Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
1.
Microbiologyopen ; 13(1): e1400, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375546

RESUMO

Campylobacter jejuni is a commensal in many animals but causes diarrhea in humans. Its polysaccharide capsule contributes to host colonization and virulence in a strain- and model-specific manner. We investigated if the capsule and its heptose are important for interactions of strain NCTC 11168 with various hosts and their innate immune defenses. We determined that they support bacterial survival in Drosophila melanogaster and enhance virulence in Galleria mellonella. We showed that the capsule had limited antiphagocytic activity in human and chicken macrophages, decreased adherence to chicken macrophages, and decreased intracellular survival in both macrophages. In contrast, the heptose increased uptake by chicken macrophages and supported adherence to human macrophages and survival within them. While the capsule triggered nitric oxide production in chicken macrophages, the heptose mitigated this and protected against nitrosative assault. Finally, the C. jejuni strain NCTC 11168 elicited strong cytokine production in both macrophages but quenched ROS production independently from capsule and heptose, and while the capsule and heptose did not protect against oxidative assault, they favored growth in biofilms under oxidative stress. This study shows that the wild-type capsule with its heptose is optimized to resist innate defenses in strain NCTC 11168 often via antagonistic effects of the capsule and its heptose.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Humanos , Animais , Drosophila melanogaster , Polissacarídeos , Heptoses , Galinhas , Infecções por Campylobacter/microbiologia , Imunidade Inata
2.
Org Lett ; 26(3): 745-750, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198674

RESUMO

Herein, we report the first total synthesis of the tetrasaccharide repeating unit of Vibrio cholerae O:3 O-antigen polysaccharide. The highly complex tetrasaccharide contains rare amino sugars such as d-bacillosamine and l-fucosamine, highly labile sugar ascarylose, and higher carbon sugar d-d-heptose. Stereoselective glycosylation of the notoriously reactive ascarylose with d-d-heptose, poor nucleophilicity of the axial C4-OH of l-fucosamine, and amide coupling are the key challenges encountered in the total synthesis, which was completed via a longest linear sequence of 23 steps in 4.2% overall yield.


Assuntos
Antígenos O , Vibrio cholerae , Sequência de Carboidratos , Oligossacarídeos , Heptoses
3.
Gut Microbes ; 16(1): 2295384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38126163

RESUMO

The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Fusobacterium nucleatum/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Neoplasias Colorretais/patologia , Heptoses/metabolismo , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 120(50): e2313148120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060563

RESUMO

The atypical protein kinase ALPK1 is activated by the bacterial nucleotide sugar ADP-heptose and phosphorylates TIFA to switch on a signaling pathway that combats microbial infection. In contrast, ALPK1 mutations cause two human diseases: the ALPK1[T237M] and ALPK1[Y254C] mutations underlie ROSAH syndrome (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis, and migraine headache), while the ALPK1[V1092A] mutation accounts for 45% of spiradenoma and 30% of spiradenocarcinoma cases studied. In this study, we demonstrate that unlike wild-type (WT) ALPK1, the disease-causing ALPK1 mutants trigger the TIFA-dependent activation of an NF-κB/activator protein 1 reporter gene in the absence of ADP-heptose, which can be suppressed by either of two additional mutations in the ADP-heptose binding site that prevent the activation of WT ALPK1 by ADP-heptose. These observations are explained by our key finding that although ALPK1[T237M] and ALPK1[V1092A] are activated by bacterial ADP-heptose, they can also be activated by nucleotide sugars present in human cells (UDP-mannose, ADP-ribose, and cyclic ADP-ribose) which can be prevented by disruption of the ADP-heptose binding site. The ALPK1[V1092A] mutant was also activated by GDP-mannose, which did not activate ALPK1[T237M]. These are new examples of disease-causing mutations permitting the allosteric activation of an enzyme by endogenous molecules that the WT enzyme does not respond to. We propose that the loss of the specificity of ALPK1 for bacterial ADP-heptose underlies ROSAH syndrome and spiradenoma/spiradenocarcinoma caused by ALPK1 mutation.


