 to KLHL3-targeted degradation and the low levels of L-WNK1 in the DCT, led to propose that this type of FHHt is mainly due to increased KS-WNK1 protein in the DCT. The observation that KS-WNK1 renal protein expression is induced by low K+ diet and recent reassessment of the phenotype of KS-WNK1-/- mice suggested that KS-WNK1 may be necessary to achieve maximal NCC activation under this condition. Evidences on the regulation of other renal transport proteins by WNK1 are also summarized. SUMMARY: The diversity of WNK1 transcripts in the kidney has complicated the interpretation of experimental data. Integration of experimental data with the knowledge of isoform abundance in renal cell types is necessary in future studies about WNK1 function in the kidney.


Assuntos
Proteínas Serina-Treonina Quinases , Pseudo-Hipoaldosteronismo , Proteína Quinase 1 Deficiente de Lisina WNK , Animais , Humanos , Rim/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Serina-Treonina Quinases/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
19.
Am J Respir Cell Mol Biol ; 67(4): 491-502, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849656

RESUMO

In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.


Assuntos
Fibrose Cística , Alanina , Bumetanida , Humanos , Concentração de Íons de Hidrogênio , Prolina , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...