Assuntos
Acrospiroma , Neoplasias das Glândulas Sudoríparas , Humanos , Nucleotídeos/genética , Açúcares , Esplenomegalia , Manose , Heptoses/metabolismo
5.
Carbohydr Res ; 534: 108985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016254

RESUMO

Bacterial natural products containing heptosides such as septacidin represent interesting scaffolds for the development of drugs to combat antimicrobial resistance. However, very few synthetic strategies have been reported to grant access to these derivatives. Here, we have devised a synthetic pathway to l-glycero-l-glucoheptoside, a key building block en route to septacidin, directly from l-glucose. Importantly, we show that carbon homologation at C6, encompassing oxidation of the C6-OH followed by methylenation, is significantly influenced by the nature of the C4-moiety. In order to observe the effect of various patterns, namely azide (N3), p-methoxybenzyloxy (OPMB), and benzyloxy (OBn), a thorough analysis was conducted on the corresponding l-glucosides. The results unveiled a distinct trend where the efficiency of methylenation followed the trend OBn > OPMB > N3. Finally, the C6-alkene was dihydroxylated in the presence of osmium tetroxide to yield the expected l/d-glycero-l-glucoheptosides. The lead building block, which features a C-4 azide, was delivered as a phenyl thioglycoside. Added to the suitable masking of the 6,7-diol, this combination enables further functionalization to achieve versatile compounds of biological interest. The study insights into the interplay between substitution at C-4 and carbon homologation at C-6 provide valuable guidance for future endeavors in the synthesis of these carbohydrate molecules.


Assuntos
Azidas , Glucose , Heptoses/metabolismo , Carbono
6.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003258

RESUMO

Inactivation of enzymes responsible for biosynthesis of the cell wall component of ADP-glycero-manno-heptose causes the development of oxidative stress and sensitivity of bacteria to antibiotics of a hydrophobic nature. The metabolic precursor of ADP-heptose is sedoheptulose-7-phosphate (S7P), an intermediate of the non-oxidative branch of the pentose phosphate pathway (PPP), in which ribose-5-phosphate and NADPH are generated. Inactivation of the first stage of ADP-heptose synthesis (ΔgmhA) prevents the outflow of S7P from the PPP, and this mutant is characterized by a reduced biosynthesis of NADPH and of the Glu-Cys-Gly tripeptide, glutathione, molecules known to be involved in the resistance to oxidative stress. We found that the derepression of purine biosynthesis (∆purR) normalizes the metabolic equilibrium in PPP in ΔgmhA mutants, suppressing the negative effects of gmhA mutation likely via the over-expression of the glycine-serine pathway that is under the negative control of PurR and might be responsible for the enhanced synthesis of NADPH and glutathione. Consistently, the activity of the soxRS system, as well as the level of glutathionylation and oxidation of proteins, indicative of oxidative stress, were reduced in the double ΔgmhAΔpurR mutant compared to the ΔgmhA mutant.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , NADP/metabolismo , Purinas/farmacologia , Purinas/metabolismo , Heptoses/química , Heptoses/metabolismo , Glutationa/metabolismo , Via de Pentose Fosfato
7.
Biochemistry ; 62(21): 3145-3158, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890137

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in North America. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different carbohydrates that is anchored to the outer membrane. Heptoses of various configurations are among the most common monosaccharides that have been identified within the CPS. It is currently thought that all heptose variations derive from the modification of GDP-d-glycero-α-d-manno-heptose (GMH). From the associated gene clusters for CPS biosynthesis, we have identified 20 unique enzymes with different substrate profiles that are used by the various strains and serotypes of C. jejuni to make six different stereoisomers of GDP-6-deoxy-heptose, four stereoisomers of GDP-d-glycero-heptoses, and two stereoisomers of GDP-3,6-dideoxy-heptoses starting from d-sedoheptulose-7-phosphate. The modification enzymes include a C4-dehydrogenase, a C4,6-dehydratase, three C3- and/or C5-epimerases, a C3-dehydratase, eight C4-reductases, two pyranose/furanose mutases, and four enzymes for the formation of GMH from d-sedoheptulose-7-phosphate. We have mixed these enzymes in different combinations to make novel GDP-heptose modifications, including GDP-6-hydroxy-heptoses, GDP-3-deoxy-heptoses, and GDP-3,6-dideoxy-heptoses.


Assuntos
Campylobacter jejuni , Humanos , Polissacarídeos/metabolismo , Heptoses , Redes e Vias Metabólicas , Hidroliases/metabolismo , Fosfatos/metabolismo
8.
Chemistry ; 29(62): e202302277, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552007

RESUMO

Fluorinated carbohydrates are important tools for understanding the deregulation of metabolic fluxes and pathways. Fluorinating specific positions within the sugar scaffold can lead to enhanced metabolic stability and subsequent metabolic trapping in cells. This principle has, however, never been applied to study the metabolism of the rare sugars of the pentose phosphate pathway (PPP). In this study, two fluorinated derivatives of d-sedoheptulose were designed and synthesized: 4-deoxy-4-fluoro-d-sedoheptulose (4DFS) and 3-deoxy-3-fluoro-d-sedoheptulose (3DFS). Both sugars are taken up by human fibroblasts but only 4DFS is phosphorylated. Fluorination of d-sedoheptulose at C-4 effectively halts the enzymatic degradation by transaldolase and transketolase. 4DFS thus has a high potential as a new PPP imaging probe based on the principle of metabolic trapping. Therefore, the synthesis of potential radiolabeling precursors for 4DFS for future radiofluorinations with fluorine-18 is presented.


Assuntos
Heptoses , Açúcares , Humanos , Via de Pentose Fosfato , Halogenação
9.
Int J Med Microbiol ; 313(4): 151585, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399704

RESUMO

Lipopolysaccharide inner core heptose metabolites, including ADP-heptose, play a substantial role in the activation of cell-autonomous innate immune responses in eukaryotic cells, via the ALPK1-TIFA signaling pathway, as demonstrated for various pathogenic bacteria. The important role of LPS heptose metabolites during Helicobacter pylori infection of the human gastric niche has been demonstrated for gastric epithelial cells and macrophages, while the role of heptose metabolites on human neutrophils has not been investigated. In this study, we aimed to gain a better understanding of the activation potential of bacterial heptose metabolites for human neutrophil cells. To do so, we used pure ADP-heptose and, as a bacterial model, H. pylori, which can transport heptose metabolites into the human host cell via the Cag Type 4 Secretion System (CagT4SS). Main questions were how bacterial heptose metabolites impact on the pro-inflammatory activation, alone and in the bacterial context, and how they influence maturation of human neutrophils. Results of the present study demonstrated that neutrophils respond with high sensitivity to pure heptose metabolites, and that global regulation networks and neutrophil maturation are influenced by heptose exposure. Furthermore, activation of human neutrophils by live H. pylori is strongly impacted by the presence of LPS heptose metabolites and the functionality of its CagT4SS. Similar activities were determined in cell culture neutrophils of different maturation states and in human primary neutrophils. In conclusion, we demonstrated that specific heptose metabolites or bacteria producing heptoses exhibit a strong activity on cell-autonomous innate responses of human neutrophils.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Heptoses , Neutrófilos , Humanos , Infecções por Helicobacter/microbiologia , Heptoses/metabolismo , Lipopolissacarídeos/metabolismo , Neutrófilos/metabolismo
10.
Microbiol Spectr ; 11(3): e0313222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129481

RESUMO

Heptose metabolites including ADP-d-glycero-ß-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as ß-d-ADP-heptose and ß-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Lipopolissacarídeos/metabolismo , Heptoses/química , Heptoses/metabolismo , Inflamação , Imunidade Inata , Proteínas de Bactérias/metabolismo
11.
J Am Chem Soc ; 145(16): 9003-9010, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040604

RESUMO

The infection of Campylobacter jejuni results in a significant diarrhea disease, which is highly fatal to young children in unindustrialized countries. Developing a new therapy is required due to increasing antibiotic resistance. Herein, we described a total synthesis of a C. jejuni NCTC11168 capsular polysaccharide repeating unit containing a linker moiety via an intramolecular anomeric protection (iMAP) strategy. This one-step 1,6-protecting method structured the challenging furanosyl galactosamine configuration, facilitated further concise regioselective protection, and smoothed the heptose synthesis. The tetrasaccharide was constructed in a [2 + 1 + 1] manner. The synthesis of this complicated CPS tetrasaccharide was completed in merely 28 steps, including the preparation of all the building blocks, construction of the tetrasaccharide skeleton, and functional group transformations.


Assuntos
Campylobacter jejuni , Criança , Humanos , Pré-Escolar , Polissacarídeos , Heptoses , Oligossacarídeos , Cápsulas Bacterianas
12.
Sci Rep ; 13(1): 6278, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072480

RESUMO

Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Fosforilação , Infecções por Helicobacter/microbiologia , Imunidade Inata , Helicobacter pylori/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Heptoses/química , Heptoses/metabolismo
13.
Biochemistry ; 62(1): 134-144, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534477

RESUMO

Campylobacter jejuni is a human pathogen and the leading cause of food poisoning in the United States and Europe. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that consists of a repeating sequence of common and unusual carbohydrate segments. At least 10 different heptose sugars have thus far been identified in the various strains of C. jejuni. The accepted biosynthetic pathway for the construction of the 6-deoxy-heptoses begins with the 4,6-dehydration of GDP-d-glycero-d-manno-heptose by a dehydratase, followed by an epimerase that racemizes C3 and/or C5 of the product GDP-6-deoxy-4-keto-d-lyxo-heptose. In the final step, a C4-reductase catalyzes the NADPH reduction of the resulting 4-keto product. However, in some strains and serotypes of C. jejuni, there are two separate C4-reductases with different product specificities in the gene cluster for CPS formation. Five pairs of these tandem C4-reductases were isolated, and the catalytic properties were ascertained. In four out of five cases, one of the two C4-reductases is able to catalyze the isomerization of C3 and C5 of GDP-6-deoxy-4-keto-d-lyxo-heptose, in addition to the catalysis of the reduction of C4, thus bypassing the requirement for a separate C3/C5-isomerase. In each case, the 3'-end of the gene for the first C4-reductase contains a poly-G tract of 8-10 guanine residues that may be used to control the expression and/or catalytic activity of either C4-reductase. The three-dimensional structure of the C4-reductase from serotype HS:15, which only does a reduction of C4, was determined to 1.45 Å resolution in the presence of NADPH and GDP.


Assuntos
Campylobacter jejuni , Oxirredutases , Humanos , Oxirredutases/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , NADP/metabolismo , Polissacarídeos/metabolismo , Heptoses
14.
Curr Top Microbiol Immunol ; 444: 185-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38231219

RESUMO

Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-ß-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Humanos , DNA , Dano ao DNA , Helicobacter pylori/genética , Heptoses , Herpesvirus Humano 4 , Neoplasias Gástricas/genética
15.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364355

RESUMO

Heptose phosphates-unique linkers between endotoxic lipid A and O-antigen in the bacterial membrane-are pathogen-associated molecular patterns recognized by the receptors of the innate immune system. Understanding the mechanisms of immune system activation is important for the development of therapeutic agents to combat infectious diseases and overcome antibiotic resistance. However, in practice, it is difficult to obtain a substantial amount of heptose phosphates for biological studies due to the narrow scope of the reported synthetic procedures. We have optimized and developed an inexpensive and convenient synthesis for the first performed gram-scale production of 1-O-methyl d-glycero-α-d-gluco-heptoside 7-phosphate from readily available d-glucose. Scaling up to such amounts of the product, we have increased the efficiency of the synthesis and reduced the number of steps of the classical route through the direct phosphorylation of the O6,O7-unprotected heptose. The refined method could be of practical value for further biological screening of heptose phosphate derivatives.


Assuntos
Glucose , Fosfatos , Heptoses , Moléculas com Motivos Associados a Patógenos , Lipopolissacarídeos
16.
Org Lett ; 24(43): 7944-7949, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36287193

RESUMO

An efficient approach to 6-deoxy-heptose constructs has been established by one-carbon homologation of the sugar chain of hexoses. The reaction features the formation of sugar-based α-substituted propanedinitriles and ensuing diverse oxidative transformations under mild reaction conditions that are compatible with a wide range of sugars bearing various functional/protecting groups. The applications of this method are demonstrated by a divergent assembly of Campylobacter jejuni strain 81-176 capsular trisaccharide repeating unit derivatives.


Assuntos
Campylobacter jejuni , Trissacarídeos , Carbono , Heptoses , Hexoses
17.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078074

RESUMO

Impaired lipopolysaccharide biosynthesis in Gram-negative bacteria results in the "deep rough" phenotype, which is characterized by increased sensitivity of cells to various hydrophobic compounds, including antibiotics novobiocin, actinomycin D, erythromycin, etc. The present study showed that E. coli mutants carrying deletions of the ADP-heptose biosynthesis genes became hypersensitive to a wide range of antibacterial drugs: DNA gyrase inhibitors, protein biosynthesis inhibitors (aminoglycosides, tetracycline), RNA polymerase inhibitors (rifampicin), and ß-lactams (carbenicillin). In addition, it was found that inactivation of the gmhA, hldE, rfaD, and waaC genes led to dramatic changes in the redox status of cells: a decrease in the pool of reducing NADPH and ATP equivalents, the concentration of intracellular cysteine, a change in thiol homeostasis, and a deficiency in the formation of hydrogen sulfide. In "deep rough" mutants, intensive formation of reactive oxygen species was observed, which, along with a lack of reducing agents, such as reactive sulfur species or NADPH, leads to oxidative stress and an increase in the number of dead cells in the population. Within the framework of modern ideas about the role of oxidative stress as a universal mechanism of the bactericidal action of antibiotics, inhibition of the enzymes of ADP-heptose biosynthesis is a promising direction for increasing the effectiveness of existing antibiotics and solving the problem of multidrug resistance.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Difosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Heptoses/química , Heptoses/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , NADP/metabolismo , Estresse Oxidativo
18.
Biochemistry ; 61(19): 2138-2147, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36107882

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. A capsular polysaccharide that coats the exterior of the bacterium helps evade the host immune system. At least 33 different strains of C. jejuni have been identified, and the chemical structures of 12 different capsular polysaccharides (CPSs) have been characterized from various serotypes. Thus far, 10 different heptose sugars have been found in the chemically characterized CPSs, and each of these are currently thought to originate from the modification of GDP-d-glycero-d-manno-heptose by the successive action of 4,6-dehydratase (or C4-dehydrogenase), C3- or C3/C5-epimerase, and C4-reductase. Within the sequenced strains of C. jejuni, we have identified 25 different C4-reductases that cluster into nine groups at a sequence identity of >90%. Eight of the proteins from seven different clusters were purified, and their product profiles were determined with GDP-6-deoxy-4-keto-heptose substrates using NMR and ESI mass spectrometry. The isolated products included GDP-6-deoxy-l-gluco-heptose (serotype HS:2), GDP-6-deoxy-l-galacto-heptose (serotype HS:42), GDP-6-deoxy-l-gulo-heptose (serotype HS:15), GDP-6-deoxy-d-ido-heptose (serotypes HS:3, HS:4, and HS:33), GDP-6-deoxy-d-manno-heptose (serotype HS:53), and GDP-6-deoxy-d-altro-heptose (serotype HS:23/36). Based on these observations, the product specificity can be reliably predicted for 14 additional C4-reductases from C. jejuni. The remaining three C4-reductases are highly likely to be required for the biosynthesis of 3,6-dideoxy-heptose products.


Assuntos
Campylobacter jejuni , Campylobacter jejuni/metabolismo , Heptoses , Hidroliases/metabolismo , Oxirredutases/metabolismo , Polissacarídeos/metabolismo , Racemases e Epimerases/metabolismo
19.
Biochem J ; 479(20): 2195-2216, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098982

RESUMO

ADP-heptose activates the protein kinase ALPK1 triggering TIFA phosphorylation at Thr9, the recruitment of TRAF6 and the subsequent production of inflammatory mediators. Here, we demonstrate that ADP-heptose also stimulates the formation of Lys63- and Met1-linked ubiquitin chains to activate the TAK1 and canonical IKK complexes, respectively. We further show that the E3 ligases TRAF6 and c-IAP1 operate redundantly to generate the Lys63-linked ubiquitin chains required for pathway activation, which we demonstrate are attached to TRAF6, TRAF2 and c-IAP1, and that c-IAP1 is recruited to TIFA by TRAF2. ADP-heptose also induces activation of the kinase TBK1 by a TAK1-independent mechanism, which require TRAF2 and TRAF6. We establish that ALPK1 phosphorylates TIFA directly at Thr177 as well as Thr9 in vitro. Thr177 is located within the TRAF6-binding motif and its mutation to Asp prevents TRAF6 but not TRAF2 binding, indicating a role in restricting ADP-heptose signalling. We conclude that ADP-heptose signalling is controlled by the combined actions of TRAF2/c-IAP1 and TRAF6.


Assuntos
Heptoses , Fator 6 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Heptoses/química , Heptoses/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Quinases/metabolismo , Difosfato de Adenosina , Mediadores da Inflamação , NF-kappa B/genética , NF-kappa B/metabolismo
20.
Gut Microbes ; 14(1): 2110639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036242

RESUMO

The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.


Assuntos
Microbioma Gastrointestinal , NF-kappa B , Difosfato de Adenosina , Akkermansia , Heptoses , Imunidade Inata , Fator 6 Associado a Receptor de TNF , Verrucomicrobia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...